1. Lineær kinematik. 1.1 Kinematiske størrelser

Størrelse: px
Starte visningen fra side:

Download "1. Lineær kinematik. 1.1 Kinematiske størrelser"

Transkript

1 . Lineær kinematik Kinematik anaye og dermed kinematik udgør en tor og vigtig de af biomekanikken. I en tørre biomekanik anaye vi kinematikken normat være det ted man tarter, da begrebet omhander ammenhængen meem poition, hatighed og acceeration atå bevægee. Kinematikken er åede naturigt udgangpunktet for denne bog. Samtidigt fungerer dette kapite om introduktion ti notation og matematike begreber der anvende i enere kapiter. Kinematik betegne ofte om værende bekrivende da en kinematik anaye udeukkende bekriver hvike bevægeer/forfytninger et givet egeme opever og åede ikke benytte ti at underøge åragerne ti die bevægeer, dv. de bagvediggende kræfter. I dette kapite vi vi præentere de kinematike begreber ditance, hatighed, acceeration og de tihørende funktioner og anvendeemuigheder, amt de matematike begreber differentia- og integraregning. De idte indgår om et redkab ti bekrivee af kinematike tørreer i en tørre ammenhæng. Vi vi igeede bekrive jævne bevægeer, det krå kat og baae anvendeer af vektorregningen. Der tage udgangpunkt i en række ekemper, der primært kommer fra idrætten verden.. Kinematike tørreer De centrae kinematike tørreer er ditance, hatighed, acceeration og fart. Ditance måe i meter ( m) og angiver den ditance et egeme har bevæget eer forfyttet ig. Hatighed måe i meter pr. ekund ( m/ ) og angiver egemet hatighed på et givet tidpunkt. Acceeration måe i meter pr. ekund i anden ( m/ ) og angiver egemet hatighedændring ti en given tid, dv. forke meem hatighed før og efter i forhod ti tiden gået. Størreerne præciere yderigere nedenfor. Bemærk, at det giver mening at poitioner, hatigheder og acceerationer antager poitive, åve om negative værdier. Fortegnet på tørreen angiver bot at man har bevæget ig i en anden retning, eer man har tabt hatighed i den givne retning. Hvi et egeme f. ek. en fodgænger bevæger ig fra punkt a ti b med en hatighed, v, ige han at have farten v atå den poitive værdi af hatigheden. Såede angiver farten i modætning ti hatigheden kun en (poitiv) tørree, men ikke en retning. Gå ekempevi ført i en retning med m/ er hatigheden og farten på m/. Vende der havvej og øbe tibage ti udgangpunktet med 7m/ er hatigheden her 7m/ men farten er 7m/. 3

2 . Lineær bevægee.3 Kinematike funktioner Lineær kinematik ogå kadet tranatorik kinematik bekæftiger ig med den de af kinematikken, der forhoder ig ti bevægeer eer forfytninger i ineære retninger kadet retinjet bevægee. Fortåeen af dette begreb ka dog tiade, at man godt kan bevæge ig i andet end ige baner vi betragter bot bevægeen om værende retinjet. Vi vender enere tibage ti die overvejeer... Lineær bevægee i en retning Vi indeder med at betragte bevægee i en retning. Hermed fortå en bevægee, der foregår i en ret inje meem to punkter. Et godt ekempe på en en-rettet bevægee er et meter øb i atetik, hvor en øber bevæger ig i en retning fra tart ti må (figur.), hvorimod en fodbodpier i en kamp vi bevæge ig i fere retninger undervej (figur.9). Bevæger man ig ikke retinjet, ige bevægee at være kurveineær og foregår åede i fere retninger ti forkeige tider. Dette vender vi tibage ti enere i kapitet. Ved hjæp af funktionbegrebet kan vi definere funktioner, der bekriver de kinematike tørreer (e faktabok). t ( ) betegner et egeme poition ti tiden t. t ( ) kade tedfunktionen og angiver atå hvor egemet er ti tiden t. I ekempe. er ( 54, ) 5 m, da øberen Maurice Greene har bevæget ig 5 meter på 5,4 ekunder. vt ( ) betegner et egeme hatighed ti tiden t. vt ( ) kade hatighedfunktionen og angiver åede hviken hatighed egemet beidder ti tiden t. I ekempe. er dette iutreret ved v( 885, ),5 m/, hvor Maurice Greene har hatigheden,5 m/ 8,85 ekunder fra tart. at ( ) er funktionbekriveen af et egeme acceeration og kade acceerationfunktionen. Den angiver et egeme acceeration ti en given tid t. I ekempe.4. er acceerationen udregnet for Maurice Greene. Her er a( 95, ),44 m/, hviket betyder, at øberen beidder en negativ acceeration han miter atå fart. A Figur.. Bevægee i en retning meem to punkter. B Bemærk, at det atid er tiden t, der indgår i funktionen om forkarende variabe. Overvejeerne bag die approkimationer kan anvende i differentiaregningen, da denne håndterer uendeig må tørreer og dermed ændringer i poitioner over kort tid. Hvi de tidintervaer der måe over gøre mindre, vi vi mere præcit kunne angive hatigheden ti en betemt tid, da intervaet jo ikke er å tort ængere. Dermed kan vi ud fra tinærmeen angive et (godt) bud på en ree hatighed. Se deuden afnit.5:»anaytik betemmee af kinematike værdier«. 4. Lineær kinematik

3 .4 Approkimation af kinematike værdier Har man ikke en pecifik funktion, om bekriver de kinematike tørreer kan man finde gennemnitværdier ud fra de informationer man har. Herti benytte den tærke ammenhæng, der er meem differentiaregningen og ændringer i tørreer eer integraregningen og ummer. I det føgende antage, at ae udregninger tager udgangpunkt i at hatigheder, acceerationer og ditancer er ved tarten af anayen om ekempevi ved et -m-øb i atetik..4. Fra ditance ti hatighed I tabe.. er angivet måinger af Maurice Greene verdenrekordøb på meteren ti VM i Athen, 999. Tiden for ditancen var 9,79. Der foreigger måinger, tiden og hatigheden ved hver meter der er øbet. Deuden vie en grafik fremtiing af øbet, figur.. Vha. forme. kan vi udregne Greene acceeration i ae intervaerne undervej i øbet ekem- Betragte Ben Johnon ditancetider i ekempe., kan man e, at han ti tiden 4,67. paerede 4 meter og 5 meter ved 5,53 ekunder. Det betyder, at han brugte 5,53-4,67.,86. ti at øbe 5-4 m m. Herfra kan finde hatigheden i perioden. Kende ditancen t ( ) ti to tider, t og t, hvor t < t, kan gennemnithatigheden ti tiden t i intervaet t ; t udregne om: t ( ) t ( ) t ( ) vt ( ) t t t (forme.) udtae»deta«og angiver en ændring i en tørree. Vi vi i enere ammenhænge ogå bruge et amindeigt» d «om angivee af denne ændring. I ekempe. er udregningerne iutreret, hvorti det ka bemærke, at vi principiet ka angive tiden om et interva, da det er en gennemnithatighed der regne på. Man kan atå ikke ige, at Johnon havde hatigheden,64 m/ ti tiden 3,8, men bot at det var han gennemnithatighed i intervaet..4. Fra hatighed ti acceeration Acceeration varer ti hatighedændring over tid. Dette kan udnytte direkte, da vi åede kan bruge forme. med hatighedangiveer i tedet for poitionændringer. Betragte Greene hatigheder i ekempe., e det, at han ti tiden,75 havde hatigheden,47 m/ og ved tiden 3,67 øb med,4 m/. Det betyder, at han brugte 3,67-,75,9 ti at ændre in hatighed,4,47 m/,67 m/ Kende hatigheden vt ( ) ti to tider, t og t, hvor t < t, kan gennemnitacceerationen ti tiden t i intervaet t ; t udregne om: vt ( ) vt ( ) vt ( ) at ( ) t t t (forme.) Det er igen centrat, at der angive intervaer, da det er gennemnitacceerationen der udregne. Ekempe. Maurice Greene og meteren Faktabok: Funktioner En funktion er en matematik tørree, der ti hvert input tiordner netop et output. Traditionet krive en funktion om f( x), hvor x er input den forkarende variabe og hvor f( x) y er output (den bekrivende variabe). Et ekempe er en ineær funktion, f( x) x+ 4. Den forkarende variabe er her x og eve udtrykket kade funktionforkriften. Værdien den bekrivende variabe kan udregne og angiver herefter en y -værdi eer en funktionværdi. Væge x 3 i ekempet kan funktionforkriften give o output, f( x). Man kriver f ( 3) Funktionværdien i 3 er atå, eer y. Atå x 3 y. 5

4 Faktabok: Omregning meem m/ og km/t At efter hviken ammenhæng man arbejder med kan det have forkeig interee at bekæftige med hatigheder i kiometer pr. time eer meter pr. ekund. Man kan regne frem og tibage meem die tørreer, da km meter og time Derfor er km/tm/ 36 / 36 m / /3,6m /. Såede ka man dividere en hatighed i km/t med 3,6 for at få hatigheden i m/. Kører en bi km/t varer dette ti /3,6 m/ 7,8m/. Fra m/ ti km/t er proceen omvendt, og man ganger derfor med 3,6. Løbe der åede med m/ varer dette ti 3,6 km /t36km /t. tid () Ditance (m) Hatighed (m/),,,7 8,7,75,47 3,67 3,4 4,55 4,5 5,4 5,67 6,7 6,8 7, 7,68 7,98 8,57 8,85 9,5 9,79,3 Tabe.. Maurice Greene meter i Athen 999 tid () hatighedinterva Gennemnit- (m/) acceeration (m/ ) [,;,7] [,; 8,7] 5,9 [,7;,75] [8,7;,47],69 [,75; 3,67] [,47;,4],73 [3,67; 4,55] [,4;,5],4 [4,55; 5,4] [,5;,67], [5,4; 6,7] [,67;,8],5 [6,7; 7,] [,8;,68] -,4 [7,; 7,98] [,68;,57] -,3 [7,98; 8,85] [,57;,5] -,7 [8,85;9,79] [,5;,3] -, Tabe.. Acceerationer for Maurice Greene pevi for et tifædigt måetidpunkt i intervaet fra ti 3 meter, t 75367, ;, er gennemnitacceerationen: hatighed (m/) v( 367, ) v( 75, ) at ( ) 367,, 75, 4, 47 m/, 9, 67 m/, 9, 73 m/ Tid () Figur.. Maurice Greene meter hatighed i forhod ti tid. I tabe. e udregningerne for ae tidpunkterne. Bemærk, at Greene har en negativ acceeration idt i øbet, det vi ige han taber fart. Ekempe. Ben Johnon og meteren I tabe.3 er angivet Ben Johnon paagetider for hver meter der er øbet ved VM-finaen i 987. Reutaterne er deuden iutreret grafik i figur.3. Vha forme. kan vi udregne Ben Johnon gennemnithatigheder overat i øbet. I intervaet fra 4 m. ti 5 m., hvor t , ;, har vi ekempevi: 6. Lineær kinematik

