Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen

Størrelse: px
Starte visningen fra side:

Download "Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen"

Transkript

1 Fysikrappor: Vejr og klima Maila Walmod, 13 HTX, Rosklide I gruppe med Ann-Sofie N Schou og Camilla Jensen Afleveringsdao: 30 november

2 I dagens deba høres orde global opvarmning ofe Men hvad vil de beyde? De er der mange bud på, e af dem er a Grøndlands vil smele Dee er dog mege absrak a ænke på, og hvornår vil de i give fald ske? Den energi, de kræver a smele, kan vi beregne i mege små mængder i fysiklokale Forsøge giver en idé om, hvad de kræver af energi a smele indlandsen Dee har også sor beydning for, hvor hurig en smeler Den varmemængde, Q, der skal ilføres for a smele, er angive ved formlen Q = L m L = ens smelevarme, (den ubekende fakor), angive J g eller kj m = massen af i kg I forsøge skal man bruge en kalorimerkål sam vand og erninger Vi anager a ernigerne er 0 C 1 Kalorimerkålen vejes og vægen noeres, m 2 Ca 100 g (100mL) lunken vand hældes op i en kalorimerkål Herefer vejes den og denne væg noeres, m +vand Ved a række massen af en fra massen af en og vande, findes massen af vande, m vand 3 Temperauren af vande måles og noeres, sar 4 Nogle erninger aførres med papir og pues i vande, så der kun er massen af Når al en er smele, måles emperauren af vande igen, slu 5 Skålen med vand og afvejes og vægen noeres Massen af en og vande rækkes fra dee, og resulae er massen af en, m Forsøge genages med en anden mængde og ud fra målingerne beregnes smelevarme, L Her skal man ænke på a Den varmeenergi, der bruges il erningen, så den smeles og derefer varmes lid op, kommer fra vande Ved a anage, a de er e lukke sysem, sker der en energiudveksling, så de vil gælde a Q = -Q modage afgive Isens emperaurændring er = slu -0 C Når man smeler legemer, bruges formlen som v ovenfor; Q = L m Herefer bliver vande varme lid op Til denne beregning bruges formlen: Q = m m = massen af soffe mål i kg c = den specifikke varmekapacie, den energi, der skal il for a opvarme en masseenhed af soffe 1 C; her er de kilogram, de måles i J C = emperaurændringen af soffe mål i C De er her vigig a man bruger den specifikke varmekapacie for vand og ikke, da en på dee idspunk er smele Dee er alså den ene side af ligningen, da dse o beregninger er de samme som Q På modage den anden side er de -Q, hvor de er vande, der afgiver varme Her ager vi også kalorime- afgive rkålen med i beregningen, og anager a dens emperaur og emperaurændring er den samme som vandes Her bruges igen formlen for varmeenergi Den anden side af ligningen bliver alså Her er vand =, så man kunne skrive Ligningen for energien bliver: -m vand vand -m c 2

3 L m +m vand c vand vand = -m vand vand -m c Her skal vi omforme ligningen, da L er ukend og de vi skal finde frem il Så m rækkes fra på begge sider og der divideres med m på begge sider Herefer bliver formlen som følgende: L = (-m vand vand -m c -m i )m Målingerne er foreage i fysik og noere i e skema: Kalorimerkålen er lave af aluminium Dennes sam vands specifikke varmekapacie kan findes i abeller, feks i vores fysikbog Orbi B hx Nu har vi alle de al, der skal sæes ind i formlen for a udregne L Da den specifikke varmekapacie bliver angive i J C skal massen af vande, en og en også angives i kg kg L for førse forsøg, hvor vi kom én erning i vande, udregnes efer ovensående formel il: L = (-0,0942kg4180 J C -7,2 C-0,0886kg900 J C -7,2 C-0,00885kg4180 J C 17,5 C)0,00885kg = J Dee er resulae i joule pr kilogram, men de skulle hels være kilojoule pr kilogram Derfor deles resulae med usind og de bliver: J = 312,067 kj L for ande forsøg, hvor vi kom fire erninger i vande, udregnes efer ovensående formel il: L = (-0,09471kg4180 J C -15 C-0,0886kg900 J C -15 C-0,02367kg4180 J C 8,6 C)0,02367kg = J J = 271,795 kj I følge fysikbogens abel er smelevarmen for 334,4 kj, vores resula afviger alså lid Denne procenve afvigelse er: 1 forsøg: (312, ,4)334,4100 3

