KURSUSMATERIALE TIL DET NYE STATISTIKPENSUM

Størrelse: px
Starte visningen fra side:

Download "KURSUSMATERIALE TIL DET NYE STATISTIKPENSUM"

Transkript

1 KURSUSMATERIALE TIL DET NYE STATISTIKPENSUM Det foreliggende udkast til kursusmateriale er lagt ud til orientering for kollegerne med henblik på at indhente kommentarer til materialet. Sammen med Susanne Christensens elevnote (se forordet til kursusmaterialet) definerer kursusmaterialet det kommende obligatoriske pensum i χ 2 -test for niveauerne MatB og MatA, der forventes at træde i kraft for elever, der starter sommeren Eventuelle kommentarer sendes til fagkonsulent Bjørn Grøn: (redaktionen afsluttet )

2

3 Forord Lektor i statistik Susanne Christensen, Institut for Matematiske fag ved Aalborg Universitet har på min opfordring skrevet en note om χ 2 (chi-i-anden). Noten 1 dækker de emner, der påtænkes inddraget som kernestof i matematik stx på B- og på A-niveau, nemlig test for uafhængighed mellem to inddelingskriterier og test for fordeling af en given stikprøve (test for goodness of fit). Læreplansjusteringerne vil gælde for de elever, der starter i gymnasiet sommeren Noten er blevet læst og kommenteret af en baggrundsgruppe nedsat af fagkonsulenten: Aksel Bertelsen, Helge Gram Christensen, Steen Dilling, Bjørn Felsager, Olav Lyndrup og Jan Sørensen. Det er vores vurdering at noten kan danne grundlag for undervisning i emnet, og materialet stilles frit til rådighed til kopiering til ens elever. I tilknytning til denne note er der udarbejdet et supplerende materiale som bl.a. inddrager en eksperimentel tilgang til hypotesetest. I appendiks er demonstreret hvorledes dette kan gøres med brug af forskellige værktøjsprogrammer. Den eksperimentelle tilgang kan både indgå som en del af den mundtlige prøve og som en metode til besvarelsen af spørgsmål ved den skriftlige prøve. Fuldt pointtal i en besvarelse vil kunne opnås både med anvendelse af en eksperimentel tilgang og med anvendelse af indbyggede funktioner i et værktøjsprogram. Der er endelig lagt flere opgaver ind i dette materiale, lige som litteraturlisten er udbygget. Dette supplerende materiale kan enten anvendes direkte af den enkelte lærer eller danne grundlag for et skolebaseret kursus i emnet Bjørn Grøn, fagkonsulent 1 Noten findes på adressen: 1 (version )

4 Indholdsfortegnelse: Forord side 1 Indledning side 3 1. Statistisk test for uafhængighed mellem to inddelingskriterier (χ 2 test for uafhængighed) side 4 Om teststørrelsens fordeling under H 0 side 9 Opgaver side Hvad gør vi, hvis vi har flere niveauer på hvert af inddelingskriterierne? side 14 Om teststørrelsens fordeling under H 0 side 18 Opgaver side Statistisk test for fordeling af en stikprøve (χ 2 test for goodness of fit) side 24 Om teststørrelsens fordeling under H 0 side 26 Opgaver side 29 Større opgaver, der kan indgå i projekter sammen med biologi side 31 Litteraturliste side 34 Noter side 35 Appendiks 1: Eksperimentel tilgang til χ 2 -test med forskellige værktøjsprogrammer Appendiks 2: Standardværktøjer til udførelse af χ 2 -test med forskellige programmer 2 (version )

5 Indledning At træffe sine valg i en usikker verden den statistiske modellerings rolle. Et kursusmateriale baseret på en note af E. Susanne Christensen. Lektor i statistik. Institut for Matematiske Fag. Aalborg Universitet. I mange tilfælde og i mange forskellige faglige sammenhænge må man træffe en afgørelse eller basere en overbevisning på et ikke fuldstændigt informationsgrundlag. Det er fx tilfældet, når man ønsker at gætte på udfaldet af et kommende folketingsvalg og kun har en opinionsundersøgelse, eller når man ønsker at afgøre, om antallet af rygere er stigende blandt unge mennesker, men ikke har mulighed for at spørge alle unge, om de ryger eller ej. Ens afgørelse eller resultat kommer i sådanne tilfælde til at være præget af, hvilken stikprøve 1 man får fat i til sin undersøgelse. Et eksempel: Vi vil undersøge om holdningen til skattelettelser i Danmark er den samme for gymnasieelever som for gymnasielærere. For at være sikre på svaret skulle vi spørge hele populationen, dvs. samtlige gymnasieelever og gymnasielærere. Men en sådan strategi er normalt både praktisk og økonomisk umuligt. Så for at finde ud af det, må vi indsamle nogle data, som vi kan basere vores konklusioner på: Vi skal have en stikprøve! Hvis vi var så heldige at vide, at alle gymnasieelever i landet var enige med hinanden og alle gymnasielærere var indbyrdes enige i spørgsmålet om skattelettelser, så kunne vi hurtigt blive færdige. Vi skulle bare spørge én person fra hver gruppe, hvad de mente om sagen, og så afgøre om de to grupper også var enige. Og vi ville være helt sikre på, at vi havde draget den rigtige konklusion. Men så nemt går det sjældent. Der kan være ret stor forskel på meningerne indenfor gruppen. Og selvom det faktisk skulle forholde sig sådan at de fleste gymnasieelever går ind for skattelettelser, så kan vi jo godt være uheldige at udvælge de elever, der er imod og omvendt med lærerne til vores stikprøve. Hvis det er tilfældet, så vil vi ende op med den forkerte konklusion om gruppernes mening om spørgsmålet. Vi skal altså ikke bare have en stikprøve, men en stikprøve, der er udvalgt, så vi har en begrundet tro på, den er repræsentativ 2 for populationen. Det vi kan gøre for at mindske risikoen for at lave forkerte konklusioner er at tage fornuftige stikprøver, der er store nok til at risikoen for at komme til en forkert konklusion bliver acceptabel. Statistik går (blandt andet) ud på at præcisere alle de begreber, der her står i anførselstegn. Hvad sandsynligheden er, for at drage en forkert konklusion, kan beregnes. I hvert tilfælde hvis man følger nogle enkle regler, når man indsamler data. I denne note skal vi se på, hvordan man kan sætte tal på ens usikkerhed i et par specifikke tilfælde. 3 (version )