5 Faktabok: Infiniteimaregning Infiniteimaregning betyder baat»regning med må tørreer«og der er en kar ammenhæng meem begreberne bevægee, hatighed, acceeration og må tørreer. Infiniteimaregningen betår af integra- og differentiaregning og omhander åede integraer (tamfunktioner) og differentiakvotienter (den afedede). For tuderende med A-niveau i matematik fra gymnaiet er det vekendt, at differentiation og integration er omvendte operationer man kan finde f( x) fra f differentiakvotient ved at integrere. Atå er f ( x) dx f( x). Dette kan udnytte i kinematikken, bandt andet ved at gennemkue, at hatighed varer ti poitionændring. Sammenhængene iutrere i ekempe.4. tid () Ditance (m),,84,86 3,8 3 4,67 4 5,53 5 6,38 6 7,3 7 8, 8 8,96 9 9,83 Tabe.3. Ben Johnon hatigheder på meter i Rom, 987. ditance (m) ( 553, ) ( 467, ) vt ( ) 553, 467, 4 3m 86, m 86,, 63m/ Tid () Figur.3. Ben Johnon ditance i forhod ti tiden. Tidinterva () Gennemnithatighed (m/) [,;,84] 5,43 [,84;,86] 9,8 [,86; 3,8],64 [3,8; 4,67],49 [4,67; 5,53],63 [5,53; 6,38],76 [6,38; 7,3],76 [7,3; 8,],49 [8,; 8,96],63 [8,96; 9,83],49 Tabe.4. Ben Johnon gennemnithatigheder. Udregningerne er foretaget for ae intervaerne og e i tabe Fra hatighed ti ditance Ønker vi at betemme hatigheder ud fra acceerationer eer ditancer ud fra hatigheder kan vi benytte umbegrebet. Dette bunder i ammenhænge med integraregningen om igger uden for denne bog område at bekrive nærmere. Vi ka her bot bekrive fremgangmåden. Have værdier for hatigheder undervej op ti tiden t, kan vi finde ditancen ti tiden t, ved at udregne areaet under hatighedkurven fra ti t. Hatighedkurven fremkommer ved grafik at afbide de kendte værdier og forbinde die. En måde at udregne areaet på er at opdee hee areaet i må firkanter, hver med ideængde angivet af de tidintervaer man får opyt og de reterende højder angivet af funktionværdierne dv. de 7

6 v () v (t) v (t) v (t3) a() a(t) a(t) a(t3) t t t3 t t t3 Figur.4. Angivee af ummer. Trapezummen for intervaet t [ t ; t ] er kraveret ti ventre, opgivne værdier, der varer ti de forkeige t- værdier. En god tinærmee ti det præcie area få nu ved en åkadt trapezum, der regne ved at ægge de fremkomne firkanter eer trekanter area ammen. For at finde hvert area ganger man grundinjen ængde med gennemnittet af de to ider ængder (funktionværdierne) i enderne af intervaet (figur.4). I kapite vi vi anvende en ignende metode, hvor der bot bruge midtummer, dv. tage udgangpunkt i den midterte værdi i intervaet. Ved tre opdeinger i trapezummer er det ud om i figur.4 og hatigheden ti tiden t 3 er tinærmeevi: vt ( ) + t ( ) ( t ) 3 vt ( ) + v( t ) + ( t t ) vt ( ) + vt ( ) 3 + ( t t ) 3 Matematik kan dette angive vha. um-tegnet og hatighedfunktionen på føgende måde: t3 t ( ) vt ( ) t 3 o (forme.3) hvor t i um angiver ændringer i tid. Denne notation vi bive anvendt i enere kapiter. Sumbegrebet kan anvende ti tivarende udregning af hatighed når man kender acceerationen e figur.4. Ekempe..3 Car Lewi og meteren ummer Nedenfor bekrive de førte 3 ekunder af Car Lewie meter fra VM i 987 i Rom, hvor han øb i tiden 9,93. Han tabte her ti Ben Johnon. Data er igeede iutreret grafik og forbundet med kurver i figur.5. Lewie tibageagte ditance kan beregne vha. (trapez) ummer: 36, + ( 3, ) ( 5, ) m/ 6, + 36, + (, 5, ) m/ 78, + 6, + (, 5, ) m/ 9, + 78, + (, 5, ) m/ 98, + 9, + ( 5,, ) m/ 38, + 98, + ( 3, 5, ) m/,98 m Tid (m) Hatighed (m/),,,5 3,6, 6,,5 7,8, 9,,5 9,8 3,,38 Tabe.5. Car Lewie meter i Rom, Lineær kinematik

7 Hatighed (m/) ,5,,5,,5 3, tid () Figur.5. Car Lewie hatigheder i meterøbet i Rom 987. Tid () Ditance (m),,5,9, 3,33,5 6,8,,,5 5,93 3,,98 Tabe.6. Car Lewi tibageagte ditance i de førte 3. Car Lewi var atå nået ca. meter på de førte 3 ekunder. Udregne dette for ae de opgivne værdier få taene i tabe Fra acceeration ti hatighed Omregning fra acceeration ti hatighed har normat kun interee, når man har viden om indgående kræfter og maer (e kapite ). Eer vi det meget jædent være denne vej man går i anayen, da man ofte har kendkab ti hatighed/ditance og herfra regner acceerationen. Fremgangmåden er dog het anaog ti den fra hatighed ti ditance. Vi benytter umbegrebet og hermed trapezummen. Denne udregne ved at opdee det area der fremkommer meem injerne fra acceerationmåingerne og x-aken (e figur.4) Ved fire opdeinger er hatigheden ti tiden : at ( ) + vt ( ) ( t ) 4 at ( ) + a( t ) + ( t t ) at ( ) + at ( ) 3 + ( t t ) 3 at ( ) + at ( ) ( t t ) 4 3 Generet kan dette vha umtegnet og en acceerationfunktion angive om t4 vt ( ) at ( ) t 4 Bemærk, at man andynigvi vi opeve negative bidrag her, da acceerationen ofte varierer meget e ekempe.. t 4 9

8 .5 Anaytik betemmee af kinematike værdier Har man pecifikke hatighed-, ditance- eer/og acceerationfunktioner kan infiniteimaregningen anvende direkte ti at regne frem og tibage meem de tre forkeige funktioner. Der gæder føgende: ( t) v( t) v ( t) a( t) og derfor vtdt ( ) t ( ) a( tdt ) vt ( ).5. Fra ditance ti hatighed og fra hatighed ti acceeration For at finde acceerationen for en bevægee når vi kender bevægeen hatighedfunktion, ka vi åede differentiere hatighedfunktionen og indætte værdien for t. Fremgangmåden er vit i ekempe.4. For at komme fra tedfunktion ti hatighedfunktion ka vi på het amme vi differentiere tedfunktionen (e appendix II for en mere uddybende bekrivee af differentiabegrebet)..5. Fra acceeration ti hatighed og fra hatighed ti ditance Ønker man at betemme hatighedfunktionen fra acceerationfunktionen eer tedfunktionen fra hatighedfunktionen benytte integraregningen. Det kan vie, at integraet af en funktion fra et punkt ti et andet præcit angiver værdien af areaet under funktionen. Sammenhængen meem umudregningerne og integraregninger fremtår herfra, da areaberegning ved hjæp af (trapez)ummer er en (god) approkimation ti areaet (e afnit.4.3 og.4.4), hvor integraregningen angiver værdien præcit. Gøre intervaerne i areaerne grundinjer uendeig må får vi en ydert præci approkimation og det er netop dette der udnytte i integraregningen. Betragte integraet ti en givet funktion kan vi få den præcie værdi af hatigheden ti en given tid, t, ud fra acceerationfunktionen, eer den præcie værdi af ditancen ti en given tid, t, ud fra hatighedfunktionen. Vi har fremført, at der overordnet gæder at ( ) dt vt ( ) og vtdt ( ) t ( ). Det kan udnytte ti at betemme tedfunktionen anaytik fra hatighedfunktionen e ekempe.4 Ekempe.4 Anvendee af infiniteimaregningen Vha. et matematik redkab kadet regreion kan man ud fra de opyte ta finde en tipa ekakt funktion, der bekriver Maurice Greene hatighed i it øb: vt ( ), 73 t 4 +, 896 t 3, 89 t + 7, 4958 t+, 55 m/ Funktionen er ikke het præci, men kan bruge ti at iutrere fremgangmåden. Integrere vt ( ) kan vi få tedfunktionen, t ( ): t ( ) vtdt ( ) 4 3, 73 t +, 896 t, 88 t , t + 55, dt , t, 896 t 88, t , t , tm Fra dette kan vi ti hver en tid udregne hvor angt Greene er kommet. Indætte grænerne t og t 5 få 5 ( 5) v( t) dt 5 3,73 t4 +, 896 t, 88 t , t + 55, dt 5 4 3, 73 t, 896 t 88, t , t , t 43,9 m 5. Lineær kinematik

9 Det e, at Greene har øbet 43,9 meter på 5 ekunder. Man kan kontroere præciionen af funktionen ved at indætte noge af de aerede opgivne værdier. Differentiere vt ( ) får vi acceerationfunktionen at ( ) v ( t) : at ( ) v ( t) 4 3 (, 73 +, 896 t 88, t + 749, 58t +, 55) 3 4 (, 73) t + 3 (, 896 ) t (, 88) t , 9, t , t 3636, t , m/ Acceerationen ti tiden t kan regne ved indættee. Ved t 9,5. få at øberen ti idt i øbet havde en acceeration på, 44m/. Dette underbygger påtanden om tab af hatighed ti idt i øbet. Den overordnede ammenhæng meem t ( ), vt ( ) og at ( ) er iutreret i figur.6..6 Bevægee med kontante faktorer Fra de nævnte anaytike ammenhænge kan man udede en forbindee, der kan bruge når man betragter jævne bevægeer, dv. bevægeer med kontant acceeration eer kontant hatighed (acceeration). Gode ekemper på dette er en øber, der øber med kontant hatighed i et øb (ekempe.5), eer en gentand der ippe ti frit fad mod jorden (ekempe.6). I det idte tifæde vi gentanden have kontant acceeration, da den kun påvirke af tyngdekraften, benævnt med g ( g 98, m/ ). Bemærk åede, at der ikke er krav ti i hviken retning den jævne bevægee foregår. Det enete krav er, at den er jævn (e figur.7). I det føgende benytter vi de kinematike funktioner t ( ), vt ( ) og at ( ). Antager vi, at den ditance et egeme ekempevi en fodgænger har fyttet ig ti tiden t er t ( ) og at fodgængeren/egemet bevæger ig med en kontant hatighed fra t, her kadet vt ( ), kan den ditance peronen har agt bag ig ti tiden t, t ( ), beregne om: t ( ) t ( ) + vt ( ) ( t t) (forme.4) Når funktionforkrifterne er kendte: Differentiation Differentiation (t) v(t) a(t) Integration Integration Når funktionforkrifterne ikke er kendte: Forhodet meem ændring i ditance og tid Forhodet meem ændring i hatighed og tid (t) v(t) a(t) Udregning af area under hatighedkurven Udregning af area under acceerationkurven Figur.6. Sammenhængen meem de kinematike tørreer.