4 ,2km310 9 = m 3 = -6,68 % 2 forsøg: (271, ,4)334,4100 = -18,72 % Der er alså en relaiv sor forskel på resulaerne og værdien for smelevarme fra fysikbogen Især er ande forsøg mere ved siden af Dee kan skyldes flere forskellige ing, feks anog vi a de var e olere sysem, hvor den ermke energi var lig 0 Der var alså blo en varmeudveksling og ine ande energi gik ab under denne proces Men da kalorimerkålen ikke er olere hel, vil der nødvendig v ske dee Desuden var de også blo en anagelse a ens emperaur var lig 0 Den kan god have være lavere, så de også er brug lid energi på førs a opvarme en il frysepunke og så smele den bagefer Isens massefylde er også lavere end vands og derfor flyder en ovenpå under smelningsproce- sen da syseme som nævn ikke er olere, vil en også være i konak med lufen, som har en beydelig højere emperaur, og derfor vil være med il a få en il a smele Nu har vi en ide om, hvor mege energi, de kræver a smele e kg Hvor mege skal der så il a smele indlandsen, når 80% af Grønlangs areal er dække af gennemsnilig 1,5 km yk? Her skal man finde rumfange af en, da dee al skal bruges il a finde vægen af en ud fra densie Densie, eller massefylde, er angive i gram pr kubikcenimeer eller kilogram pr kubikmeer Densieen for er 920 kg m 3 Grønlands areal er km 2 80% af dee er: km Rumfange af en, der er 1,5 km yk: = ,8 km ,8km 2 1,5km = ,2 km 3 I kubikmeer er dee: Vægen af dee er: =2, m 3 2, m kg m3 = 2, kg Nu har jeg funde frem il vægen af indlandsen i kilogram For a beregne mængden af energi, der skal ilføres, for a en smeler, skal man gange vægen med smelevarme, her bruges bogens abelværdi: 2, kg334,4 kj = 7, kj Hv energien kom fra elekrk varme, kan man udregne hvad de ville kose ud fra pren for kilowaimer, kwh, som er 1,50 kr 4

5 En kwh er 1000 Wh Wa, W, eller effek, er energi pr id, angives i J s Når der sår Wh, så sår h for ime (engelsk hour) På en ime er der 60 minuer på 60 sekunder, i al 3600 sekunder Når man omregner en kwh for a få den mængde joule de er, skal man førs omregne fra kilowa il Wa ved a gange med 1000 og derefer fra Waimer il Wa ved a gange med iden, 3600 sekunder: 1000 J 3600s s = J = 3,6 MJ Mængden af megajoule, der skal bruges il smelningen af indlandsen, svarer i kwh il: (7, MJ)3,6MJ Pren for energien, der skal il a smele indlandsen er: (2, )1,50 kr = 2, kwh = 3, kr Grunden il, a jeg har valg a bruge så mange decimaler er, a der med så sore al, kan være en sor forskel ved resulae ved afrunding af allene i saren, der derefer brues il andre udregninger De er selvfølgelig også en lid upræc beregning, da ykkelse og sørrelse af indlandsen er skifende og a vi her kun har arbejde med cirka-al 5

Eksponentielle sammenhänge

Eksponentielle sammenhänge Eksponenielle sammenhänge y 800,95 1 0 1 y 80 76 7, 5 5% % 1 009 Karsen Juul Dee häfe er en forsäelse af häfe "LineÄre sammenhänge, 008" Indhold 14 Hvad er en eksponeniel sammenhäng? 53 15 Signing og fald

Læs mere

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager Fysikrapport: Rapportøvelse med kalorimetri Maila Walmod, 1.3 HTX, Rosklide I gruppe med Ulrik Stig Hansen og Jonas Broager Afleveringsdato: 30. oktober 2007* *Ny afleveringsdato: 13. november 2007 1 Kalorimetri

Læs mere

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og EPDEMER DYAMK AF Kasper Larsen, Bjarke Vilser Hansen Henriee Elgaard issen, Louise Legaard og Charloe Plesher-Frankild 1. Miniprojek idefagssupplering, RUC Deember 2007 DLEDG Maemaisk modellering kan anvendes

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014 Maemaik A Sudenereksamen Forberedelsesmaeriale il de digiale eksamensopgaver med adgang il inernee sx141-matn/a-0505014 Mandag den 5. maj 014 Forberedelsesmaeriale il sx A ne MATEMATIK Der skal afsæes

Læs mere

Skoletjenesten Aalborg kommune energiundervisning- Tjek på energien

Skoletjenesten Aalborg kommune energiundervisning- Tjek på energien Lærervejledning Materialer: Tiliters spande Målebægre Lommeregnere/mobiler http://aalborg.energykey.dk (Login fås af Teknisk Serviceleder på skolen) Om energi, effekt og kilowatttimer. Energi måles i Joule

Læs mere

FARVEAVL myter og facts Eller: Sådan får man en blomstret collie!