6 1. Statistisk test for uafhængighed mellem to inddelingskriterier (χ 2 test for uafhængighed) Hvis vi vil undersøge om det at bruge mange penge på tøj er lige udbredt blandt unge kvinder og unge mænd, er den mest objektive måde at forholde sig til problemstillingen, at lave en empirisk undersøgelse, dvs. ved at man indsamler data, og drager sine slutninger på baggrund af disse. Allerførst er der et par ting, der skal præciseres! Hvad er det for nogle unge, vi interesserer os for? I den statistiske terminologi hedder det at fastlægge populationen. Lad os sige, at det er unge mellem 15 og 20 år bosiddende i Danmark, vi er interesseret i. Så skal vi have præciseret, hvad vi egentligt forstår ved, at bruge mange penge på tøj. I den statistiske terminologi siger man, at vi skal have formuleret modellen og hypoteserne. Modellen kunne her være, at andelen af kvinder, der bruger mere end 1500 kr. om måneden på tøj er p k og den tilsvarende for mændene er p m. (Andelen p k er lig med sandsynligheden 3 for, at en kvinde tilfældigt udvalgt fra populationen bruger mere end 1500 kr. på tøj om måneden ). Grænsen for hvornår man bruger mange penge på tøj er jo her sat subjektivt, og kan selvfølgeligt gøres til genstand for diskussion 4. Vi kommer tilbage til hvilke matematiske krav, der skal stilles til denne grænse. Hypotesen er, at p m = p k, eller sagt i ord: Andelen af unge mænd der bruger mange penge på tøj er den samme som den tilsvarende andel for unge kvinder. For at undersøge vores hypotese kan vi fx gennemføre følgende eksperiment: Vi udvælger et antal unge mellem 15 og 20 år tilfældigt og spørger, hvor mange penge de bruger på tøj om måneden. Derefter tæller vi op, hvor mange kvinder, der bruger mere end 1500 kr, om måneden på tøj og tilsvarende for mænd. Vores resultat af undersøgelsen kan vi organisere i tabellen nedenfor (hvor tallene er fiktive - ikke resultat af en virkelig undersøgelse. Sådan en kan holdet selv lave!). Køn\Forbrug <1500 kr./måned 1500 kr./måned i alt kvinder mænd i alt (version )

7 1. Statistisk test for uafhængighed mellem to inddelingskriterier Vi kan nu gætte på andelen af unge kvinder, der bruger mange penge på tøj, simpelthen ved at regne ud, hvor stor andelen er i stikprøven. Vi siger, vi estimerer p k. I dette tilfælde får vi et estimat på 102/200= 0,51. Det vil sige, vi tror, at 51 % af de unge kvinder bruger mange penge på tøj 5. Tilsvarende estimerer vi andelen af mænd til 100/160=0,625. Vi tror altså, at der var 62,5 % af de unge mænd, der bruger mange penge på tøj. Når man skal undersøge et talmateriale som det ovenstående for at finde sammenhænge er det ofte en god ide at illustrere talmaterialet grafisk. I dette tilfælde kan man fx afbilde tabeldataene som stablede søjlediagrammer (her vist i Excel for andre programmer se appendiks). Af diagrammet fremgår, at i den stikprøve vi har, er andelen af kvinder, der bruger mange penge på tøj, mindre end den tilsvarende andel for mænd. Umiddelbart kan det altså se ud som om vores hypotese ikke holder stik, nemlig at der skulle være samme procentdeldel unge mænd som unge kvinder, der bruger mange penge på tøj. Resten af øvelsen går ud på at afgøre, om dette blot er en tilfældig følge af en uheldig stikprøve, ELLER om det vi har set, er så markant, at vi tør tage det som udtryk for en forskel mellem de to køn generelt, altså noget vi tror, der gælder for hele populationen. For at kunne regne på sagen og lave et statistisk test er det matematisk set vigtigt, at de enkelte svar på, hvor mange penge man bruger, er uafhængige 6 af hinanden. Hvis man fx i sin stikprøve har valgt en gruppe venner med stor indbyrdes påvirkning, så vil denne gruppe sagtens kunne have en adfærd, som er atypisk for populationen som helhed, og derved påvirke undersøgelsens resultat uhensigtsmæssigt. 7 5 (version )

8 1. Statistisk test for uafhængighed mellem to inddelingskriterier Statistisk hypotesetest minder logisk set om det, du måske kender fra din matematikundervisning som et modstridsargument. Man antager én ting - gennemfører en række logiske argumenter og ender op med noget, der klart er forkert. Heraf slutter man, at den oprindelige antagelse IKKE kan være rigtig. I statistik tager man hensyn til, at verden ikke er deterministisk, så her kan man ikke konkludere at udgangsantagelsen ikke er sand, men man kan eventuelt slutte, at det man har set i sit forsøg er USANDSYNLIGT, hvis udgangsantagelsen skulle være sand. Dermed peger forsøget på, at antagelsen ikke er rigtig. Vores antagelse om, at forbrugsmønsteret er ens for de to køn formuleres som vores udgangshypotese. Hvis vores test kan afvise den hypotese, så har vi et vist belæg for at påstå, at der er en signifikant 8 forskel mellem de to køn. Vi har således en udgangshypotese, som pr tradition kaldes H 0 (nulhypotesen) og en alternativ hypotese H 1 givet som: H 0 p k = p m H 1 p k p m En anden måde at udtrykke H 0 på er, at der er uafhængighed mellem det at bruge mange penge på tøj og ens køn. H 1 svarer så til, at der er afhængighed mellem de to inddelingskriterier - forbrug og køn, dvs. H 0 H 1 Der er uafhængighed mellem forbrug og køn. Der er afhængighed mellem forbrug og køn. Hypoteserne H 0 og H 1 kan illustreres med situationen ved en retssag. H 0 svarer til, at den anklagede er uskyldig, mens H 1 svarer til, at den anklagede er skyldig. Som i en retssag, lader vi tvivlen kommen den anklagede til gode, så med mindre vi har stærke beviser for, at den anklagede er skyldig, så vælger vi at acceptere H 0 (frikende den anklagede). Vi forkaster altså kun H 0, hvis vi har rigtigt gode beviser for, at H 0 er forkert. Vi starter med at antage, at H 0 udtrykker den sande tilstand af verden. I så fald kan vi estimere andelen af unge, der bruger mange penge uden hensyntagen til om de tilhører det ene eller det andet køn. Andelen af unge med et højt forbrug estimeres så til 202/360 0,5611, altså 56,11 %. Så ud af en gruppe på 200 unge, vil vi derfor forvente, at 200 0, ,22 af dem har et højt forbrug, og tilsvarende at 200 (1-0,5611) 87,78 af dem har et lavt forbrug. Her har vi brugt, at hvis sandsynligheden for at have et højt forbrug er givet ved p, så er sandsynligheden for det modsatte, nemlig at have et lavt forbrug, givet ved (1-p). Ud over at være logisk er dette også en regneregel fra den basale sandsynlighedsteori. Ved at regne på den måde, kan vi udfylde skemaet med de værdier, som vi ville have forventet at se, hvis verden opførte sig som vores H 0 foreskriver. Forventede værdier under antagelse af, at der er uafhængighed: Køn\Forbrug <1500 kr./måned 1500 kr./måned i alt kvinder = 87, = 112, mænd = 70, = 89, i alt (version )