10 De to ed på højreiden indikerer ) hvor angt fodgængeren var kommet ti tiden t (initiaditancen) og ) hvor angt han nåede i intervaet t, t. Det idte ed kade den reative ditance i forhod ti initiaditancen. Hvi vi betragter ituationen fra t, dv. vi tarter med at måe tiden for bevægeen når egemet er kommet ti t ( ) vi udtrykket reducere ti t ( ) t ( ) + vt ( ) ( t), da t t t. Overvejeerne kan underbygge af integraregningen, hvorfra vi aerede ved at t ( ) vtdt ( ). I den givne ituation er hatigheden kontant og egemet har aerede bevæget ig t ( ) og dermed da vi ka ægge den aerede tibageagte ditance ti det der ker i intervaet fra ti t : t t ( ) t ( )+ vtdt ( ) t ( )+ vt ( ) t t t (forme.5) Et ekempe på udregninger er givet i ekempe.6. Her er det igeede iutreret hvordan man fra andre kendte opyninger kan regne frem og tibage meem reutater. Ofte er den met intereante anvendee af oventående dog når man har en ituation med kontant acceeration af et egeme om fader mod jorden. Dette hænger ammen med, at netop tyngdekraften jo påvirker ae egemer ti en kontant acceeration nedad mod jorden. Vi udbygger nedenfor udregningerne og betragter anvendeen i den ammenhæng. t ( ) Ekempe.5 Løb med kontant hatighed eer acceeration Vi betragter data fra ekempe.. og antager måke ureaitik at Maurice Greene hoder hatigheden efter at have paeret 6 meter. Vi underøger nu om Maurice Greene under die forudætninger kunne havde ået Tim Montgomery verdenrekord fra på 9,78. Tiden er t 6,7ek, initiahatigheden er, 8 m/ og ditancen er 6, meter. Atå ( 67, ) 6, m ( t ), v( 67, ) 8, m/ v( t ). Udregningen af Greene ditance ved 9,78 er åede ud fra forme.4: ( 978, ) 6, m+ 8, m/ ( 978, 67, ek) 536, m Under forudætning af, at Maurice Greene kunne have hodt in hatighed ved 6 meter paagen vie han atå have øbet mere end meter på de 9,78 og åede tadig have verdenrekorden. Betragter vi igen en fodgænger og antager at egemet fodgængeren har en initiahatigheden på vt ( ) ti en given tid t og en kontant acceeration at ( ) fra t ti t, kan hatigheden ti tiden t, vt ( ), beregne om: vt ( ) vt ( ) + at ( ) ( t t) (forme.6) Højreiden indikerer initiahatighed og ændring her hatighed i intervaet t, t. Den idte de kade den reative hatighed i forhod ti initiahatigheden. V(t) V(t) V(t) Figur.7. Ekemper på jævne bevægeer.. Lineær kinematik

11 Hvi vi betragter ituationen fra t, dv. vi tarter med at måe tiden for bevægeen når egemet har hatigheden vt ( ) vi udtrykket reducere ti vt ( ) vt ( ) + at ( )( t), da t t t. Anaoge overvejeer fra før og ammenhængen vt ( ) atdt ( ) giver o: V(t) vt ( ) vt ( ) + atdt ( ) t t vt ( ) + at ( ) ( t t) (forme.7) Figur.8. Det frie fad. Bemærk, at der intet er ti hinder for, at hatigheden ved t er avere end ved t atå at egemet har tabt hatighed. Så er at ( ) ( t t) bot negativ, hviket indikerer en negativ acceeration og dermed et tab i hatighed ti idt i perioden. Forme.5 og.7 kan ætte ammen. Ved man at et egeme acceererer kontant og det har bevæget ig ditancen t ( ) ti tiden t og har hatigheden vt ( ) ti amme tid, har vi: t ( ) t ( )+ v( t) t t + ½ at ( ) t t Med t få t t og derfor: (forme.8) (forme.9) Dette anvende peciet i overvejeer, hvor vi betragter vertikae bevægeer. Her påvirke egemer, om tidigere nævnt, ti den kontante tyngdeacceeration (e ekempe.6) Ekempe.6 Det frie fad ( ) ( ) t ( ) t ( )+ v( t) ( t) + ½ at ( ) ( t) Det frie fad er en genere bekrivee af en bevægee, hvor en gentand ippe i en vi højde i et frit fad mod jorden overfade (e figur.8). I dette ekempe betragte en tennibod, der hode af en peron,5 meter over jorden og ippe. Efter boden er uppet påvirke den kun af tyngdekraften, om acceererer den kontant med 98, m/ hee vejen mod guvet. Vi er i det føgende bort fra uftmodtand og vi nu gerne kunne beregne hvor ang tid det tager boden at nå jorden. Boden vi udeukkende bevæge ig i horionta retning y -retningen å vi har en bevægee i en retning mod jorden. Væger vi tartpunktet om der hvor boden er uppet fra, har vi t ( ). Hatigheden fra tart er vt ( ) og tiden t. t ( ) h, 5m. Der er kontant acceeration og vi får: t ( ) t ( ) + vt ( ) + ½ at ( ) 5, + t + ½ 98, m/ t,55 t I den nætidte igning e en. gradigning der øe og giver t 55,. Boden rammer atå guvet efter,55 ekunder. Vi kan ogå udregne boden hatighed, når den rammer guvet: vt ( ) vt ( ) + vt ( ) t v( 55, ) + 98, m/, 55 v( 55, ) 539, m/ 3

12 .7Lineær bevægee i to retninger kurveineær bevægee I ae de tidigere bekrevne tifæde har vi udeukkende betragtet en bevægee i én retning. Det er dog ofte af tor interee at kunne dee en bevægee op i to retninger. Overordnet foregår en ådan bevægee på en pan fade og kade for en kurveineær bevægee, da den foregår i kurver. Et tidigere givet ekempe er fodbodpier bevægee på en bane. Panen er åede fodbodbanen og herpå bevæger pieren ig i forkeige retninger, men man væger traditionet at opøe ae enkete bevægeer efter to retninger og ikke fere. De to vagte retninger er bekrevet af et traditionet retvinket koordinatytem. I ekempet med fodbodpieren kan man ægge et koordinatytem i en af bane hjørner og herfra betragte retningerne på tvær og på ang. Spieren bevægeer kan nu opøe efter de givne retninger vha. vektorregningen (figur.9). Faktabok: Vektorregning En vektor er en genere betegnee for pie, der vha. in ængde og retning kan angive en bevægee karakteritika. Er vektoren (pien) enheder ang og amtidig danner en vinke med vandret på 3 grader, kan dette iutrere et egeme bevægee om værende enheder i retning 3 grader på den givne tid. 4 3 (3,4) Figur A. Vektorer. Figur B. Koordinatytem og vektor. 3 På amme måde kan det iutrere omfanget af den kraft der virker på en knoge ved fekion af et ed og hviken retning kraften virker i. En vektor betegne a eer vha. tore bogtaver AB hvor A og B i det idte tifæde angiver vektoren begyndee- og endepunkt. Vektorer kan pacere i et koordinatytem og tidee koordinater. Dette krive om a 3, hvor 3 er -koordinaten og 4 -koordinaten ti vektoren. Tegne denne vektor kan man e at den x y 4 entydigt angiver en retning og en ængde. En vigtig egenkab ved en vektor, er at den giver muighed for at»opøe efter koordinater«. I det givne ekempe kan vektoren opøe i 3 i x -retningen og 4 i y -retningen. Dette ætter o ogå i tand ti at finde ængden af vektoren, vha egenkaber for en retvinket trekant pythagora ætning. Længden for en a vektor angive a og regne for en vektor med koordinaterne a x om y a x + y, da vi her netop har opøt vektoren efter koordinater (e appendix III). I ekempet får vi: a 3 a Man kan igeede addere vektorer. Have a 3 og b 3 4 a+ b ( ) 3 få ved at addere koordinatvit: Man kan på ignende vi overføre andre regnereger fra amindeige ta ti vektorregningen. Man kan ogå grafik ægge vektor ammen hviket kade vektoraddition. Når man arbejder med kræfter kade denne addition for kræfter paraeogram (e kapite ). 4. Lineær kinematik

13 .8 Det krå kat Figur.9. Bevægee på en fodbodbane. I de kommende ekemper betragter vi et odret pan, hvori boden eer egemet bevæger ig. Koordinatytemet retninger er åede vertika og horionta retning og det er primært die bevægeer vi ka bekæftige o med. Bemærk i øvrigt, at die opøninger i retninger er entydige og at den ammenhoder tørree med en retning. Dette gør, at vi med hed kan udnytte vektorregningen ti at bekrive bevægeerne. Begrebet det krå kat binde ti mange bevægeer det hander overordnet om en forfytning af et egeme, om bevæger ig i parabeform om ved et kat med en gentand. Efter egemet er uppet eer har foradt jorden tiger det i en kurveignende bevægee ti en makimumhøjde, hvorefter egemet igen bevæger ig mod jorden på en gidende facon (e figur.). De kaike ekemper er om aerede nævnt et kat med en gentand/bod (fra porten verden: pydkat eer kat med en amerikank fodbod) og et hop med tiøb (ængdepring eer højdepring). Det krå kat har noge generee karakteritika, der igeede er iutreret på figur.. Initiahatigheden, om egemet ende af ted med (den reuterende hatighed), betegne vt ( ), vinken meem jordoverfaden og egemet retning efter afæt/kat kade kate/afætvinken og betegne θ, (græk bogtav kadt»theta«), men aftanden meem kate og nedagpunkt kade den horiontae ditance og benævne. Aftanden meem jorden og det højete punkt på kateparaben (egemet makimae højde) kade den vertikae ditance, h. Vi er i de føgende udedninger bort fra uftmodtand og regner åede tyngdekraften, om den enete ydre kraft, der påvirker et egeme i uften. Det bemærke aerede nu, at den højde, hvorfra egemet tarter bevægeen i uften ikke behøver at være i den amme højde om andingen t V(t ) h θ t t Figur.. En kateparabe. 5

14 foregår i. Vi behander begge tifæde i det føgende, men giver aerede nu føgende overvejeer: Ved et ængdepring vi man oftet betragte pringeren tyngdepunkt om det bevægende egeme og underøge dette undervej i pringet. Tyngdepunktet er okaieret et tykke over jorden ved afæt (e kapite 5 om maemidtpunkt/tyngdepunkt), men det ved andingen normat er tættere på jorden. Ved udpring fra vippe vi udpringeren tage tiøb og ætte af 5- meter over andinghøjden. Ved kugetød vi tøderen ippe kugen fra trakt arm over hovedet, men den horiontae ditance, om kugen bevæger ig måe fra katecirken ti der hvor kugen rammer jorden..8. Det krå kat med tart og utpunkt i amme højde I det føgende antage tart og utpunkt i amme højde. Vha. trigonometrike overvejeer kan man opøe den reuterende hatighed vt ( ) i en vertika komponent og en horionta komponent. Dette giver: v ( t ) v ( t ) co θ x og v ( t ) v ( t ) in θ y hvor indiceringen på hatighedfunktionen angiver retningen horionta ( x ) eer vertika ( y). Vi antager, at ( t ) ( t ) x y, dv., at tartpunktet for katet eer pringet igge i koordinatytemet begyndeepunkt (,). Da vi har antaget, at uftmodtanden er nu, er a ( t ) og vi har en jævn bevægee i x x -retningen. Vi kan ud fra overvejeerne bag forme.4 angive en forkrift for bevægeen ditancen i denne retning: ( t ) v ( t ) co θ t x (forme.) På amme måde har vi en jævn bevægee i y -retningen, hvor kun tyngdekraften påvirker egemet. Tyngdekraften virker med kontant acceeration g i modat retning nedad. Derfor indgår kontanten med negativt fortegn: ( t ) v ( t ) in θ t ½ g t y (forme.) Og åede har vi ved at differentiere hatighedfunktionerne: v ( t ) v ( t ) co x θ v ( t ) v ( t ) in θ g t y (forme.) (forme.3) Betragter vi die igninger kan vi udede fere ting. Lad o antage, at egemet når it højete punkt ti tiden t t og rammer jorden ved t t, atå ( t ) x Vi ved, at på det højete punkt af bevægeen er den vertikae hatighed, dermed v ( t ) v ( t ) in θ g t y, da bevægeen går fra at være opad ti nedadrettet. Ved at ioere t får vi: vt ( ) (in θ) t g (forme.4) Betragter vi ( t ) v ( t ) in θ t ½ g t h y indætte fra forme.4 har vi: t h vt ( ) (in θ) g og (forme.5) Det kan deuden vie, at når tart og uthøjde er den amme er bevægeen ymmetrik omkring bevægeen højete punkt. Ergo er t t og fra forme.4 har vi derfor: vt ( ) inθ t g (forme.6) Vi kan dermed ogå finde den horiontae ditance, : ( t ) v ( t ) co θ t x. Indætte udregningen for har vi: t vt ( ) in( θ ) g (forme.7) Vi er, at vinken θ og initiahatigheden begge er forkarende variaber i denne funktion. I ekempe.7 underøge denne ammenhæng. 6. Lineær kinematik