FARVEAVL myter og facts Eller: Sådan får man en blomstret collie! FARVEAVL myer og facs Eller: Sådan får man en blomsre collie! Da en opdræer for nylig parrede en blue merle æve med en zobel han, blev der en del snak bland colliefolk. De gør man bare ikke man ved aldrig

Læs mere

Pensionsformodel - DMP

Pensionsformodel - DMP Danmarks Saisik MODELGRUPPEN Arbejdspapir Marin Junge og Tony Krisensen 19. sepember 2003 Pensionsformodel - DMP Resumé: Vi konsruerer ind- og udbealings profiler for pensionsformuerne. I dee ilfælde kigger

Læs mere

1 Stofskifte og kropsvægt hos pattedyr. 2 Vægtforhold mellem kerne og strå. 3 Priselasticitet. 4 Nedbrydning af organisk materiale. 5 Populationsvækst

1 Stofskifte og kropsvægt hos pattedyr. 2 Vægtforhold mellem kerne og strå. 3 Priselasticitet. 4 Nedbrydning af organisk materiale. 5 Populationsvækst Oversig Eksempler på hvordan maemaik indgår i undervisningen på LIFE Gymnasielærerdag Thomas Vils Pedersen Insiu for Grundvidenskab og Miljø vils@life.ku.dk Sofskife og kropsvæg hos paedyr Vægforhold mellem

Læs mere

Newtons afkølingslov løst ved hjælp af linjeelementer og integralkurver

Newtons afkølingslov løst ved hjælp af linjeelementer og integralkurver Newons afkølingslov løs ved hjælp af linjeelemener og inegralkurver Vi så idligere på e eksempel, hvor en kop kakao med emperauren sar afkøles i e lokale med emperauren slu. Vi fik, a emperaurfalde var

Læs mere

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Nulkuponobligationer

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Nulkuponobligationer Dagens forelæsning Ingen-Arbirage princippe Claus Munk kap. 4 Nulkuponobligaioner Simpel og generel boosrapping Nulkuponrenesrukuren Forwardrener 2 Obligaionsprisfassæelse Arbirage Værdien af en obligaion

Læs mere

Bankernes renter forklares af andet end Nationalbankens udlånsrente

Bankernes renter forklares af andet end Nationalbankens udlånsrente N O T A T Bankernes rener forklares af ande end Naionalbankens udlånsrene 20. maj 2009 Kor resumé I forbindelse med de senese renesænkninger fra Naionalbanken er bankerne bleve beskyld for ikke a sænke

Læs mere

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE?

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? Af Torben A. Knudsen, Sud. Poly. & Claus Rehfeld, Forskningsadjunk Cener for Trafik og Transporforskning (CTT) Danmarks Tekniske Uniersie Bygning 115, 800

Læs mere

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72.

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72. Bioeknologi 2, Tema 4 5 Kineik Kineik er sudier af reakionshasigheden hvor man eksperimenel undersøger de fakorer, der påvirker reakionshasigheden, og hvor resulaerne afslører reakionens mekanisme og ransiion

Læs mere

Rumfang af væske i beholder

Rumfang af væske i beholder Matematikprojekt Rumfang af væske i beholder Maila Walmod, 1.3 HTX Roskilde Afleveringsdato: Fredag d. 7. december 2007 1 Fru Hansen skal have en væskebeholder, hvor rumfanget af væsken skal kunne aflæses

Læs mere

tegnsprog Kursuskatalog 2015

tegnsprog Kursuskatalog 2015 egnsprog Kursuskaalog 2015 Hvordan finder du di niveau? Hvor holdes kurserne? Hvordan ilmelder du dig? 5 Hvad koser e kursus? 6 Tegnsprog for begyndere 8 Tegnsprog på mellemniveau 10 Tegnsprog for øvede

Læs mere

Funktionel form for effektivitetsindeks i det nye forbrugssystem

Funktionel form for effektivitetsindeks i det nye forbrugssystem Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh. augus 007 Funkionel form for effekiviesindeks i de nye forbrugssysem Resumé: Der findes o måder a opskrive effekiviesudvidede CES-funkioner med o

Læs mere

Øresund en region på vej

Øresund en region på vej OKTOBER 2008 BAG OM NYHEDERNE Øresund en region på vej af chefkonsulen Ole Schmid Sore forvenninger il Øresundsregionen Der var ingen ende på, hvor god de hele ville blive når broen blev åbne, og Øresundsregionen

Læs mere

DiploMat Løsninger til 4-timersprøven 4/6 2004

DiploMat Løsninger til 4-timersprøven 4/6 2004 DiploMa Løsninger il -imersprøven / Preben Alsholm / Opgave Polynomie p er give ved p (z) = z 8 z + z + z 8z + De oplyses, a polynomie også kan skrives således p (z) = z + z z + Vi skal nde polynomies