9 1. Statistisk test for uafhængighed mellem to inddelingskriterier Afvigelserne mellem det resultat vi fik i forsøget og de her udregnede forventede værdier er et udtryk for, hvor langt forsøgets virkelighed er fra den verden, der er modelleret i H 0. For umiddelbart at kunne sammenligne de to tabeller med de observerede værdier og de forventede værdier samler vi dem i en enkelt tabel med observationer til venstre og forventede værdier til højre: Køn\Forbrug <1500 kr./måned 1500 kr./måned i alt kvinder ,78 112, mænd ,22 89, i alt Det er nu altid sådan, at summen af afvigelser er 0. I dette tilfælde fås således: (98-87,78) + ( ,22) + (60-70,22) + (100-89,78) = 0. Så at lægge afvigelserne sammen giver os ikke noget samlet billede af, hvor stor afvigelsen er. I stedet kan man udregne et mål for, hvor stor afvigelsen på følgende måde:først udregnes for hver celle kvadratet på differensen mellem det observerede antal og det forventede antal (hvorved vi kun får positive bidrag), og derefter divideres med det forventede antal. Dermed fås for den enkelte celle et relativt mål for afvigelsen. Til sidst summeres disse tal fra alle cellerne. Denne størrelse kaldes χ 2 -teststørrelsen. Som samlet formel ser det sådan ud 9 :. En stor værdi af teststørrelsen tyder i denne sammenhæng på, at udgangshypotesen om uafhængighed IKKE er opfyldt. Altså: store værdier af χ 2 -teststørrelsen får os til at tro mere på H1. Vi har så bare det problem tilbage, at vi skal afgøre, HVOR stor en teststørrelse skal være, før vi mener, den er så stor, at vi ikke vil tro på H 0. Til det brug skal vi vide, hvor store værdier test-størrelsen normalt vil antage, når H 0 er sand. Hvis hypotesen H 0 om uafhængighed er rigtig, og hvis man har en stor nok stikprøve (dvs. alle de forventede værdier er mindst 5) 10, så kan man i den matematiske statistik undersøge, hvilke værdier denne teststørrelse ville antage, hvis man lavede en uendelig række af forsøg som det skitserede. Det viser sig da at teststørrelsen med stor tilnærmelse har en opførsel, der ikke afhænger af hvor mange vi i alt har spurgt, dvs. i vores tilfælde 360 personer. Den statistiske terminologi er, at man kender teststørrelsens fordeling under H 0. Den vil nemlig med stor tilnærmelse følge det, der hedder en χ 2 -fordeling med 1 frihedsgrad (hvilket vi vil uddybe i et følgende afsnit). Hvis H 0 er rigtig, dvs. de to inddelingskriterier (her køn og forbrugsmønster) er uafhængige størrelser, så ville man i 5% af de gange, hvor man udvælger en stikprøve på 360 personer få en teststørrelse, der er større end 3,84. I 1% af tilfældene ville man tilsvarende få en teststørrelse, der er større end 6,63. 7 (version )

10 1. Statistisk test for uafhængighed mellem to inddelingskriterier Disse tal der også kaldes kritiske værdier hørende til signifikansniveauerne - kan findes i tabeller, på moderne lommeregnere, i Excel og i statistiske værktøjsprogrammer. (Man skal anvende den inverse χ 2 -fordeling til at finde de kritiske værdier hørende til et givet signifikansniveau). I Excel, hvor den inverse χ 2 -fordeling hedder chiinv(), ser det fx således ud (se appendiks for andre værktøjer): Teststørrelsen fra vores stikprøve bliver: 2 χ 2 (98 87,78) ( ,22) = + 87,78 112,22 = 1,19 + 0,93 + 1,49 + 1,16 = 4,77 2 (60 70,22) + 70,22 2 (100 89,78) + 89,78 2 Den er altså større end 3,84. Så HVIS antagelsen om uafhængighed mellem køn og forbrug skulle holde stik, så har vi her set et forsøg, der ville optræde med en sandsynlighed, der er mindre end 5%. Den statistiske terminologi er, at testsandsynligheden er mindre end 5 %. Dette kan naturligvis indtræffe, men når sandsynligheden er så lille, vælger vi at forkaste vores udgangshypotese og siger: Forsøget har påvist en sammenhæng mellem køn og forbrug på tøj, der er signifikant på 5% niveau. Men vores teststørrelse er IKKE større end de 6,63. Det betyder at forsøget ville optræde med en sandsynlighed, der er større end 1%. Vi siger, at testsandsynligheden er større end 1 %. Vi kan derfor ikke påvise en signifikant sammenhæng på 1% niveau. Hvis man, som det ofte er tilfældet, har en fast grænse for hvornår man vil vælge at forkaste sin udgangshypotese, fx når testsandsynligheden er mindre end 5 %, siger man, at man arbejder med et signifikansniveau 11 på 5%. Ved at bruge et fast signifikansniveau på fx 5% i en hel række af forsøg og test ved man altså, at man i 5% af testene fejlagtigt vil forkaste en sand udgangshypotese 12. Vi ved, hvor sikker metoden er, men vi ved ikke, om den enkelte beslutning om at tro på udgangshypotesen er rigtig eller ej. Ved at fastlægge et lavere signifikansniveau, fx på 1%, kræver vi en betydelig større forskel på de to køns forbrug af tøj, før vi siger, der er signifikant forskel. Til gengæld er det nu kun i 1% af tilfældene, at vi forkaster en sand hypotese. På en lommeregner, i et regneark eller et statistisk værktøjsprogram kan man få den præcise sandsynlighed for at få en χ 2 -teststørrelse, der er større end de observerede 4,77, under antagelse af at H 0 er sand. Det sker ved at slå værdien 4,77 op i en χ 2 fordeling med 1 frihedsgrad. (Man skal anvende den kumulerede χ 2 -fordeling til at finde testsandsynligheder eller p-værdier). I Excel ser det fx således ud: 8 (version )