15 Ekempe.7 Afætvinken og denne påvirkning af ditancen i det krå kat Fathode initiahatigheden for et kat om vt ( ) 5m/, kan vi ændre katevinken og e hvad dette har af betydning for den vertikae og horiontae ditance. I begge tifæde anvende forme.5 og.6. Reutatet af die udregninger kan e i tabe.7. Ekempevi for θ 3 : ( 5 m/) in( 3) h 98, m/ 86, m ( 5 m/) in( 3 ) L 9, 84 m 98, m/ Det e, at den ængte horiontae ditance nå ved θ 45. Dette er en genere egenkab ved det krå kat, når tart- og utpunkt er i amme højde. Vinke ( ) Vertika ditance, h (m) Horionta ditance, (m),, 5,77,46 3,86 9, ,73,9 6 8,59 9,84 75,69,46 9,46, Tabe.7. Vertika og horiontaditance om funktion af afæt/kate vinke. Udregnet vha.6 og.7. I praktike tifæde vi det ofte være af interee at finde afæt/kate vinken eer initiahatigheden ud fra en opmåt makima vertika og horionta ditance. Herti kan vi bruge føgende ammenhæng: θ arctan 4 h hvor arctan( θ) tanθ og (forme.8) er den omvendte funktion ti vt ( ) gh inθ (forme.9) I ekempe.8 præentere anvendeen af die former i forbindee med et gofag. Ekempe.8 Et gofag (det krå kat) Antag, at en gofpier år ti en bod og den ander 5 meter ængere fremme efter aget. Vi måer, at boden var i uften i 4 ekunder og vi gerne udregne boden udgangvinke og initiahatighed. Figur. vier ituationen. Vi ved at t 4/. og t ( ) 5 m. Anvender vi ammenhængene fra jævne bevægeer i en retning har vi: ( t ) ( t ) + v ( t ) ( t t ). Da t x x x og den totae ditance er 5 meter når vi frem ti: 5 + v ( t ) 4 v ( t ), 5m/ x x. Man bemærker, at dette er hatigheden i x - retningen, og vi eder efter den reuterende hatighed atå ikke i en pecifik retning. Vi manger åede tadig noget. Vi udnytter nu, at ( t ) ( t ) + v ( t ) t ½ g t y y y, da boden rammer jorden ved t t 4. Dette giver (da ( t ) y ): v ( t ) 4 ½ 98, m/ (4) y v ( t ) 9, 64m/ y Nu har vi hatighederne i x og y retningerne og kan regne den reuterende hatighed vha. ammenhængen i en retvinket trekant (e appendix I): vt ( ) v ( t) + v ( t) x y (, 5 m/) + ( 9, 64 m/) 3, 8m/ Boden havde atå en initiahatighed på ca 3, 3 m/. Vi kan nu ogå finde den vertikae ditance: 7

16 t V(t ) h θ t t h V(t ) θ Figur.. Et gofag. Figur.. Det krå kat med udganghøjde forkeig fra andinghøjde. ( t ) h x ( t ) + v ( t ) t ½ g t y y + 9,64 m/ ½ 98, m/ 9, 6 m Boden var derfor ca. 9,6 m over jorden på it højete ted. Udregningen af udgangvinke få vha. forme.8: ( h t ) arctan 4 x arctan 4 3, 8 6, 77 5 Boden bev derfor ået af ted i en vinke på 6,77 med vandret..8. Det krå kat med tart og utpunkt i forkeig højde I det føgende antage, at tartpunktet ikke igger i amme højde om utpunktet. Overordnet betyder det, at ( t ) h y. Situationen kan igen øe vha. overvejeer om jævne bevægeer. Her har vi jo netop taget højde for, at egemet kan have en initiaditance eer hatighed. Vi minder om, at vt ( ) er den reuterende initiahatighed. Vi antager om tidigere, at ( t ) x, hviket bot betyder, at den horiontae ditance er. Legemet rammer atå jorden meter fra tartpunktet. Vi kan bekrive ituationen ved at betragte den horiontae ditance: t t x ) + v t ) co θ t + v( t ) coθ t t vt ( ) coθ (forme.) For at dette kan bruge må vi forhode o ti, at ( t ) h y. Udnytte at ( t ) y har vi: ( t ) ( t y y ) + v( t ) inθ t ½ g t h + v( t ) inθ t ½ g t (forme.) Fra forme. og. er der fere muigheder, at efter hvad der er kendt. Kender man tre af de fire indgående variabe, initiahatigheden ( vt ( ) ), katevinken ( θ ), tiden i uften ( t ) eer højden h, kan den reterende variabe betemme direkte fra den fremkomne igning eventuet ka man øe en. gradigning. Kender man i tedet ammen med enkete af de andre variabe kan man ubtituere det tidigere fundne udtryk ind for : h v t (forme.) Vi minder om, at g 98, m/ og kende 3 af de fire indgående variabe her kan den idte finde. Ekempe.9 betragter et kugetød og beregner forkeige ukendte tørreer. t + ( ) inθ ½ g vt ( ) co θ vt ( ) coθ h + in θ ½ g co θ vt ( ) co θ h + tanθ ½ g vt ( ) coθ t Her kan vi ioere : 8. Lineær kinematik

17 Ekempe.9 Kugetød Antag, at en kugetøder tøder kugen meter. I dette ekempe har vi deuden kunne måe katevinken ti 4 og at kugen biver uppet, meter over jorden, e figur.3. Vi ønker nu at beregne hatigheden af kugen da den forod kateren hånd og kugen tid i uften (»vævetiden«). Vi ved nu, at ( t ) m, θ 4 x og h, m. Indæt i forme.. t m vt ( ) co θ vt ( ) co 4 6, m vt ( ) Dette indætte i forme.: + 4 6, m, m tan ½ 9,8m/ vt ( ) 8,88 m 3346,83 m vt ( ) Reducerer man på udtrykket og øer. gradigningen får man vt ( ) 3, 3m/. Kugen bev atå endt af ted med 3,m/ 3. For at finde vævetiden t indætter vi vt ( ) 3, 85 m/ i forme. og får: 6, m t,96 vt ( ) coθ 3,3 m/ Kugen vævede atå i,96 ekunder. Det, der normat er af tørt interee, er den horiontae ditance. I ituationen med forke meem tart og uthøjde, kendt initiahatighed og vinke har vi (forme.3): ( t ) x vt ( ) inθ co θ+ vt ( ) co θ vt ( ) inθ g ( ) + gh vt ( ) vt ( ) ( ) in( θ ) + in( ) (co ) θ + h vt θ g g g (forme.3) Her kræve kendkab ti katevinken, θ, tarthøjden, h, og den reuterende initiahatighed vt ( ) for at ditancen kan regne. I ekempe. vie anvendeen af formen. Y 4 3, meter (e ekempe) t θ v(t ) t h t X meter Figur.3. Et kugetød. 9

18 h h v(t ) Vinke, θ ( ) Horionta ditance, (m) , ,5 8, , 3 4,5 9, , ,5 4 45,88 4 4,9 4 38,76 4 4,9,96 Tabe.8. Horiontaditance om funktion af afæt/katevinke og katehatighed. Ekempe. Den horiontae ditance i et kat med forkeig ut og tarthøjde Vi kan etimere den horiontae ditance i et tød med en kuge, ved at fathode noge af de andre variabe i forme.3. Antage at kugen kate i højden, meter og variere udganghatigheden meem 3 m/ og 4 m/ og variere θ i intervaet fra 4 ti 55 få reutaterne i tabe.8 Det kan ane ud fra tabeen, at 45 ikke mere er den optimae vinke for tødet. Det kyde, at h ikke mere er. Man kan optimere denne igning med vt ( ) 3m/ og her finde at θ ka være 4,9. Dette giver en ængde på 9, meter. I ekempe. finde udregninger for et ængdepring. Ekempe. Længdepring Som den idte de af gennemgangen af det krå kat betragter vi en ængdepringer og vi ud fra noge givne opyninger forøge at udregne hvor angt han pringer. Vi vi i det føgende antage, at det er pringeren tyngdepunkt der er af interee. Såede betragte dette ved afæt og ved nedag. Vi antager, at tyngdepunktet rent fyik er, meter over jorden ved andingen, hviket i praki givet varer ti, at pringeren ander på bagdeen. Deuden antager vi, at det bagerte nedagpunkt netop er tyngdepunktet, og det derfor er her vi ka måe den horiontae ditance ti. Man ka dog bemærke, at tyngdepunktet er idt foran afætpanken ved afæt (e figur.4), å antageerne er ikke het korrekte i forhod ti at regne ditancen. Føgende er yderigere opyt: Springeren ætter af med en horionta hatighed på 8m/ og afætvinken er. Deuden har han tyngdepunkt beregnet ti at være, meter ( h, m) over jorden ved afæt. For at kunne benytte forme. ka vi ført have beregnet h og vt ( ). Da afæthøjden er, meter og andinghøjden, meter kan vi væge at ætte h,,m m. Afæt Landing Figur.4. En biomekanik bekrivee af et ængdepring. 3. Lineær kinematik

19 Da v ( t ) m/ og θ x kan vi finde den reuterende hatighed ved afættet, vt ( ) 8/co 8, 57m/. Vi indætter nu i forme.3: Såede pringe der 6,89 meter. ( ) vt ( ) inθ co θ+ vt ( ) co θ vt ( ) inθ + gh m g ( ) + 857, in co + 857, co 857, in 9, 8, m 98, 68, 9m 3

A. Afløbsinstallationer

A. Afløbsinstallationer A. Aføbintaationer I dette afnit redegøre for den vagte pacering af edningerne ti pidevand og regnvand, amt for dimenioneringen af die. Aføbytemet udforme om et eparatytem, dv. et ytem, hvor pidevandet

Læs mere

Fag: Fysik - Matematik - IT Elever: Andreas Bergström, Mads Paludan, Jakob Poulsgærd & Mathias Elmhauge Petersen. Det skrå kast