Læs mere

Tjekkiet Štěpán Vimr, lærerstuderende Rapport om undervisningsbesøg Sucy-en-Brie, Frankrig 15.12.-19.12.2008

Tjekkiet Štěpán Vimr, lærerstuderende Rapport om undervisningsbesøg Sucy-en-Brie, Frankrig 15.12.-19.12.2008 Tjekkie Šěpán Vimr lærersuderende Rappor om undervisningsbesøg Sucy-en-Brie Frankrig 15.12.-19.12.2008 Konak med besøgslæreren De indledende konaker (e-mail) blev foreage med de samme undervisere hvilke

Læs mere

Logaritme-, eksponential- og potensfunktioner

Logaritme-, eksponential- og potensfunktioner Logarime-, eksponenial- og poensfunkioner John Napier (550-67. Peer Haremoës Niels Brock April 7, 200 Indledning Eksponenial- og logarimefunkioner blev indfør på Ma C niveau, men dengang havde vi ikke

Læs mere

Matematil projekt Bærbar

Matematil projekt Bærbar Maemaik Kursusopgave Bærbar -6-26 Maemail projek Bærbar Opgave A. For a finde ligningen for planen så skal jeg bruge e punk på planen, og normalvekoren for planen. Punke på planen, kan jeg finde fordi

Læs mere

Landbrugets Byggeblade

Landbrugets Byggeblade Landbruges Byggeblade Love og vedæger Bygninger Teknik Miljø Arkivnr. 95.03-03 Beregning af ilsrækkelig opbevaringskapacie Udgive Mars 1993 Beregning af dyreenheder (DE) jf. bilag il bekendgørelsen om

Læs mere

RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2003

RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2003 RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Eferårssemesre 2003 Generelle bemærkninger Opgaven er den redje i en ny ordning, hvorefer eksamen efer førse semeser af makro på 2.år

Læs mere

Matematik og Fysik for Daves elever

Matematik og Fysik for Daves elever TEC FREDERIKSBERG www.studymentor.dk Matematik og Fysik for Daves elever MATEMATIK... 2 1. Simple isoleringer (+ og -)... 3 2. Simple isoleringer ( og )... 4 3. Isolering af ubekendt (alle former)... 6

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

Dokumentation for regelgrundskyldspromillen

Dokumentation for regelgrundskyldspromillen Danmarks Saisik MODELGRUPPEN Arbejdspapir Marcus Mølbak Inghol 17. okober 2012 Dokumenaion for regelgrundskyldspromillen Resumé: I dee modelgruppepapir dokumeneres konsrukionen af en idsrække for regelgrundskyldspromillen

Læs mere

Hvad er en diskret tidsmodel? Diskrete Tidsmodeller. Den generelle formel for eksponentiel vækst. Populationsfordobling

Hvad er en diskret tidsmodel? Diskrete Tidsmodeller. Den generelle formel for eksponentiel vækst. Populationsfordobling Hvad er en diskre idsmodel? Diskree Tidsmodeller Jeppe Revall Frisvad En funkion fra mængden af naurlige al il mængden af reelle al: f : R f (n) = 1 n + 1 n Okober 29 1 8 f(n) = 1/(n + 1) f(n) 6 4 2 1

Læs mere

Estimation af markup i det danske erhvervsliv

Estimation af markup i det danske erhvervsliv d. 16.11.2005 JH Esimaion af markup i de danske erhvervsliv Baggrundsnoa vedrørende Dansk Økonomi, eferår 2005, kapiel II Noae præsenerer esimaioner af markup i forskellige danske erhverv. I esimaionerne

Læs mere

Undervisningsmaterialie

Undervisningsmaterialie The ScienceMah-projec: Idea: Claus Michelsen & Jan Alexis ielsen, Syddansk Universie Odense, Denmark Undervisningsmaerialie Ark il suderende og opgaver The ScienceMah-projec: Idea: Claus Michelsen & Jan

Læs mere

Computer- og El-teknik Formelsamling

Computer- og El-teknik Formelsamling ompuer- og El-eknik ormelsamling E E E + + E + Holsebro HTX ompuer- og El-eknik 5. og 6. semeser HJA/BA Version. ndholdsforegnelse.. orkorelser inden for srøm..... Modsande ved D..... Ohms ov..... Effek

Læs mere

MAKRO 2 ENDOGEN VÆKST

MAKRO 2 ENDOGEN VÆKST ENDOGEN VÆKST MAKRO 2 2. årsprøve Forelæsning 7 Kapiel 8 Hans Jørgen Whia-Jacobsen econ.ku.dk/okojacob/makro-2-f09/makro I modeller med endogen væks er den langsigede væksrae i oupu pr. mand endogen besem.