11 1. Statistisk test for uafhængighed mellem to inddelingskriterier Denne sandsynlighed kaldes p-værdien eller testsandsynligheden for testet. En p-værdi er altså sandsynligheden for at få en teststørrelse, der får os til at tvivle mindst lige så meget på H 0, som den teststørrelse vi lige har observeret, under antagelse af at H 0 faktisk er den rigtig hypotese. I det aktuelle eksempel får vi således en p-værdi på p = = 2.89% jfr. celle B2. Da p-værdien er lille, dvs. under 5%, er forskellen signifikant på signifikansniveauet 5%. Men den er stadigvæk større end 1%, dvs. forskellen er ikke signifikant på signifikansniveauet 1%. Vi kan altså nå til de samme konklusioner som før uden at udregne størrelsen af de kritiske teststørrelser hørende til signifikansniveauerne. Om teststørrelsens fordeling under H 0. I det ovenstående eksempel har vi spurgt 360 unge om deres køn og deres tøjforbrug. Hvis vi først ser på køn og forbrug hver for sig fordeler de sig således: I undersøgelsen deltog 200 kvinder og 160 mænd. Tilsvarende fandt vi at 158 unge havde et lavt tøjforbrug, mens 202 havde et stort tøjforbrug. Det svarer til randværdierne i krydstabellen: Køn\Forbrug <1500 kr./måned 1500 kr./måned i alt kvinder 200 mænd 160 i alt Men det der interesserer os er i virkeligheden koblingen mellem køn og forbrug, dvs. hvor mange kvinder har et lavt tøjforbrug osv. Det svarer til tallene i cellerne inde i krydstabellen. Disse tal afhænger nu af hinanden på den følgende måde: Summen af alle tallene for cellerne i første søjle (unge med lavt forbrug) skal give 158. Summen af alle tallene i første række (unge kvinder) skal give 200 osv. Da et antal ikke kan være negativt følger det nu at antallet af kvinder med et lavt tøjforbrug i princippet kan antage alle værdier fra 0 til 158. Så snart vi har fastlagt antallet af kvinder med lavt tøjforbrug følger resten af cellerne imidlertid automatisk, idet summen af tallene i første søjle skal give 158, summen af tallene i første række skal give 200 osv. 13 Hvis vi fx ser på en mulig krydstabel med 100 kvinder, der har et lavt tøjforbrug, følger det derfor at den må have følgende opbygning: Køn\Forbrug <1500 kr./måned 1500 kr./måned i alt kvinder mænd i alt (version )

12 1. Statistisk test for uafhængighed mellem to inddelingskriterier Da vi kun kan vælge en af cellerne frit (indenfor visse bånd) siger vi, at krydstabellen har netop én frihedsgrad. Til hver af de mulige krydstabeller kan vi nu knytte en χ 2 -teststørrelse som beskrevet ovenfor. I det ovenstående eksempel fås fx (100 87,78) ( ,22) (58 70,22) (102 89,78) χ = ,78 112,22 70,22 89,78 = 1,70 + 1,33 + 2,13 + 1,66 = 6,82 I χ 2 -testet antager vi nu at køn og forbrug er uafhængige, og dermed at krydstabeller, der ligger tæt på de forventede værdier (og dermed har en lille teststørrelse) har høj sandsynlighed, mens krydstabeller, der ligger langt fra de forventede værdier (og dermed har en stor teststørrelse) har lav sandsynlighed. En præcis beregning af sandsynlighederne viser sig dog at være særdeles vanskelig. Til gengæld er en simpel tilnærmet beregning af sandsynlighederne overraskende nok mulig. I den matematiske statistik viser man nemlig at sandsynligheden for en given krydstabel med stor tilnærmelse er knyttet til χ 2 -fordelingen med 1 frihedsgrad. Det skal forstås sådan at sandsynligheden for at finde en teststørrelse, der er mindst lige så stor som den observerede med stor tilnærmelse er givet ved arealet under den graf, der er knyttet til χ 2 - fordelingen med 1 frihedsgrad 14 : Som omtalt i teksten kunne vi i princippet også finde sandsynligheden ved at gentage spørgeskemaundersøgelsen uendeligt mange gange. I praksis er vi selvfølgelig nødt til at stoppe efter et stort antal gange. Her ses resultatet af 1000 gentagne simuleringer af udregningen af teststørrelsen under antagelsen af H 0, og med fastholdte marginaler (jfr. note 13), hvor hver prik svarer til teststørrelsen for den fundne krydstabel: 10 (version )

13 1. Statistisk test for uafhængighed mellem to inddelingskriterier I dette tilfælde fandt vi altså 27 krydstabeller med en teststørrelse, der er mindst lige så stor som den observerede. Det svarer til en p-værdi på 27/1000 = 2,7%, hvilket ligger rimeligt tæt på den teoretiske p-værdi 2,9%. Vi kan også afbilde fordelingen af teststørrelserne i et histogram og derved sammenligne direkte med den teoretiske χ 2 -fordeling med 1 frihedsgrad (idet histogrammet først er justeret, så det samlede areal er 1): I appendiks kan man læse mere om en eksperimentel tilgang til χ 2 -testet og den tilhørende fordeling af teststørrelsen. 11 (version )

14 1. Statistisk test for uafhængighed mellem to inddelingskriterier Opgaver til uafhængighedstest (2 2-tabeller) Opgave 1. I dagens politik spiller skattenedsættelser en stor rolle. Et stort antal lønarbejdere udspørges via et telefoninterview om deres holdning til en lønnedgang, der kompenseres med en skattenedsættelse: Vil du acceptere en lønnedsættelse, hvis den kompenseres med en skattenedsættelse, således at reallønnen (købekraften) er uændret? Svarene fordeler sig således på køn: Køn\Holdning Ja Nej Kvinder Mænd Fremstil tabellen grafisk i et passende søjlediagram. Kommenter hvad du ser, med brug af begrebet stikprøve. Færdigudfyld den følgende tabel: Køn\Holdning Ja Nej I alt Kvinder Mænd I alt Udregn de forventede antal: Køn\Holdning Ja Nej I alt Kvinder Mænd I alt Udregn χ 2 -teststørrelsen og find p-værdien. Er forskellen mellem de observerede og forventede svar signifikant på 5% niveau? På 1% niveau? Opgave 2: I en Gallupundersøgelse blev 234 kvinder og 257 mænd spurgt om de var tilfredse med deres udseende, i den forstand at de anså sig selv som fysisk tiltrækkende for det modsatte køn. Hertil svarede (i afrundede procenttal) 71% af kvinderne, at de var tilfredse med deres udseende, mens 81% af mændene svarede, at de var tilfredse med deres udseende. 12 (version )