Fag: Fysik - Matematik - IT Elever: Andreas Bergström, Mads Paludan, Jakob Poulsgærd & Mathias Elmhauge Petersen. Det skrå kast Det krå kat Data Forøg 1: = 38 V 0 = 4, 94 K vidde = 2, 058 H = 0, 406 t = 0, 53 Forøg 2 (60 ): = 60 V 0 = 4, 48 K vidde = 1, 724 H = 0, 788 t = 0, 77 Fyik del Udførel af forøg Kat på 38 : Forøgoptilling:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmark Teknike Univeritet Side 1 af 7 Skriftlig prøve, tordag den 6 maj, 1, kl 9:-1: Kuru navn: Fyik 1 Kuru nr 1 Tilladte hjælpemidler: Alle hjælpemidler er tilladt "Vægtning": Bevarelen bedømme om en

Læs mere

Matematisk modellering og numeriske metoder

Matematisk modellering og numeriske metoder Matematik modellering og numerike metoder Morten Grud Ramuen 4. oktober 26 Laplace-tranformationer. Definitionen af Laplace-tranformationen Definition. (Laplace-tranformation). Lad f være en funktion defineret

Læs mere

ADFÆRDS- PROBLEMER I SKOLEN

ADFÆRDS- PROBLEMER I SKOLEN ADFÆRDS- PROBLEMER I SKOLEN Bo Hejskov Evén Studiemateriae Det gæder mig, at du/i har æst min bog, Adfærdsprobemer i skoen, og er interesseret i at fordybe dig/jer i den viden, den bygger på. Da min forrige

Læs mere

Sammenhængen mellem strækning og tid Farten angiver den tilbagelagte strækning i et tidsrum. Farten kan bestemmes ved brug af formlen:

Sammenhængen mellem strækning og tid Farten angiver den tilbagelagte strækning i et tidsrum. Farten kan bestemmes ved brug af formlen: Oplag 8: FORMLHÅNDTRING Sammenhængen mellem trækning og tid Farten angiver den tilbagelagte trækning i et tidrum. Farten kan betemme ved brug af formlen: fart = trækning tid Anvender vi i tedet ymboler,

Læs mere

Faldmaskine. Esben Bork Hansen Amanda Larssen Martin Sven Qvistgaard Christensen. 23. november 2008

Faldmaskine. Esben Bork Hansen Amanda Larssen Martin Sven Qvistgaard Christensen. 23. november 2008 Faldmakine Eben Bork Hanen Amanda Laren Martin Sven Qvitgaard Chritenen 23. november 2008 Indhold Formål 3 2 Optilling 3 2. Materialer............................... 3 2.2 Optilling...............................

Læs mere

Dirigerings træning. v. Annette Vestmar og Elisabeth Johansen 2015

Dirigerings træning. v. Annette Vestmar og Elisabeth Johansen 2015 Dirigerings træning v. Annette Vestmar og Eisabeth Johansen 2015 Dirigeringstræningen har føgende eementer: Ligeudsending Bagud, højre og venstre dirigering Søgesigna Stop Disse trænes og udbygges ved

Læs mere

/98. Videregående uddannelse. Ansøgning om uddannelsesstøtte og ændring af uddannelsesstøtte

/98. Videregående uddannelse. Ansøgning om uddannelsesstøtte og ændring af uddannelsesstøtte Ansøgning om uddannesesstøtte og ændring af uddannesesstøtte Videregående uddannese /98 1 Navn c/o navn Nuværende adresse Postnr. By/postdistrikt Institutionskode Retningskode Uddannesesretning 0 0 0 5

Læs mere

Beregning af middellevetid

Beregning af middellevetid Beregning af middeevetid Hvad er middeevetid? Ta for middeevetiden for -årige drenge og piger anvendes hyppigt ti beysning af befokningens sundhedsmæssige tistand. Taet angiver det gennemsnitige anta år,

Læs mere

Øvelsesprogram efter operation for diskusprolaps

Øvelsesprogram efter operation for diskusprolaps Øvesesprogram efter operation for diskusproaps Jægersborg Aé 14, 2920 Charottenund, tf: 3964 1949, e-mai: info@phdanmark.dk, www.phdanmark.dk ' ~ t cervica { ' L Thoracic } ~ Lu m bar ~ -1=-Sacra ~ ;...

Læs mere

Hjemmeopgave 1 Makroøkonomi, 1. årsprøve, foråret 2005 Vejledende besvarelse

Hjemmeopgave 1 Makroøkonomi, 1. årsprøve, foråret 2005 Vejledende besvarelse Hjemmeopgave Makroøkonomi,. årprøve, foråret 2005 Vejledende bevarele Opgave. Korrekt. Arbejdtyrken er en beholdning- (tock) variabel, idet man på et givet tidpunkt (fx. jan) kan tælle, hvor mange der

Læs mere

Trestemmig bloksats i rockarrangement - 1 Akkordtoner

Trestemmig bloksats i rockarrangement - 1 Akkordtoner Trestemmig boksats i rockarrangement - 1 Akkordtoner I en boksats har en af korets stemmer meodien mens de andre føger så paraet som muigt. Boksatsen er nemmest at ave hvis meodien har få store spring

Læs mere

Sikkerhedsvejledning ved anlæg af golfbaner

Sikkerhedsvejledning ved anlæg af golfbaner DANSK GOLF UNION Sikkerhedsvejedning sikkerhedszoner topografi og ayout Afstande MULIGE LØSNINGER Indhod 3 Hensynet ti sikkerheden Ingen 100 procents garanti 4 Gofbanens afgrænsning Sikkerhedszoner Hvor

Læs mere

En varmluftsballon. s Kurvelængden fra ballonens toppunkt til punktet P. til symmetriaksen.

En varmluftsballon. s Kurvelængden fra ballonens toppunkt til punktet P. til symmetriaksen. P og En varmluftballon Denne artikel er en lettere revideret udgave af en artikel, om Dan Frederiken og Erik Vetergaard fra Haderlev Katedralkole havde i LMFK-bladet nr. 2, februar 1997. Enhver, om er

Læs mere

Avl med kort og langpelsede hunde

Avl med kort og langpelsede hunde Av med kort og angpesede hunde Hundens pesængde bestemmes af et gen-par, hvoraf hunden arver 1 gen fra hver af forædrene hhv: Inden for pesængde er der atså tae om 3 varianter: = KORTpeset = ANGpeset =

Læs mere

Tabel F.1: Aktuelle forudsatte brugsvandsstrømme [V & A Ståbi, s. 114].

Tabel F.1: Aktuelle forudsatte brugsvandsstrømme [V & A Ståbi, s. 114]. Brugvandanæg F. Brugvandanæg I dette afnit optie de beregningudtryk, der anvende ved dienioneringen af edningtrækningerne i forbindee ed brugvandanægget. Dienioneringen af de enkete edningtrækninger, erunder

Læs mere

Matematikken bag perspektivet I

Matematikken bag perspektivet I Supperende mterie ti erspektiv med GeoMeter Mtemtikken bg perspektivet I Som udgngspunkt for t diskutere de vigtigste mtemtiske sætninger bg perspektivtegninger vi vi benytte noge eementære egenskber for

Læs mere

Erik Bjerre og Pernille Pind. Tegn stjerner PIND OG BJERRE

Erik Bjerre og Pernille Pind. Tegn stjerner PIND OG BJERRE Erik Bjerre og Pernie Pind Tegn stjerner F O R L A G E T PIND OG BJERRE Erik Bjerre og Pernie Pind Tegn stjerner F O R L A G E T PIND OG BJERRE Du kender det godt. Når du keder dig, tegner du måske idt

Læs mere

Unghundens træning Planlægning af træningen

Unghundens træning Planlægning af træningen Keith Mathews 28.-29. august 2014 Refereret af Eisabeth Johansen - Redigeret af Annette Vestmar Foredrag 28. august Med reference ti DVD sættet "Retriever training - Guru stye - The Bueprint to Success"

Læs mere

PIA JENSEN, 3.X MANDAG DEN 20. NOVEMBER 2006 ØVELSERNE ER UDFØRT MANDAG DEN 23. OKTOBER 2006 I SAMARBEJDE MED JESPER OG TOVE FYSIKRAPPORT SKRÅT KAST

PIA JENSEN, 3.X MANDAG DEN 20. NOVEMBER 2006 ØVELSERNE ER UDFØRT MANDAG DEN 23. OKTOBER 2006 I SAMARBEJDE MED JESPER OG TOVE FYSIKRAPPORT SKRÅT KAST PIA JENSEN, 3.X MANDAG DEN. NOVEMBER 6 ØVELSERNE ER UDFØRT MANDAG DEN 3. OKTOBER 6 I SAMARBEJDE MED JESPER OG TOVE FYSIKRAPPORT SKRÅT KAST Side 1 af FYSIKRAPPORT SKRÅT KAST FORORD OG INDHOLDSFORTEGNELSE

Læs mere

Termodynamik - Statistisk fysik - Termodynamiske relationer - Fri energi - Entropi

Termodynamik - Statistisk fysik - Termodynamiske relationer - Fri energi - Entropi Fag: Termodynamik - Statitik fyik - Termodynamike relationer - Fri energi - Entropi 1 Indholdfortegnele... 2 Forord... 3 Formelle definitioner... 3 Et ytem... 3 Et lukket ytem... 3 Et ioleret ytem... 3

Læs mere

FUGT OG ERRÆNDÆK. i.,~j.j~ox' ~1~ tflif'9// SI TENS BYG6EFO SKNIN6SINSTITUT. FUc*- - - Der kan imidlertid også konstateres flere

FUGT OG ERRÆNDÆK. i.,~j.j~ox' ~1~ tflif'9// SI TENS BYG6EFO SKNIN6SINSTITUT. FUc*- - - Der kan imidlertid også konstateres flere .58/-Ø2tbi: FUc*- - - 6 UDK 69.025.' : 699.82 FUGT OG ERRÆNDÆK STATENS BYGGEFORSKNNGSNSTTUT København 1974 kommission hos Teknisk Forag Hvorfor terrændæk? Det er igennem mere end femten år stadig bevet

Læs mere

11 Spørgsmål til FORMAND PETER GLOCK

11 Spørgsmål til FORMAND PETER GLOCK 11 Spørgmå ti FORMAND PETER GLOCK der var viige ti at ade ig optie En anden grund var ikkert ogå, at mange venner og bekendte opfordrede mig ti det, og når man å ved, hvad NB betyder for DEM (og mig),

Læs mere

INDHOLDSFORTEGNELSE EL 0 1. Solceller 0 1

INDHOLDSFORTEGNELSE EL 0 1. Solceller 0 1 INDHOLDSFORTEGNELSE EL 0 1 Soceer 0 1 EL SOLCELLER Registrering Formået med at registrere soceer er at beregne hvor stor en ande af eforbruget ti bygningsdrift, apparater og beysning der dækkes af soceerne.