Læs mere

Fulde navn: NAVIGATION II

Fulde navn: NAVIGATION II SØFARTSSTYRELSEN Eks.nr. Eksaminaionssed (by) Fulde navn: * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Yachskippereksamen af 1. grad. Y1NAV2-1/02

Læs mere

ktion MTC 12 Varenr. 572178 MTC12/1101-1

ktion MTC 12 Varenr. 572178 MTC12/1101-1 Brugervejledning kion & insrukion MTC 12 Varenr. 572178 MTC12/1101-1 INDHOLD Indeks. 1: Beskrivelse 2: Insallaion 3: Programmering 4: Hvordan fungerer syringen 4.1 Toggle ermosa 4.2 1 rins ermosa 4.3 Neuralzone

Læs mere

Dette forudsætter, at alt stof i forvejen er opvarmet til smeltepunktet eller kogepunkt.

Dette forudsætter, at alt stof i forvejen er opvarmet til smeltepunktet eller kogepunkt. Projekt: Energi og nyttevirkning Temperaturskala Gennem næsten 400 år har man fastlagt temperaturskalaen ud fra isens smeltepunkt (=vands frysepunkt) og vands kogepunkt. De tre kendte, gamle temperaturskalaer

Læs mere

Lindab Comdif. Fleksibilitet ved fortrængning. fortrængningsarmaturer. Comdif er en serie af luftfordelingsarmaturer til fortrængningsventilation.

Lindab Comdif. Fleksibilitet ved fortrængning. fortrængningsarmaturer. Comdif er en serie af luftfordelingsarmaturer til fortrængningsventilation. comfor forrængningsarmaurer Lindab Comdif 0 Lindab Comdif Ved forrængningsvenilaion ilføres lufen direke i opholds-zonen ved gulvniveau - med lav hasighed og underemperaur. Lufen udbreder sig over hele

Læs mere

Efterspørgslen efter læger 2012-2035

Efterspørgslen efter læger 2012-2035 2013 5746 PS/HM Eferspørgslen efer læger 2012-2035 50000 45000 40000 35000 30000 25000 20000 15000 10000 5000 Anal eferspurge læger i sundhedsudgifalernaive Anal eferspurge læger i finanskrisealernaive

Læs mere

Bilag 1E: Totalvægte og akseltryk

Bilag 1E: Totalvægte og akseltryk Vejdirekorae Side 1 Forsøg med modulvognog Slurappor Bilag 1E: Toalvæge og ryk Bilag 1E: Toalvæge og ryk Dee bilag er opdel i følgende dele: 1. En inrodukion il bilage 2. Resulaer fra de forskellige målesaioner,

Læs mere

AFKØLING Forsøgskompendium

AFKØLING Forsøgskompendium AFKØLING Forsøgskompendium IBSE-forløb 2012 1 KULDEBLANDING Formålet med forsøget er at undersøge, hvorfor sneen smelter, når vi strøer salt. Og derefter at finde frysepunktet for forskellige væsker. Hvad

Læs mere

FYSIK RAPPORT. Forsøg med kalorimeter. Tim Ohlsen, Kim Kähler, Emil Lind, Jeppe Lauritsen og Lasse Klein

FYSIK RAPPORT. Forsøg med kalorimeter. Tim Ohlsen, Kim Kähler, Emil Lind, Jeppe Lauritsen og Lasse Klein FYSIK RAPPORT Forsøg med kalorimeter Tim Ohlsen, Kim Kähler, Emil Lind, Jeppe Lauritsen og Lasse Klein Indhold Formål:... 2 Beskrivelse:... 2 Formel for beregning af specifikke varmekapacitet:... 2 Udførsel

Læs mere

Udnyttelse af energi fra motionscykel

Udnyttelse af energi fra motionscykel Udnyttelse af energi fra motionscykel Med dette forsøg vil vi gerne undersøge hvor meget energi man kan udvinde fra en motionscykel. Vi vil gerne i det lange forløb kunne udnytte og omdanne den mekaniske

Læs mere

8 cm 0,7 m 3,1 m 0,25 km. 38 mm 84 dm 24,8 km 35.660 cm. 527.125 mm 32,1 m 0,2 cm 84,37 m. 47,25 km 45,27 m 0,875 km 767,215 m

8 cm 0,7 m 3,1 m 0,25 km. 38 mm 84 dm 24,8 km 35.660 cm. 527.125 mm 32,1 m 0,2 cm 84,37 m. 47,25 km 45,27 m 0,875 km 767,215 m 8.01 Enheder 8 cm 0, m 3,1 m 0,25 km 38 mm 84 dm 24,8 km 35.660 cm 52.125 mm 32,1 m 0,2 cm 84,3 m 4,25 km 45,2 m 0,85 km 6,215 m 2.500 dm 2 48 m 2 2 km 2 56.000 cm 2 0,45 km 2 6,2 ha 96.000 cm 2 125.000.000