15 1. Statistisk test for uafhængighed mellem to inddelingskriterier Færdigudfyld det følgende skema Køn\Selvopfattelse Tilfreds Utilfreds I alt Kvinder 234 Mænd 257 I alt Fremstil tabellen grafisk i et passende søjlediagram. Kommenter hvad du ser, med brug af begrebet stikprøve. Hvor stor en andel af samtlige adspurgte er tilfredse? Utilfredse? Udregn χ 2 -teststørrelsen og p-værdien. Er forskellen mellem de observerede og forventede svar signifikant på 5% niveau? På 1% niveau? Opgave 3: Det er en velkendt opfattelse at psykologiske og sociale forhold har indflydelse på overlevelseschancen efter en alvorlig sygdom. En undersøgelse fra 1980 handlede om en eventuel sammenhæng mellem kæledyr og chancen for at overleve i mindst et år efter en hjerteoperation. I undersøgelsen, der omfattede 53 patienter med kæledyr og 39 patienter uden kæledyr, var 78 af patienterne i live efter et år. Af de 78 patienter, der overlevede havde de 50 kæledyr. Er der belæg i undersøgelsen for en statistisk sammenhæng mellem at overleve i mindst et år og at have kæledyr? Opgave 4: I en berømt klagesag fra 1973 blev University of California i Berkeley i USA beskyldt for kønsdiskrimination i sine optagelsesprocedurer. Dette er en meget alvorlig anklage i USA, da en række af offentlige tilskud er afhængige af at Universitet opfylder en række kriterier for god opførsel, herunder at Universitet ikke diskriminerer mod køn, race, religion osv. i sine optagelsesprocedurer. Ud af 2691 mandlige ansøgere blev de 1198 optaget. Ud af 1835 kvindelige ansøgere blev 557 optaget. Opstil en krydstabel for koblingen mellem køn og optagelse på University of California i Berkeley. Undersøg om der er belæg i krydstabellen for at anklage universitet for kønsdiskrimination, idet du inddrager begreber som udgangshypotesen H 0, antallet af frihedsgrader, χ 2 - teststørrelsen, p-værdien og signifikansniveauet. Opgave 5 (ikke pensum til skriftlig eksamen): I en undersøgelse af danske mænds og kvinders tv forbrug svarer 60% af kvinderne i stikprøven, at de ser mere end 20 timer tv om ugen, mens det tilsvarende tal for mændene er 53%. Stikprøven indeholder lige mange personer af hver køn, og hypotesen lige mange mænd og kvinder ser mere end 20 timer tv om ugen forkastes på 5% signifikansniveau, men accepteres på 1% signifikansniveau. Bestem en mulig størrelse af stikprøven. 13 (version )

16 2. Hvad gør vi, hvis vi har flere niveauer på hvert af inddelingskriterierne? Ofte er der flere end to kriterier, hvorefter vi inddeler. Betragt følgende eksempel: En hjerneforsker forsker i forskellige måder at operere for en bestemt type hjernetumor. Der er tre forskellige operationstyper: Type A, hvor man kun fjerner selve tumoren; Type B, hvor man også tager lidt af det nærmeste omkringliggende væv bort, og Type C, hvor der fjernes en større del af det omkringliggende væv. Lægen ønsker at vide, hvordan operationstypen indvirker på chancen for at overleve et halvt år efter operationen. Over en årrække har lægen indsamlet følgende data over resultaterne af operationerne (data er fiktive, problemstillingen er autentisk): Operation\Status i live død i alt Operation A Operation B Operation C i alt Afbildes tabellen grafisk som stablede søjlediagrammer fås: Sammenhæng mellem operation og status 100% 90% 80% Relativ hyppighed 70% 60% 50% 40% 30% 20% 10% Død I live 0% A B C Operation I stikprøven er der altså forskel på andelen af overlevende efter de forskellige typer af operation. Vi skal forsøge at undersøge, om det er en så stor forskel, at man kan sige, resultaterne kan generaliseres ud over denne stikprøve, altså: er det statistisk signifikant? Vi skal altså forsøge at regne ud, om den sete stikprøve er meget ekstrem, hvis vi antager, at der ikke er forskel på overlevelseschancerne efter de forskellige operationer. Vi lader p A være sandsynligheden for at en patient er i live et halv år efter at have gennemgået en operation af type A, og tilsvarende for p B og p C. Udgangshypotesen er, at der er samme sandsynlighed for overlevelse efter alle tre typer operation, dvs. 14 (version )

17 2. Hvad gør vi, hvis vi har flere niveauer på hvert af inddelingskriterierne? H 0 H 1 p A = p B = p C Ikke alle tre sandsynligheder ens. Hvis udgangshypotesen holder, estimerer vi sandsynligheden for overlevelse ved 59 = 0,6211, og vi kan udregne de forventede værdier efter samme princip som før: 95 Forventede Værdier i live Død i alt Operation A 0, = 33, 54 ( 1 0,6211) 54 = 20, Operation B 0, = 9, 94 ( 1 0,6211) 16 = 6, Operation C 0, = 15, 53 ( 1 0,6211) 25 = 9, i alt Alle de forventede størrelser er mindst 5, så vi kan bruge χ 2 -testet igen, nu bare med nogle lidt andre tal. Teststørrelsen udregnes som før ved at udregne:, hvor der summeres over alle celler. Dvs. vi får her: 40 33,54 33, , ,94 6 6, , ,47 10,53 20,46 9,94 6,06 15,53 9,47 Når vi skal vurdere teststørrelsen kan vi som før anvende lommeregner, regneark eller et statistisk værktøjsprogram. I dette tilfælde skal vi benytte en χ 2 -fordeling med 2 frihedsgrader (for en nærmere uddybning af antallet af frihedsgrader se evt. det følgende afsnit). Det giver os mulighed for at udregne såvel de kritiske teststørrelser som p-værdien: Ved opslag får vi denne gang, at hvis dette forsøg blev gentaget et meget stort antal gange ( uendeligt mange gange ) ville vi i 5% af tilfældene få en teststørrelse, der er større end 5,99 og i 1% af tilfældene få en teststørrelse større end 9,21, alt sammen under antagelse af at udgangshypotesen H 0 om uafhængigheden af operationstypen og patientens status er sand. Som før kan vi også bestemme en p-værdi for teststørrelsen 10,53, dvs. bestemme den præcise sandsynlighed for at få en teststørrelse på 10,53 eller derover; igen selvfølgelig under forudsætning af, at H 0 er sand. I fx Excel finder vi da en p-værdi på 0,0052 = 0,52%: 15 (version )

18 2. Hvad gør vi, hvis vi har flere niveauer på hvert af inddelingskriterierne? Så i dette tilfælde er vores valgmuligheder: ENTEN fastholder vi troen på, at de tre operationstyper giver samme overlevelseschance OG vi har set et forsøg, der har mindre end 1 % sandsynlighed for at indtræffe ELLER vi forkaster hypotesen om lige store chancer for overlevelse og siger: Der er fundet en sammenhæng mellem overlevelseschance og operationstype, der er statistisk signifikant på 1% niveau. Ved at udregne de enkelte bidrag til teststørrelsen kan man tydeliggøre, hvilke celler der giver de store bidrag til teststørrelsen, når man må forkaste nulhypotesen. Man ser tydeligt at det først og fremmest er bidragene fra operation C, der er problematiske. Observation: Operation\Status i live død i alt Operation A Operation B Operation C i alt Forventet: Operation\Status i live død i alt Operation A 33, , Operation B 9, , Operation C 15, , i alt Bidrag til chi2: Operation\Status i live død Operation A 1, , Operation B 0, , Operation C 2, , Har vi ikke yderligere viden, må vi derfor foreslå, at operationstype C stilles i bero. Imidlertid skal man tænke sig om, inden man foreslår operationstype C forbudt. Hvis der er en tredje faktor der influerer billedet, så kan det give misvisende konklusioner, når man kun tager to af faktorerne i betragtning. Vi kigger lidt nærmere på tallene fra før: 16 (version )

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle.