Læs mere

Vanskelige vilkår for generationsskifte med nye regler - Afskaffelse af formueskattekursen samt svækkelse af sikkerheden trods bindende svar

Vanskelige vilkår for generationsskifte med nye regler - Afskaffelse af formueskattekursen samt svækkelse af sikkerheden trods bindende svar - 1 Vankelige vilkår for generationkifte med nye regler - Afkaffele af formuekattekuren amt vækkele af ikkerheden trod bindende var Af advokat (L) Bodil Chritianen og advokat (H), cand. merc. (R) Tommy

Læs mere

Barefoots sadelsystem

Barefoots sadelsystem Sadesystemer og udstyr med hestens trivse i fokus Barefoots sadesystem Sabine Umann Hestefysioterapeut Cheyenne Cheyenne DryTex TM Cherokee Cherokee Cassic Hvad gør Barefoots sadesystem så speciet? London

Læs mere

Hermed fremsendes vores indsigelse vedr. benyttelsen af ejendommen beliggende Holmenevej 31, 3140 Ålsgårde. Sagsfremstilling

Hermed fremsendes vores indsigelse vedr. benyttelsen af ejendommen beliggende Holmenevej 31, 3140 Ålsgårde. Sagsfremstilling Hesingør kommune Teknik og mijø Mørdrupvej 15 3060 Espergærde Att. Hanne Wagnkide Åsgårde, den 13-01-2013 Overbragt Landzonemyndigheden og mijø myndigheden i Hesingør Kommune Hermed fremsendes vores indsigese

Læs mere

OPTIMERING, TILPASNING OG ADMINISTRATION AF TELELØSNINGER

OPTIMERING, TILPASNING OG ADMINISTRATION AF TELELØSNINGER OPTIMERING, TILPASNING OG ADMINISTRATION AF TELELØSNINGER INTRODUKTION TIL er en virksomhed, som består af garvede fok fra Teebranchen, der ae har en stor erfaring inden for tee- og datakommunikationsindustrien.

Læs mere

Energistrategi på virksomheden

Energistrategi på virksomheden Energistrategi på virksomheden med udgangspunkt i medarbejderinddragese FAGLIGT FÆLLES FORBUND Fagigt Fæes Forbund Kampmannsgade 4 1790 København V Teefon 70 300 300 Mai: 3f@3f.dk www.3f.dk Layout: zentens

Læs mere

Julehandel på nettet hitter hos danskerne

Julehandel på nettet hitter hos danskerne Pressemeddeese København den 12. December 2012 Juehande på nettet hitter hos danskerne For danskerne er juen synonym med hygge og kvitetstid. Vi gider ikke stresse rundt i de sidste hektiske timer før

Læs mere

mere end du forventer 103075A Nål, Kobberhåndtag, U/hylster - 0,30x75 35,00 17,50 303030A Nål, Plastikhåndtag, U/hylster - 0,30x30 38,50 19,25

mere end du forventer 103075A Nål, Kobberhåndtag, U/hylster - 0,30x75 35,00 17,50 303030A Nål, Plastikhåndtag, U/hylster - 0,30x30 38,50 19,25 X-CARE - mere end du forventer Introduktionstibud 50% på akupunkturnåe Vi har fået avet vores egne X-Care nåe. Igennem et års tid har vi, i samarbejde med fysioterapeuter, som giver akupunktur, testet

Læs mere

Tennis eksempel på opgaveløsning i MatematiKan.nb

Tennis eksempel på opgaveløsning i MatematiKan.nb Opgave 1 1.1 Caroline alder, da hun blev profeionel: 2005-1990 15 18-11 7 Caroline var 15 år og 7 dage gammel. 1.2-1.6 1.5 Det er ud til, at den ekponentielle tendenlinje følger punkterne bedt. 1.6 R-kvadreret

Læs mere

Løsninger til eksamensopgaver på fysik A-niveau 2014. 23. maj 2014

Løsninger til eksamensopgaver på fysik A-niveau 2014. 23. maj 2014 Løningerne er hentet på www.zyankipil.dk Løninger til ekaenopgaver på fyik A-niveau 014. aj 014 Opgave 1: Poelukker a) Den oatte effekt i en leder er givet ved P U I, og Oh 1. lov giver aenhængen elle

Læs mere

Leg og Læring Kids n Tweens Lifestyle. www.kidsntweens.dk

Leg og Læring Kids n Tweens Lifestyle. www.kidsntweens.dk Leg og Læring Kids n Tweens Lifestye www.kidsntweens.dk 3 aboratorier Projektet Leg og Læring Kids n Tweens Lifestye er bygget op omkring tre aboratorier, der på hver deres måde arbejder med børn og unges

Læs mere

ARBEJDSPORTFOLIO. 1. hovedforløb. mia phillippa fabricius

ARBEJDSPORTFOLIO. 1. hovedforløb. mia phillippa fabricius ARBEJDSPORTFOLIO 1. hovedforløb mia phillippa fabriciu Out of Office ikoner, november 2014 Idékiter Det færdige reultat af ikonerne Out of Office ikoner, november 2014 I mit praktikophold ho MediaXpre

Læs mere

Birgitta Staflund-Wiberg Brahetrolleborg

Birgitta Staflund-Wiberg Brahetrolleborg Birgitta Stafund-Wiberg - http://www.meadowark.nu/ 27.4.2014 Brahetroeborg Refereret af Eisabeth Johansen og Annette Vestmar Birgitta startede med noge synspunkter om trænerens roe og understregede, at

Læs mere

Afleveringsopgaver i fysik i 08-y2 til

Afleveringsopgaver i fysik i 08-y2 til Page 1 of 6 Afleveringopgaver i fyik i 08-y2 til 04.01.11 Fra hæftet: pgaver i fyik A-Niveau pgave A11 ide 33 A11a I kernekortet e det, at Si-31 er beta-radioaktiv. Da ladningtal og aetal kal være bevaret,

Læs mere

Eksamentræning i mekanik, 10020/22/24, 2011

Eksamentræning i mekanik, 10020/22/24, 2011 Eamentræning i meani, 1//4, 11 Opgave 1 En lod ende af ted fra en pændt fjeder ørt urer loden lang et vandret underlag der er glat Ved B drejer underlaget opad, og på det rå tye er der frition Kloden,

Læs mere

EUX. Hvad er en EUX uddannelse for dig som elev?

EUX. Hvad er en EUX uddannelse for dig som elev? EUX Hvad er en EUX uddannese for dig som eev? Hvad er en EUX uddannese? EUX er teknisk skoes ungdomsuddannese hvor man på 4,5 år biver både fagært håndværker OG student i samme uddannese. Uddannesens opbygning

Læs mere

Brugerundersøgelse 2013 Plejebolig

Brugerundersøgelse 2013 Plejebolig Brugerunderøgele 2013 Plejebolig Brugerunderøgelen er udarbejdet af Epinion AS og Afdeling for Data og Analye, Sundhed- og Omorgforvaltningen, København Kommune. Layout: KK deign Foridefoto: Henrik Friberg

Læs mere

VEJLEDNING VEDRØRENDE INSTALLATION, BRUG OG VEDLIGEHOLDELSE

VEJLEDNING VEDRØRENDE INSTALLATION, BRUG OG VEDLIGEHOLDELSE VEJLEDNING VEDRØRENDE INSTALLATION, BRUG OG VEDLIGEHOLDELSE MASKINE TIL AUTOMATISK FREMSTILLING AF GRANULEREDE ISFLAGER Ed. 01-2000 Date 12-2000 1 2 7 8 5 3 4 17 Mod. N. V. 16 1 2 11a 6 3 7 4 ~ 100 mm

Læs mere

Private investeringer

Private investeringer Byfornyese Private investeringer i områdeindsatser SOCIALMINISTERIET Private investeringer i områdeindsatser Udgivet af: Sociaministeriet Homens Kana 22 1060 København K Støttet af: byfornyesesovens forsøgsmider

Læs mere

INDHOLDSFORTEGNELSE... 1 INTRODUKTION... 3 PLACERING AF DE ENKELTE ENHEDER... 4 OVERSIGT OVER ALARMEN... 6 TRIN 1: MONTERING AF GSM-SIM-KORT...

INDHOLDSFORTEGNELSE... 1 INTRODUKTION... 3 PLACERING AF DE ENKELTE ENHEDER... 4 OVERSIGT OVER ALARMEN... 6 TRIN 1: MONTERING AF GSM-SIM-KORT... Indhodsfortegnese INDHOLDSFORTEGNELSE... 1 INTRODUKTION... 3 PLACERING AF DE ENKELTE ENHEDER... 4 OVERSIGT OVER ALARMEN... 6 TRIN 1: MONTERING AF GSM-SIM-KORT.... 7 TRIN 2: OPSTART AF ALARMSYSTEMET...

Læs mere

Hvidbog om hvidhvaler. Rapport til fangerne i Grønland om den videnskabelige viden om hvidhvaler

Hvidbog om hvidhvaler. Rapport til fangerne i Grønland om den videnskabelige viden om hvidhvaler Hvidbog om hvidhvaer Rapport ti fangerne i Grønand om den videnskabeige viden om hvidhvaer Teknisk rapport nr. 35, 2001 Pinngortitaeriffik, Grønands Naturinstitut 1 Tite: Forfattere: Oversættese: Layout:

Læs mere

Efteruddannelse sosu og psykiatri

Efteruddannelse sosu og psykiatri Efteruddannese sosu og psykiatri Kursusprogram efterår 2010 Kursuscenter SOSU Sjæand og Loand-Faster Vekommen ti Kursuscenter SOSU Sjæand og Loand-Faster og ti et nyt og større kursuskataog! r Kursusafdeingerne

Læs mere

Pas på dig selv. Udfordringer i dit psykiske arbejdsmiljø og hvordan du tackler dem F O A F A G O G A R B E J D E

Pas på dig selv. Udfordringer i dit psykiske arbejdsmiljø og hvordan du tackler dem F O A F A G O G A R B E J D E Ti eder-/meemedere inden for ædrepejen: F O A F A G O G A R B E J D E Pas på dig sev Udfordringer i dit psykiske arbejdsmijø og hvordan du tacker dem D E L 1 : U D F O R D R I N G E R Ti socia- og sundhedsederne

Læs mere

BRUGERUNDERSØGELSE 2015 PLEJEBOLIG LANGGADEHUS

BRUGERUNDERSØGELSE 2015 PLEJEBOLIG LANGGADEHUS BRUGERUNDERSØGELSE PLEJEBOLIG LANGGADEHUS Sundhed- og Omorgforvaltningen Brugerunderøgele : Plejebolig 1 Brugerunderøgele Plejebolig Brugerunderøgelen er udarbejdet af Epinion P/S og Afdeling for Data

Læs mere

Semesterprojekt 2007 - Svingningssystemer mekanisk/elektrisk analogi

Semesterprojekt 2007 - Svingningssystemer mekanisk/elektrisk analogi Semeterprojekt SDU - Det Teknik Fakultet Gruppe 6 DDF1 Vejleder: Henning Bremøe Hanen Projektperiode: 10. eptember 007-14. december 007 Semeterprojekt 007 - Svingningytemer mekanik/elektrik analogi Udarbejdet

Læs mere

Antal Antal STU- Erhverv STU Ungdom I alt

Antal Antal STU- Erhverv STU Ungdom I alt Ungdomuddannelerne (STU) årrapport 2013 STU på CSU-Slagele Unge under 25 år, der af fyike eller pykike grunde ikke, elv med pecialpædagogik tøtte, vil kunne gennemføre en ungdomuddannele på normale vilkår,

Læs mere

2015 1. UDGAVE GUIDEN TIL DIG, DER ER LÆRLING ELLER ELEV INDENFOR DE GRØNNE UDDANNELSER FOR ELEVER OG LÆRLINGE LÆRLINGEGUIDE

2015 1. UDGAVE GUIDEN TIL DIG, DER ER LÆRLING ELLER ELEV INDENFOR DE GRØNNE UDDANNELSER FOR ELEVER OG LÆRLINGE LÆRLINGEGUIDE 2015 1. UDGAVE DANMARKS STÆRKESTE FAGFORENING FOR ELEVER OG LÆRLINGE LÆRLINGEGUIDE GUIDEN TIL DIG, DER ER LÆRLING ELLER ELEV INDENFOR DE GRØNNE UDDANNELSER INDHOLD Side Tiykke 3 Før du starter 6 Tjekisten

Læs mere

ADVARSEL Læs dette materiale, før du samler og anvender trampolinen

ADVARSEL Læs dette materiale, før du samler og anvender trampolinen Brugervejedning ti rektanguær trampoin Størrese: 3,05 m x 4,57 m x 80 fjedre 3,05 m x 4,88 m x 86 fjedre 3,05 m x 5,18 m x 92 fjedre 3,05 m x 5,49 m x 98 fjedre Vejedning ti saming, instaation, peje, vedigehodese

Læs mere

Navision Axapta Personale - medarbejderne er det største aktiv

Navision Axapta Personale - medarbejderne er det største aktiv 2025852 PC.qxd 17-04-2002 13:07 Side 1 Moduet Personae ( ) i Navision Axapta gør personaeadministration meget enkere, samtidig med at det kan forbedre kommunikationen meem dig, dine medarbejdere og din

Læs mere

EFTERSPØRGSELEN EFTER FLÆSK I KØBENHAVN

EFTERSPØRGSELEN EFTER FLÆSK I KØBENHAVN STUDER FRA AARHUS UNVERSTETS ØKONOMSKE NSTTUT, Nr. 5 EFTERSPØRGSELEN EFTER FLÆSK KØBENHAVN AF TRYGVE HAAVELMO EJNAR MUNKSGAARD 1 939 NDHOLDSFORTEGNELSE Side ndedning... 9. FæskeefterspØrgseens Struktur.