Læs mere

Logaritme-, eksponential- og potensfunktioner

Logaritme-, eksponential- og potensfunktioner Logarime-, eksponenial- og poensfunkioner John Napier (550-67. Peer Haremoës Niels Brock July 27, 200 Indledning Eksponenial- og logarimefunkioner blev indfør på Ma C nivea uden en præcis definiion. Funkionerne

Læs mere

Overføring af ultrafi e partikler og gasser mellem to lejligheder

Overføring af ultrafi e partikler og gasser mellem to lejligheder n IDEKLIMA Overføring af ulrafi e og gasser mellem o Overføring af gasser, og røglug mellem er ofe e problem for beboere i ældre eageejendomme. Derfor har Saens Byggeforskningsinsiu undersøg en ny æningsmeode,

Læs mere

Afrapportering om danske undertekster på nabolandskanalerne

Afrapportering om danske undertekster på nabolandskanalerne 1 Noa Afrapporering om danske underekser på nabolandskanalerne Sepember 2011 2 Dee noa indeholder: 1. Indledning 2. Baggrund 3. Rammer 4. Berening 2010 5. Økonomi Bilag 1. Saisik over anal eksede programmer

Læs mere

Mads Peter, Niels Erik, Kenni og Søren Bo 06-09-2013

Mads Peter, Niels Erik, Kenni og Søren Bo 06-09-2013 EUC SYD HTX 1.B Projekt kroppen Fysik Mads Peter, Niels Erik, Kenni og Søren Bo 06-09-2013 Indhold Indledning/formål... 2 Forventninger... 2 Forsøget... 2 Svedekassen... 2 Fremgangsforløb... 2 Materialer...

Læs mere

1. Tryk. Figur 1. og A 2. , der påvirkes af luftartens molekyler med kræfterne henholdsvis F 1. og F 2. , må der derfor gælde, at (1.1) F 1 = P.

1. Tryk. Figur 1. og A 2. , der påvirkes af luftartens molekyler med kræfterne henholdsvis F 1. og F 2. , må der derfor gælde, at (1.1) F 1 = P. M3 1. Tryk I beholderen på figur 1 er der en luftart, hvis molekyler bevæger sig rundt mellem hinanden. Med jævne mellemrum støder de sammen med hinanden og de støder ligeledes med jævne mellemrum mod

Læs mere

Lektion 10 Reaktionshastigheder Epidemimodeller

Lektion 10 Reaktionshastigheder Epidemimodeller Lekion 1 Reakionshasigheder Epidemimodeller Simpel epidemimodel Kermack-McKendric epidemimodel Kemiske reakionshasigheder 1 Simpel epidemimodel I en populaion af N individer er I() inficerede og resen

Læs mere

Sammenhæng mellem prisindeks for månedstal, kvartalstal og årstal i ejendomssalgsstatistikken

Sammenhæng mellem prisindeks for månedstal, kvartalstal og årstal i ejendomssalgsstatistikken 6. sepember 2013 JHO Priser og Forbrug Sammenhæng mellem prisindeks for månedsal, kvaralsal og årsal i ejendomssalgssaisikken Dee noa gennemgår sammenhængen mellem prisindeks for månedsal, kvaralsal og

Læs mere

Brugsanvisning HS23229SK

Brugsanvisning HS23229SK C Brugsanvisning DK 50005411 HS9SK Dansk Med Deres nye komfur får de endnu mere glæde ved madlavningen. For a få glæde af alle de ekniske fordele, bør De læse denne brugsanvisning. I saren af brugsanvisningen

Læs mere

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3 Gaslovene SH ver. 1.2 Indhold 1 Hvad er en gas? 2 1.1 Fysiske størrelser................... 2 1.2 Gasligninger...................... 3 2 Forsøgene 3 2.1 Boyle Mariottes lov.................. 4 2.1.1 Konklusioner.................

Læs mere

MOGENS ODDERSHEDE LARSEN. Sædvanlige Differentialligninger

MOGENS ODDERSHEDE LARSEN. Sædvanlige Differentialligninger MOGENS ODDERSHEDE LARSEN Sædvanlige Differenialligninger a b. udgave 004 FORORD Dee noa giver en indføring i eorien for sædvanlige differenialligninger. Der lægges især væg på løsningen af lineære differenialligninger

Læs mere

Lidt om trigonometriske funktioner

Lidt om trigonometriske funktioner DEN TEKNISK-NATURVIDENSKABELIGE BASISUDDANNELSE MATEMATIK TRIGNMETRISKE FUNKTINER EFTERÅRET 000 Lid m rignmeriske funkiner Funkinerne cs g sin De rignmeriske funkiner defines i den elemenære maemaik ved

Læs mere

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Torsdag den 2. januar 1997, kl.