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. Af E. Susanne Christensen. Lektor i statistik. Institut for Matematiske Fag. Aalborg Universitet. I mange tilfælde og

Læs mere

Workshop i hypotesetest

Workshop i hypotesetest Workshop i hypotesetest Indholdsfortegnelse: Velkommen til TI-Nspire CAS version 3.2 Simple øvelser i chi2-test: Chi2-test I: Goodness-of-fit test side 1 Chi2-test II: Uafhængighedstest side 3 Vejledende

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 4 Statistik & sandsynlighedsregning 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

Maple 11 - Chi-i-anden test

Maple 11 - Chi-i-anden test Maple 11 - Chi-i-anden test Erik Vestergaard 2014 Indledning I dette dokument skal vi se hvordan Maple kan bruges til at løse opgaver indenfor χ 2 tests: χ 2 - Goodness of fit test samt χ 2 -uafhængighedstest.

Læs mere

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks:

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Til hvert af de gennemgåede værktøjer findes der 5 afsnit. De enkelte afsnit kan læses uafhængigt af hinanden. Der forudsættes et elementært kendskab

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A)

Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A) Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A) Opgave 1 I nedenstående tabel ses resultaterne af samtlige hjerteklapoperationer i 007-08 ved Odense Universitetshospital (OUH) sammenlignet

Læs mere

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM FORMÅL - BEKENDTGØRELSEN STX MATEMATIK A Kompetencer anvende simple statistiske eller sandsynlighedsteoretiske modeller

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test.

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test. Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ -test og Goodness of Fit test. Anvendelser af statistik Statistik er et levende og fascinerende emne, men at læse om det er alt

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere

Løs nu opgaverne i a) brug alt materialet her samt evt. regnearkene i Fronter som hjælp.

Løs nu opgaverne i a) brug alt materialet her samt evt. regnearkene i Fronter som hjælp. Udarbejdet af Thomas Jensen og Morten Overgård Nielsen Indhold Introduktion til materialet. s. 2 Introduktion til chi i anden test. s. 4 Et eksempel hastighed og ulykker på motorveje s. 8 Sådan udregnes

Læs mere

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900. 2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske

Læs mere

χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium

χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium Man kan nemt lave χ 2 -test i GeoGebra både goodness-of-fit-test og uafhængighedstest. Den følgende vejledning bygger på GeoGebra version

Læs mere

Hvad er meningen? Et forløb om opinionsundersøgelser

Hvad er meningen? Et forløb om opinionsundersøgelser Hvad er meningen? Et forløb om opinionsundersøgelser Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004

Læs mere

Temaopgave i statistik for

Temaopgave i statistik for Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...

Læs mere

for matematik pä B-niveau i hf

for matematik pä B-niveau i hf for matematik pä B-niveau i hf 75 50 5 016 Karsten Juul GRUPPEREDE DATA 1.1 Hvad er deskriptiv statistik?...1 1. Hvad er grupperede og ugrupperede data?...1 1.1 Eksempel pä ugrupperede data...1 1. Eksempel

Læs mere

Fig. 1 Billede af de 60 terninger på mit skrivebord

Fig. 1 Billede af de 60 terninger på mit skrivebord Simulation af χ 2 - fordeling John Andersen Introduktion En dag kastede jeg 60 terninger Fig. 1 Billede af de 60 terninger på mit skrivebord For at danne mig et billede af hyppighederne flyttede jeg rundt

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

c) For, er, hvorefter. Forklar.

c) For, er, hvorefter. Forklar. 1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:

Læs mere

Statistik viden eller tilfældighed

Statistik viden eller tilfældighed MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår

Læs mere

Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode

Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode Man kan skifte mellem tekst- og matemamatikmode ved at trykke på F5. I øjeblikket er jeg i tekstmode.. 2. lektion.

Læs mere

Flemmings Maplekursus 1. Løsning af ligninger

Flemmings Maplekursus 1. Løsning af ligninger Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er

Læs mere

Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary

Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary 1 Kontingenstabeller Betinget fordeling Uafhængighed 2 Chi-kvadrat test for uafhængighed Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary

Læs mere

Spørgeskemaundersøgelser og databehandling

Spørgeskemaundersøgelser og databehandling DASG. Nye veje i statistik og sandsynlighedsregning. side 1 af 12 Spørgeskemaundersøgelser og databehandling Disse noter er udarbejdet i forbindelse med et tværfagligt samarbejde mellem matematik og samfundsfag

Læs mere

for matematik pä B-niveau i hf

for matematik pä B-niveau i hf for matematik pä B-niveau i hf 014 Karsten Juul TEST 1 StikprÅver... 1 1.1 Hvad er populationen?... 1 1. Hvad er stikpråven?... 1 1.3 Systematiske fejl ved valg af stikpråven.... 1 1.4 TilfÇldige fejl

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave]

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave] Statistik med TI-Nspire CAS version 3.2 Bjørn Felsager September 2012 [Fjerde udgave] Indholdsfortegnelse Forord Beskrivende statistik 1 Grundlæggende TI-Nspire CAS-teknikker... 4 1.2 Lister og regneark...

Læs mere

Kapitel 8 Chi-i-anden (χ 2 ) prøven

Kapitel 8 Chi-i-anden (χ 2 ) prøven Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Vi ønskede at planlægge og afprøve et undervisningsforløb, hvor anvendelse af

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Statistik i basketball

Statistik i basketball En note til opgaveskrivning jerome@falconbasket.dk 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1 Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

Indblik i statistik - for samfundsvidenskab

Indblik i statistik - for samfundsvidenskab Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik

Læs mere

Appendiks A. Entreprenørskabsundervisning i befolkningen, specielt blandt unge

Appendiks A. Entreprenørskabsundervisning i befolkningen, specielt blandt unge Appendiks A. Entreprenørskabsundervisning i befolkningen, specielt blandt unge Redegørelsen ovenfor er baseret på statistiske analyser, der detaljeres i det følgende, et appendiks for hvert afsnit. Problematikken

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

statistik og sandsynlighed

statistik og sandsynlighed brikkerne til regning & matematik statistik og sandsynlighed trin 1 preben bernitt brikkerne statistik og sandsynlighed 1 1. udgave som E-bog ISBN: 978-87-92488-19-0 2004 by bernitt-matematik.dk Kopiering

Læs mere

1 Problemformulering CYKELHJELM

1 Problemformulering CYKELHJELM 1 Problemformulering I skal undersøge hvor mange cyklister, der kommer til skade og hvor alvorlige, deres skader er. I skal finde ud af, om cykelhjelm gør nogen forskel, hvis man kommer ud for en ulykke.