Læs mere

Løsninger til eksamensopgaver på fysik A-niveau 2013. 27. maj 2013

Løsninger til eksamensopgaver på fysik A-niveau 2013. 27. maj 2013 Løninger til ekaenopgaver på fyik A-niveau 01 7. aj 01 Opgave 1: Springvand ed olceller a) Det er elektronerne, der tranporterer energien, og da pændingfaldet er defineret o E pot U, dv. tabet i elektrik

Læs mere

TARNBY KOMMUNE Teknisk Forvaltning

TARNBY KOMMUNE Teknisk Forvaltning TARNBY KOMMUNE Teknisk Forvatning Skanska Øresunds AS Havnehomen 25 1561 København V Att. Jacob Hovmøer Dato 26.11.201 2 Deres ref. Vores ref. Sag.2868907 Dok.2900919 Direkte nr. 32471522 sothoa Tiadese

Læs mere

STÆVNING. 2. Finn Ben~n

STÆVNING. 2. Finn Ben~n _ PHILIP & PARTNERE Advouztfirma.nr. 8044007 01 Dok af 14. apri2008 STÆVNING _ som bobestyrer i Sam Zingersens dødsbo CPR.nr. 2202122267 ) indstævner jeg hermed v/bobestyrer, advok Bjørn Wittrup. Finn

Læs mere

SOM USOM. .. ~~ -./A't>:. -..:::.-- /. ::::... -~ -~. ~ ~ - :.:-- ' J ".""._... ~

SOM USOM. .. ~~ -./A't>:. -..:::.-- /. ::::... -~ -~. ~ ~ - :.:-- ' J .._... ~ . SOM R USOM Å Æ -..:::.-- J ".""._..... ~.. ~~ -./A't>:. -~. ~ ~ - :.:-- ' /. ::::... -~ / 1 INDHOLDSFORTEGNELSE Områdets beiggenhed og størrese........ side 2 Tigrænsende areaer og disses bebyggese..

Læs mere

Høreværn Vejledning om valg og anvendelse af høreværn

Høreværn Vejledning om valg og anvendelse af høreværn Høreværn Vejedning om vag og anvendese af høreværn Industriens Branchearbejdsmijøråd Postbox 7777 1790 København V E-mai: ibar@ibar.dk www.ibar.dk Medarbejdersekretariat CO-industri Vester Søgade 12 1790

Læs mere

MINDJUICE LEDERUDDANNELSE Leadership Curriculum

MINDJUICE LEDERUDDANNELSE Leadership Curriculum MINDJUICE LEDERUDDANNELSE Leadership Curricuum Ledese baseret på Purpose before profit betaer sig. Forsti dig en hverdag, hvor dine medarbejdere går på arbejde, fordi det er dybt meningsfudt. Fordi du

Læs mere

Løsning, Bygningskonstruktion og Arkitektur, opgave 7

Løsning, Bygningskonstruktion og Arkitektur, opgave 7 Løning, Bygningkonuktion og rkitektur, opgave 7 Dækelementerne er 0, m tykke og pænder over m. Der anvende ølgende regningmæige materialeparamee: Beton: 8, MPa α 8 rmering: 8 MPa. E d, 0 MPa E k 0 MPa

Læs mere

Praktikperiode på andet intensivafsnit

Praktikperiode på andet intensivafsnit Studieplan for Kuriter på ITA 0531/0633 Praktikophold på 6-12 uger Godkendt November 2003 Uddannele- & udviklinganvarlig ygeplejerke Dori Chritenen Revideret 2014 Inteniv 0531/0633 Praktikperiode på andet

Læs mere

Fra indsat til værdsat

Fra indsat til værdsat Beretning 2013 Fra indsat ti værdsat Historien om Exit går tibage ti 2006, hvor Fangekoret fra Vridsøseie Statsfængse begyndte at øve i Apostekirken på Vesterbro i København med de medemmer, der ikke ængere

Læs mere

Områdefornyelse i Nykøbing Sj. 2. Arbejdsgruppemøde 3. marts 2016. sbs

Områdefornyelse i Nykøbing Sj. 2. Arbejdsgruppemøde 3. marts 2016. sbs Områdefornyese i Nykøbing Sj. 2. Arbejdsgruppemøde sbs 2. arbejdsgruppemøde Aftenens program 19.00 Vekomst 19.05 Opsaming fra 1. arbejdsgruppemøde, sbs 19.15 Opæg ti gruppearbejde, sbs 19.30 Gruppearbejde

Læs mere

Vakuum rørsolfanger. aurotherm exclusiv VTK 570

Vakuum rørsolfanger. aurotherm exclusiv VTK 570 Vakuum rørsofanger aurotherm excusiv VTK 570 Hvorfor nøjes med at når du kan have gæde af Vaiant det naturige vag Vaiant har i mere end 130 år været med ti at skabe og forme en moderne varme og opvarmningsteknoogi,

Læs mere

Volumenstrømsregulatorer

Volumenstrømsregulatorer comfort oumenstrømsreguatorer Voumenstrømsreguatorer Om Lindab Comfort og design Produktoersigt / symboer Teori Loftarmaturer Loftarmaturer - synige Trykfordeingsbokse Vægarmaturer Dyser Dysekanaer Riste

Læs mere

Opsamling på Nærdemokratiudvalgets dialogmøder

Opsamling på Nærdemokratiudvalgets dialogmøder deta Kirkeby 30/9 50 Udstykning Panafdeingen kontakter Peder Skov vedr. udstykninger Arne Ebsen kontakter formanden for Kutur og Panudvaget for at formide kontakt vedr. Reginahaven. Panafdeing Peder Skov

Læs mere

Atomer, molekyler og tilstande 5 Side 1 af 9 Aminosyrer, proteiner og enzymer

Atomer, molekyler og tilstande 5 Side 1 af 9 Aminosyrer, proteiner og enzymer Atomer, moekyer og tistande 5 Side 1 af 9 Sidste gang: Tistandsformer og overgange samt diverse kustofforbindeser og disses betydning for nanoteknoogien. I dag: Som opvarmning noget syre/base-teori, herefter

Læs mere

6 ARMEREDE BJÆLKER 1

6 ARMEREDE BJÆLKER 1 BETONELEMENTER, SEP. 009 6 ARMEREDE BJÆLKER 6 ARMEREDE BJÆLKER 1 6.1 Brudgrænetiltande 3 6.1.1 Bøjning 3 6.1.1.1 Tværnitanalye generel metode 3 6.1.1. Kanttøjning 5 6.1.1.3 Bøjning uden trykarmering 5

Læs mere

Nyt fra Nørreå-Gruppe 14. årgang Nr. 4.

Nyt fra Nørreå-Gruppe 14. årgang Nr. 4. Nyt fra Nørreå-Gruppe 14. årgang Nr. 4. okt. - dec. 2015 Facebook gruppe Obs Nørreå gruppe har fået en åben facebokkgruppe. Vi vi b.a. bruge den ti at gøre opmærksom på, at vi har pads ti fere spejdere.

Læs mere

BRUGERUNDERSØGELSE 2014 PLEJEBOLIG. Dr. Ingrids Hjem. Sundheds- og Omsorgsforvaltningen - Brugerundersøgelse 2014: Plejebolig 1

BRUGERUNDERSØGELSE 2014 PLEJEBOLIG. Dr. Ingrids Hjem. Sundheds- og Omsorgsforvaltningen - Brugerundersøgelse 2014: Plejebolig 1 BRUGERUNDERSØGELSE 2014 PLEJEBOLIG Sundhed- og Omorgforvaltningen - Brugerunderøgele 2014: Plejebolig 1 Brugerunderøgele 2014 Plejebolig Brugerunderøgelen er udarbejdet af Epinion P/S og Afdeling for Data

Læs mere

KB Børnefodbold anno 2014

KB Børnefodbold anno 2014 KB Børnefodbod anno 2014 Fem søjer i KB Børnefodbod Et kubmijø, der fasthoder spiere og trænere på ae niveauer. En anerkendende pædagogik, der ser forskeighed som en styrke. Et træningsmijø, der udviker

Læs mere

Plejetestamente. Mit plejetestamente. Skabelon. svb 2985

Plejetestamente. Mit plejetestamente. Skabelon. svb 2985 Pejetestamente Skabeon Mit pejetestamente svb 2985 Pejetestamente Med et pejetestamente har du den tryghed, at du på forhånd har taget stiing ti het amindeige hverdagsting. Eksempevis hviket tøj du gerne

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen Program Statitik og Sandynlighedregning 2 Normalfordelingen venner og bekendte Helle Sørenen Uge 9, ondag Reultaterne fra denne uge kal bruge om arbejdhete i projekt 1. I formiddag: χ 2 -fordelingen, t-fordelingen,

Læs mere

Brøndby Fjernvarme. Information om fjernvarme til Vesterled. Borgermøde den 17. august 2015 kl. 19.00 i Tjørnehøjhallen (dørene åbnes kl. 18.

Brøndby Fjernvarme. Information om fjernvarme til Vesterled. Borgermøde den 17. august 2015 kl. 19.00 i Tjørnehøjhallen (dørene åbnes kl. 18. Bi ig me Brøndby Fjernvarme ere var Information om fjernvarme ti Vestered Borgermøde den 17. august 2015 k. 19.00 i Tjørnehøjhaen (dørene åbnes k. 18.30) Fordee ved fjernvarme Forsyningssikkerhed (nu og

Læs mere

SØLLERØD KOMMUNE LOKALPLAN 56. FOR ET OMRÅDE VED EGEBÆKVEJ, KIKHANEBAKKEN, ØRNEBAKKEN OG MARIEHØJVEJ l GL.HOL TE

SØLLERØD KOMMUNE LOKALPLAN 56. FOR ET OMRÅDE VED EGEBÆKVEJ, KIKHANEBAKKEN, ØRNEBAKKEN OG MARIEHØJVEJ l GL.HOL TE SØLLERØD KOMMUNE LOKALPLAN 56 FOR ET OMRÅDE VED EGEBÆKVEJ, KIKHANEBAKKEN, ØRNEBAKKEN OG MARIEHØJVEJ GL.HOL TE \ C7 D Lokapanen er udarbejdet af SØerØd kommunes tekniske forvatning, panægningsafdeingen.