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Torsdag den 2. januar 1997, kl. Skriflig Eksamen Daasrukurer og lgorimer (DM0) Insiu for Maemaik og Daalogi Odense Universie Torsdag den. januar 199, kl. 9{1 lle sdvanlige hjlpemidler (lrebger, noaer, ec.) sam brug af lommeregner er

Læs mere

Ny ligning for usercost

Ny ligning for usercost Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh 8. okober 2008 Ny ligning for usercos Resumé: Usercos er bleve ændre frem og ilbage i srukur og vil i den nye modelversion have noge der minder om

Læs mere

Rustfrit stål i husholdningen

Rustfrit stål i husholdningen Rus f r i s åli hus hol dni ngen Hv i l k es ål y perbr ugerv iikøkk ene oghv or f or?oghv ader f l y v er us? Rusfri sål i husholdningen Hvilke sålyper bruger vi i køkkene og hvorfor? Og hvad er flyverus?

Læs mere

TAL OG ALGEBRA/GEOMETRI

TAL OG ALGEBRA/GEOMETRI AEU 1 SYGE Sommer 011 Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 40 + =. 170 4 =. 6 7 = Afrund til nærmeste hele tal 14. 7,9 1. 1 6 4. 108: 1 = Løs ligningen 16. 8 8 =. x + 10 = 7 x = 6. 4 x = 6 x = 17. 7 10

Læs mere

Prisfastsættelse af fastforrentede konverterbare realkreditobligationer

Prisfastsættelse af fastforrentede konverterbare realkreditobligationer Copenhagen Business School 2010 Kandidaspeciale Cand.merc.ma Prisfassæelse af fasforrenede konvererbare realkrediobligaioner Vejleder: Niels Rom Aflevering: 28. juli 2010 Forfaere: Mille Lykke Helverskov

Læs mere

En model til fremskrivning af det danske uddannelsessystem

En model til fremskrivning af det danske uddannelsessystem En model il fremskrivning af de danske uddannelsessysem Peer Sephensen og Jonas Zangenberg Hansen December 27 Side 2 af 22 1. Indledning De er regeringens mål a øge befolkningens uddannelsesniveau. Befolkningens

Læs mere

Regning med enheder. Måleenheder... 11 Kg-priser... 13 Tid og hastighed... 15 Valuta... 17. Regning med enheder Side 10

Regning med enheder. Måleenheder... 11 Kg-priser... 13 Tid og hastighed... 15 Valuta... 17. Regning med enheder Side 10 Regning med enheder Måleenheder... 11 Kg-priser... 13 Tid og hastighed... 15 Valuta... 17 Regning med enheder Side 10 Måleenheder Du skal kende de vigtigste måleenheder for vægt, rumfang og længde. Vægt

Læs mere

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 4

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 4 Insiu for Maemaiske Fag Maemaisk Modellering 1 Aarhus Universie Eva B. Vedel Jensen 12. februar 2008 UGESEDDEL 4 OBS! Øvelseslokale for hold MM4 (Jonas Bæklunds hold) er ændre il Koll. G3 på IMF. Ændringen

Læs mere

Dommedag nu? T. Døssing, A. D. Jackson og B. Lautrup Niels Bohr Institutet. 23. oktober 1998

Dommedag nu? T. Døssing, A. D. Jackson og B. Lautrup Niels Bohr Institutet. 23. oktober 1998 Dommedag nu? T. Døssing, A. D. Jackson og B. Laurup Niels Bohr Insiue 3. okober 1998 Der har alid være fanaikere, som har men, a dommedag var nær, og for en del år siden kom nogle naurvidenskabelige forskere

Læs mere

Om temperatur, energi, varmefylde, varmekapacitet og nyttevirkning

Om temperatur, energi, varmefylde, varmekapacitet og nyttevirkning Om temperatur, energi, varmefylde, varmekapacitet og nyttevirkning Temperaturskala Gennem næsten 400 år har man fastlagt temperaturskalaen ud fra isens smeltepunkt (=vands frysepunkt) og vands kogepunkt.