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

χ 2 test Formål med noten... 2 Goodness of fit metoden (GOF)... 2 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)...

χ 2 test Formål med noten... 2 Goodness of fit metoden (GOF)... 2 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)... χ Indhold Formål med noten... Goodness of fit metoden (GOF)... 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)... ) χ -fordelingerne (fordelingsfunktionernes egenskaber)... 6 3) χ -

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Samfundsfag og matematik

Samfundsfag og matematik Samfundsfag og matematik Piketty: Kapitalismens 2. grundlæggende lov: β = s/g Lineær regression: y = ax + b Beregninger med Excel: Indekstal = C6/$B6*100. Diagram Chi^2-test: p = 0,04 Brug af egen spørgeskemaundersøgelse

Læs mere

Projekt 6.1 Rygtespredning - modellering af logistisk vækst

Projekt 6.1 Rygtespredning - modellering af logistisk vækst Projekt 6.1 Rygtespredning - modellering af logistisk vækst (Projektet anvender værktøjsprogrammet TI Nspire) Alle de tilstedeværende i klassen tildeles et nummer, så med 28 elever i klassen uddeles numrene

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

- Panelundersøgelse, Folkeskolen, februar 2013 FOLKESKOLEN. Undersøgelse om syn på kønnets betydning for fag- og uddannelsesvalg

- Panelundersøgelse, Folkeskolen, februar 2013 FOLKESKOLEN. Undersøgelse om syn på kønnets betydning for fag- og uddannelsesvalg FOLKESKOLEN Undersøgelse om syn på kønnets betydning for fag- og uddannelsesvalg 2013 Udarbejdet af Scharling Research for redaktionen af Folkeskolen, februar 2013 Formål Scharling.dk Side 1 af 14 Metode

Læs mere

Surveyundersøgelse af danske kiropraktorpatienter

Surveyundersøgelse af danske kiropraktorpatienter Surveyundersøgelse af danske kiropraktorpatienter Foto: Uffe Johansen Dansk Kiropraktor Forening København 2013 Indhold 1 Baggrund for undersøgelsen.. 2 2 Indkomstniveau. 3 Kiropraktorpatienters årlige

Læs mere

Markedsanalyse for Boligindretningsbutikker

Markedsanalyse for Boligindretningsbutikker Markedsanalyse for Boligindretningsbutikker Af gruppe 7: Mohammed Kayed, Patrick Kisbye, Maria Vinther og Kathrine Kristiansen 6. OKTOBER 2016 MAK, CPH BUSINESS Modul 2 Markedsanalyse for Boligindretningsbutikker

Læs mere

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9.

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. klassetrin: statistisk sandsynlighed, kombinatorisk sandsynlighed og personlig

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Undersøgelse om IT i folkeskolen 2011

Undersøgelse om IT i folkeskolen 2011 Undersøgelse om IT i folkeskolen 2011 Udarbejdet af Scharling Research for redaktionen af Folkeskolen, november 2011 Scharling.dk Formål Denne rapport har til hensigt at afdække respondenternes kendskab

Læs mere

WORKSHOP 2C, DLF-kursus, Krogerup, 26. november 2015

WORKSHOP 2C, DLF-kursus, Krogerup, 26. november 2015 WORKSHOP 2C, DLF-kursus, Krogerup, 26. november 2015 At I får overblik over statistik og sandsynlighed som fagområde i folkeskolen indblik i didaktiske forskeres anbefalinger til undervisningen i statistik

Læs mere

Lidt historisk om chancelære i grundskolen

Lidt historisk om chancelære i grundskolen Lidt historisk om chancelære i grundskolen 1976 1.-2.klassetrin Vejledende forslag til læseplan:.det tilstræbes endvidere at eleverne i et passende talmaterialer kan bestemme for eksempel det største tal,

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

Virksomhedens salgspipeline. Business Danmark november 2009 BD272

Virksomhedens salgspipeline. Business Danmark november 2009 BD272 Virksomhedens salgspipeline Business Danmark november 2009 BD272 Indholdsfortegnelse Indledning... 2 Rapportens opbygning... 2 Hovedkonklusioner... 3 Metode og validitet... 3 Salgs- og marketingafdelingernes

Læs mere

Taldata 1. Chancer gennem eksperimenter

Taldata 1. Chancer gennem eksperimenter Taldata 1. Chancer gennem eksperimenter Indhold 1. Kast med to terninger 2. Et pindediagram 3. Sumtabel 4. Median og kvartiler 5. Et trappediagram 6. Gennemsnit 7. En statistik 8. Anvendelse af edb 9.

Læs mere

Grundlæggende metode og videnskabsteori. 5. september 2011

Grundlæggende metode og videnskabsteori. 5. september 2011 Grundlæggende metode og videnskabsteori 5. september 2011 Dagsorden Metodiske overvejelser Kvantitativ >< Kvalitativ metode Kvalitet i kvantitative undersøgelser: Validitet og reliabilitet Dataindsamling

Læs mere

Kort gennemgang af Samfundsfaglig-, Naturvidenskabeligog

Kort gennemgang af Samfundsfaglig-, Naturvidenskabeligog Kort gennemgang af Samfundsfaglig-, Naturvidenskabeligog Humanistisk metode Vejledning på Kalundborg Gymnasium & HF Samfundsfaglig metode Indenfor det samfundsvidenskabelige område arbejdes der med mange

Læs mere

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014 Vejledning til udvalgte opgave fra Matematik B, sommer 2014 Opgave 7 Størrelsen og udbudsprisen på 100 fritidshuse på Rømø er indsamlet via boligsiden.dk. a) Grafisk præsentation, der beskriver fordelingen

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Resultaterne af de skriftlige eksamener i matematik sommer 2008 De nye niveauer på stx og hf

Resultaterne af de skriftlige eksamener i matematik sommer 2008 De nye niveauer på stx og hf Resultaterne af de skriftlige eksamener i matematik sommer 8 De nye niveauer på stx og hf Midt på efteråret vil der som altid foreligge en evalueringsrapport over sommerens skriftlige eksamener i matematik.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2010. Denne beskrivelse dækker efteråret 2011 og foråret 2012. Institution Roskilde Handelsskole