Læs mere

Tid og penge TEMA: Derfor skulle vi spare. Efter 22 november. Hvordan bruger vi tiden bedst. Tæt på lønaftale. Studerende vil øge indflydelse

Tid og penge TEMA: Derfor skulle vi spare. Efter 22 november. Hvordan bruger vi tiden bedst. Tæt på lønaftale. Studerende vil øge indflydelse Nr. 1 feb. 2011 TEMA: Tid og penge Derfor skue vi spare Efter 22 november Hvordan bruger vi tiden bedst Tæt på ønaftae Studerende vi øge indfydese Hvordan ser en metropoit ud? Fire programmer styrker fokus

Læs mere

Løsninger til Opgaver i fysik A-niveau Fysikforlaget 2007 (blå bog)

Løsninger til Opgaver i fysik A-niveau Fysikforlaget 2007 (blå bog) Løningerne er hentet på www.zyankipil.dk Løninger til Opgaver i fyik A-niveau Fyikforlaget 007 (blå bog) Opgave V1 ide 5: Effektfuld laer a) Energien af de enkelte fotoner betee: 4 8 6,66 10 J,9979 10

Læs mere

Løsning, Beton opgave 5.1

Løsning, Beton opgave 5.1 Løning, Beton opgave 5. Dækelementerne er 0, m tykke og pænder over 5 m. Der anvende ølgende materialeparamee: Beton: 8, MPa α 8 rmering: 85 MPa. E d,5 0 5 MPa E k 0 5 MPa tanden ra armeringen tyngdepunkt

Læs mere

OPQ Manager Plus-rapport

OPQ Manager Plus-rapport OPQ Profi OPQ Manager Pus-rapport Navn Sampe Candidate Dato 25. september 2013 www.ceb.sh.com INTRODUKTION Denne rapport henvender sig ti injeedere og HR-konsuenter. Den indehoder opysninger, som kan være

Læs mere

Vision Præsenteret ved generalforsamlingen søndag den 8. marts

Vision Præsenteret ved generalforsamlingen søndag den 8. marts Vision 2015 Præsenteret ved generaforsamingen søndag den 8. marts VI ØNSKER AT MENNESKER SKAL MØDE FÆLLESSKAB VI VIL VÆRE ET INDBYDENDE, DELTAGENDE OG VARMT FÆLLESSKAB GUD ER FUNDAMENTET VI ØNSKER AT MENNESKER

Læs mere

Industry Jørgen Bohnensack Product manager

Industry Jørgen Bohnensack Product manager 12 Industry Jørgen Bohnensack Product manager Mai: jbo@keramax.com Mobie: +45 4060 7064 Industrivej 15 3320 Skævinge Industry 2-komponent poyurethan E støbemasser 3 Industry Oversigt over Potting (indstøbning)

Læs mere

V ur de rin g a f V ir k nin g e n på Mil jø e t f r a. Ik k e -t ek nis k r e s umé A ug u s t 2010

V ur de rin g a f V ir k nin g e n på Mil jø e t f r a. Ik k e -t ek nis k r e s umé A ug u s t 2010 w V ur de rin g a f V ir k nin g e n på Mi jø e t f r a y de r ig e r e o ie o g g a s a k t ivi t e t e r i n o r d s ø e n Ik k e -t ek nis k r e s umé A ug u s t 2010 1. INDLEDNING Indhodsfortegnese

Læs mere

Dette 'Forslag til kommuneplan 2013' er vedtaget af Kommunalbestyrelsen i Vordingborg Kommune den 14. marts 2013.

Dette 'Forslag til kommuneplan 2013' er vedtaget af Kommunalbestyrelsen i Vordingborg Kommune den 14. marts 2013. Kommunepan 2013 Forord ved Borgmester Henrik Homer Dette er forsag ti Kommunepan 2013 - Vordingborg Kommunes Kommunepan 2013-2 0 2 5. Kommunabestyresenharvedtagetensametogoverordnetpanforudvikingenoganvendesenafareaerogservicetibud.Detkanduæseomheri

Læs mere

Svanemærkning af Trykkerier, tryksager, kuverter og andre forædlede papirprodukter

Svanemærkning af Trykkerier, tryksager, kuverter og andre forædlede papirprodukter Svanemærkning af Trykkerier, tryksager, kuverter og andre forædede papirprodukter Version 5.3 15. december 2011 31. december 2017 Nordisk Mijømærkning Indhod Hvad er et svanemærket trykkeri/tryksag? 3

Læs mere

GULVLIME OG SPARTELMASSER Produktguide. DANA LIM A/S Københavnsvej 220 DK-4600 Køge. Teknisk Service: 5664 0075 Telefon: 5664 0070

GULVLIME OG SPARTELMASSER Produktguide. DANA LIM A/S Københavnsvej 220 DK-4600 Køge. Teknisk Service: 5664 0075 Telefon: 5664 0070 GULIME OG SPARTELMASSER Produktguide DANA LIM A/S Københavnsvej 220 DK4600 Køge Teknisk Service: 5664 0075 Teefon: 5664 0070 Fax.: 5664 0090 www.danai.dk GULIM Monteringsperiode efter ipåføring* (20 C,

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Cirkelbevægelsen og klotoiden

Institut for Matematik, DTU: Gymnasieopgave. Cirkelbevægelsen og klotoiden Cirkelbeægelen og klotoiden ide Intitut for Matematik, DTU: Gymnaieopgae Cirkelbeægelen og klotoiden Teori: Erik Øhlenchlæger, Fyik for Diplomingeniører, Gyldendal 996, ide -4. Indledning Figur. Kørel

Læs mere

Fra en kastebevægelse til et maratonløb Jeg kaster mig ud i luften 180 gange i minuttet og tænker over hvad der foregår.

Fra en kastebevægelse til et maratonløb Jeg kaster mig ud i luften 180 gange i minuttet og tænker over hvad der foregår. Fra en katebeæele til et aratnløb Je kater i ud i luften ane i inuttet tænker er had der freår. Print pdf Katebeæelen. Det krå kat ( V ) af en partikel kan pfatte aenat af en andret beæele ( V ). Bendelehatiheden

Læs mere

En ny mellemfristet holdbarhedsindikator

En ny mellemfristet holdbarhedsindikator En ny mellemfrie holdbarhedindikaor Andrea Øergaard Iveren Danih aional Economic Agen Model, DEAM Peer Sephenen Danih aional Economic Agen Model, DEAM DEAM Arbejdpapir 03: Februar 03 Abrac Arbejdpapire

Læs mere

BROCHURER 1940-2015 www.logitrans.com www. www

BROCHURER 1940-2015 www.logitrans.com www. www BROCHURER 1940-2015 www.ogitrans.com ERGONOMI EU foreskriver, at manue håndtering, der kan indebære risiko for sikkerhed eer sundhed, ska undgås. Hvis dette ikke er muigt, ska der træffes effektive foranstatninger

Læs mere

SHARKY varmeenergimålere

SHARKY varmeenergimålere SHARKY varmeenergimålere SHARKY 773 er kabt til måling af varmeenergi i tørre og mindre varmeanlæg. Den er let at intallere og er meget betjeningvenlig. Med it patenterede måleytem og indat ikre tor måletabilitet,

Læs mere

FUGT OG KÆLDRE. s~n.må være l~ngt m~-æn9~espursknif4~j~!~~rn~tes betegnelsen»rf«for relativ. {!J///n/r:J

FUGT OG KÆLDRE. s~n.må være l~ngt m~-æn9~espursknif4~j~!~~rn~tes betegnelsen»rf«for relativ. {!J///n/r:J ~~ FUG'T --,- 4 UDK 69.022.2:628.853 69.025.1 : 628.853 FUGT OG KÆLDRE STATENS BYGGEFORSKNINGSINSTITUT København 1973 Kædre bruges i dag ti mere end før I game dage bev kædre fte accepterede, sevm de var

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

LEDNINGSPROTOKOL ENTREPRISE 6620.203 JORD OG BELÆGNING NORDVEST

LEDNINGSPROTOKOL ENTREPRISE 6620.203 JORD OG BELÆGNING NORDVEST DATO DOKUMENT SAGSBEHANDLER MAIL TELEFON Maj 2013 JN jn@vd.dk 7244 2372 LEDNINGSPROTOKOL ENTREPRISE 6620.203 JORD OG BELÆGNING NORDVEST 66 HERNING ÅRHUS 6620 MOTORVEJ FUNDER - HÅRUP MAJ 2013 Denne edningsprotoko

Læs mere

AM B Kilde: Emner: Stikord: Afgørelsestype: Offentlig Tilgængelig: Dato: Status: Udskrevet:

AM B Kilde: Emner: Stikord: Afgørelsestype: Offentlig Tilgængelig: Dato: Status: Udskrevet: AM2009.07.06B Kide: Retspraksis, Byretterne Emner: famiievod; Stikord: Famiievod, mindreårigt barn, hasgreb, T 50 dg Afgøresestype: Dom Offentig Tigængeig: Ja Dato: 6.7.2009 Status: Gædende Udskrevet:

Læs mere

Bygningsfilm Isoleringsfilm s Sikringsfilm Autofilm

Bygningsfilm Isoleringsfilm s Sikringsfilm Autofilm Trit punktum for Schioldan Side 28-29 TIRSDAG 15. mart 2011 NS 245. årgang Uge 11 Nr. 72 Kr. 20,00 Sej kamp mod brand i køleolie Klichéfyldt, men flot Side 4-5 Side 24-25 Hårdt pre på læger 159 kilo lettere

Læs mere

Seksualitet på dagsordenen En håndbog om professionel støtte til voksne med funktionsnedsættelse

Seksualitet på dagsordenen En håndbog om professionel støtte til voksne med funktionsnedsættelse Sociaudvaget 2011-12 SOU am. de Biag 285 Offentigt Seksuaitet på dagsordenen En håndbog om professione støtte ti voksne med funktionsnedsættese Seksuaitet på dagsordenen En håndbog om professione støtte

Læs mere

Hverdagsrehabilitering i praksis

Hverdagsrehabilitering i praksis fagig Hverdagsrehabiitering i praksis Erfaringer fra Fredericia 2008-2010 Abstract Fredericia Kommune, Danmark, har gode erfaringer med Hverdagsrehabiitering. Her samarbejder ergoterapeuter og fysioterapeuter

Læs mere

For vognmænd og kørselsledere

For vognmænd og kørselsledere Lederuddannese For vognmænd og kørsesedere ederuddannese-vognmaend-sig3.indd 1 Introduktion v/ Martin Daniesen, fmd. for DTL. Er vi vognmænd gode nok ti at håndtere medarbejderne og finde de rigtige ti

Læs mere

Rehabilitering og Palliation ved kræft

Rehabilitering og Palliation ved kræft Rehabilitering og Palliation ved kræft Implementeringplan for forløbprogram for rehabilitering og palliation i forbindele med kræft. For hopitaler, kommuner og almen praki i Region Hovedtaden Godkendt

Læs mere