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Mikro-kursus i statistik 2. del Mikrokursus i biostatistik 1

Mikro-kursus i statistik 2. del Mikrokursus i biostatistik 1 Mikro-kursus i statistik 2. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er hypotesetestning? I sundhedsvidenskab:! Hypotesetestning = Test af nulhypotesen Hypotese-testning anvendes til at vurdere,

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Ventet og velkommen i Blodprøvetagningen på Rigshospitalet

Ventet og velkommen i Blodprøvetagningen på Rigshospitalet Maj 2014 Region Hovedstaden Ventet og velkommen i Blodprøvetagningen på Rigshospitalet Klinisk Biokemisk Afdeling Ventet og velkommen i Blodprøvetagningen på Rigshospitalet Udarbejdet af Enhed for Evaluering

Læs mere

Evaluering af sygedagpengemodtageres oplevelse af ansøgningsprocessen

Evaluering af sygedagpengemodtageres oplevelse af ansøgningsprocessen 30. juni 2011 Evaluering af sygedagpengemodtageres oplevelse af ansøgningsprocessen 1. Indledning I perioden fra 7. juni til 21. juni 2011 fik de personer der har modtaget sygedagpenge hos Silkeborg Kommune

Læs mere

Et oplæg til dokumentation og evaluering

Et oplæg til dokumentation og evaluering Et oplæg til dokumentation og evaluering Grundlæggende teori Side 1 af 11 Teoretisk grundlag for metode og dokumentation: )...3 Indsamling af data:...4 Forskellige måder at angribe undersøgelsen på:...6

Læs mere

3. Trekantsberegninger. Gør rede for cosinusrelationen i vilkårlige trekanter.

3. Trekantsberegninger. Gør rede for cosinusrelationen i vilkårlige trekanter. Matematik B, 2x - sommereksamen 2014 NB! Prøvespørgsmålene kan ændres på foranledning af censor 1. Trekantsberegninger Gør rede for en trekants vinkelsum og areal. Gør endvidere rede for ensvinklede trekanter.

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Lighed fremmer tilliden for både rige og fattige

Lighed fremmer tilliden for både rige og fattige Lighed fremmer tilliden for både rige og fattige Hvis man lever i et land med lav ulighed, har man generelt mere tillid til andre mennesker, end hvis man lever i et land med høj ulighed. Dette gælder,

Læs mere

Preben Blæsild og Jens Ledet Jensen

Preben Blæsild og Jens Ledet Jensen χ 2 Test Preben Blæsild og Jens Ledet Jensen Institut for Matematisk Fag Aarhus Universitet Egå Gymnasium, December 2010 Program 8.15-10.00 Forelæsning 10.15-12.00 Statlab: I arbejder, vi cirkler rundt

Læs mere

Stikprøver, binomialtest og chi^2 test er nogle af de punkter som denne note kommer ind på. Det er et supplement til Vejen til Matematik

Stikprøver, binomialtest og chi^2 test er nogle af de punkter som denne note kommer ind på. Det er et supplement til Vejen til Matematik Hypotesetest s og spørgeskemaer Stikprøver, binomialtest og chi^2 test er nogle af de punkter som denne note kommer ind på. Det er et supplement til Vejen til Matematik Kumuleret sandsynlighed 0.9 0.8

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Ved et folketingsvalg eller en folkeafstemning spørger man alle stemmeberettigede, og kun en del af dem stemmer.

Ved et folketingsvalg eller en folkeafstemning spørger man alle stemmeberettigede, og kun en del af dem stemmer. Matematik C (må anvendes på Ørestad Gymnasium) Statistik Statistik er bearbejdning af talmaterialer, der ofte indeholderstore mængder af tal. De indsamles og registreres i mange forskellige sammenhænge

Læs mere

Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder.

Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder. Dette tema lægger forskellige vinkler på temaet biografen. Udgangspunktet er således ikke et bestemt matematisk område, men et stykke virkelighed, der bl.a. kan beskrives ved hjælp af matematik. I dette

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

statistik basis+g DEMO

statistik basis+g DEMO statistik basis+g 1 brikkerne statistik G 1. udgave som E-bog ISBN: 978-87-92488-19-0 2004 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale med bernitt-matematik.dk Læs nærmere

Læs mere

s ( Tid_Lektier; Hypotese: Gælder dette for alle unge tyskere? Vi deler op i to hypoteser H_0 og H_1.

s ( Tid_Lektier; Hypotese: Gælder dette for alle unge tyskere? Vi deler op i to hypoteser H_0 og H_1. Fritid delstat Tyskland Køn Alder Højde Vægt BMI Tid_TV Tid_Musik Tid_Comp Tid_Sport Tid_Lekt... Tid_Job Fritid delstat Tyskland 1 maennlich 17 1,88 70 19,8053 10 2 4 2 3 2 weiblich 14 0 35 0 4 3 weiblich

Læs mere

Skolesektionen på www.ballerup.dk

Skolesektionen på www.ballerup.dk Skolesektionen på www.ballerup.dk Louise Callisen Dyhr (ldyh) Marie Louise Gottlieb Frederiksen (mgfr) Janus Askø Madsen (jaam) Nanna Petersen (nshy) Antal tegn: 28319 Afleveringsdato: 21. maj 2014 1 Indledning...

Læs mere

Gæste-dagplejen D a g p lejen Odder Ko Brugerundersøgelse 2006

Gæste-dagplejen D a g p lejen Odder Ko Brugerundersøgelse 2006 Gæste-dagplejen Dagplejen Odder Kommune Brugerundersøgelse 2006 Undersøgelsen af gæstedagplejeordningen er sat i gang på initiativ af bestyrelsen Odder Kommunale Dagpleje og er udarbejdet i samarbejde

Læs mere

Den danske befolknings deltagelse i medicinske forsøg og lægevidenskabelig forskning

Den danske befolknings deltagelse i medicinske forsøg og lægevidenskabelig forskning december 2006 j.nr.1.2002.82 FKJ/UH Den danske befolknings deltagelse i medicinske forsøg og lægevidenskabelig forskning omfang, befolkningens vurderinger Af Finn Kamper-Jørgensen og Ulrik Hesse Der er

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Rapport vedrørende. etniske minoriteter i Vestre Fængsel. Januar 2007

Rapport vedrørende. etniske minoriteter i Vestre Fængsel. Januar 2007 Rapport vedrørende etniske minoriteter i Vestre Fængsel Januar 2007 Ved Sigrid Ingeborg Knap og Hans Monrad Graunbøl 1 1. Introduktion Denne rapport om etniske minoriteter på KF, Vestre Fængsel er en del

Læs mere