Læs mere

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage Dages forelæsig Ige-Arbirage pricippe Claus Muk kap. 4 Nulkupoobligaioer Simpel og geerel boosrappig Forwardreer Obligaiosprisfassæelse Arbirage Værdie af e obligaio Nuidsværdie af obligaioes fremidige

Læs mere

ktion MTC 4 Varenr MTC4/1101-1

ktion MTC 4 Varenr MTC4/1101-1 Brugervejledning kion & insrukion MTC 4 Varenr. 572185 MTC4/1101-1 INDHOLD Indeks. 1: Beskrivelse 2: Insallaion 3: Programmering 4: Hvordan fungerer syringen 4.1 Toggle ermosa 4.2 1 rins ermosa 4.3 Neuralzone

Læs mere

2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk

2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk Oversig Mes repeiion med fokus på de sværese emner Modul 3: Differenialligninger af. orden Maemaik og modeller 29 Thomas Vils Pedersen Insiu for Grundvidenskab og Miljø vils@life.ku.dk 3 simple yper differenialligninger

Læs mere

Bilag 7 - Industriel overfladebehandling Bilag til Arbejdstilsynets bekendtgørelse nr. 302 af 13. maj 1993 om arbejde med kodenummererede produkter

Bilag 7 - Industriel overfladebehandling Bilag til Arbejdstilsynets bekendtgørelse nr. 302 af 13. maj 1993 om arbejde med kodenummererede produkter Bilag 7 - Indusriel ovfladebehandling Bilag il Arbejdsilsynes bekendgørelse nr. 302 af 13. maj 1993 om arbejde kodenume produk 7.1. Bilages område a. Påføring af maling og lak på emn på fase arbejdsplads

Læs mere

Data og metode til bytteforholdsberegninger

Data og metode til bytteforholdsberegninger d. 3. maj 203 Daa og meode il byeforholdsberegninger Dee noa redegør for daagrundlage og beregningsmeoden bag byeforholdsberegningerne i Dansk Økonomi, forår 203.. Daagrundlag Daagrundlage for analysen

Læs mere

Hvorfor en pjece til lønmodtagere gift med landmænd?

Hvorfor en pjece til lønmodtagere gift med landmænd? Hvorfor en pjece il lønmodagere gif med landmænd? Fordi 60 pc. af alle landbokvinder er lønmodagere og mange yngre landbokvinder ikke er opvokse på e landbrug, og mange heller ikke på lande. Fordi de kan

Læs mere

Format FACITLISTE. Træningshæfte. Side 3. klasse. Facit, side 1-3. Alinea. B Fordel ligeligt og find rest. Fordel ligeligt. Mål og del.

Format FACITLISTE. Træningshæfte. Side 3. klasse. Facit, side 1-3. Alinea. B Fordel ligeligt og find rest. Fordel ligeligt. Mål og del. orma klasse ræninshæfe LS Side ordel lieli. majs på hver. bacon på hver. ananas på hver. ordel lieli o find. ordel fylde lieli på pizzaerne. æl pizzafylde, o skriv analle. Skriv derefer analle på hver

Læs mere

Grundlæggende færdigheder

Grundlæggende færdigheder Regnetest A: Grundlæggende færdigheder Træn og Test Niveau: 7. klasse Uden brug af lommeregner 1 INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag

Læs mere

Fra model til virkelighed Elev-arbejdsark til Fra model til virkelighed

Fra model til virkelighed Elev-arbejdsark til Fra model til virkelighed Fra model til virkelighed Elev-arbejdsark til Fra model til virkelighed - et forløb om målestoksforhold, omkreds-, areal og rumfangsberegning Jeres overvejelser er vigtige! Inden I løser en opgave, så

Læs mere

Micrologic overstrømsrelæer 2.0 og 5.0

Micrologic overstrømsrelæer 2.0 og 5.0 Micrologic oversømsrelæer.0 og.0 Lær oversømsrelæe a kende Idenifikaion af oversømsrelæe Oversig over funkioner 4 Indsilling af oversømsrelæe 6 Indsillingsprocedure 6 Indsilling af Micrologic.0 oversømsrelæ

Læs mere

Dynamik i effektivitetsudvidede CES-nyttefunktioner

Dynamik i effektivitetsudvidede CES-nyttefunktioner Danmarks Saisik MODELGRUPPEN Arbejdspapir Grane Høegh. augus 006 Dynamik i effekiviesudvidede CES-nyefunkioner Resumé: I dee papir benyes effekiviesudvidede CES-nyefunkioner il a finde de relaive forbrug

Læs mere

FORÆLDRETILFREDSHED 2015 Svarprocent: 76,4%

FORÆLDRETILFREDSHED 2015 Svarprocent: 76,4% Horsensvej Anal besvarelser: 375 FORÆLDRETILFREDSHED 2015 Svarprocen: 76,4% Forældreilfredshed 2015 OM RAPPORTEN 01 OM RAPPORTEN RAPPORTENS OPBYGNING Aarhus Kommune har i perioden okober november 2015

Læs mere

Øger Transparens Konkurrencen? - Teoretisk modellering og anvendelse på markedet for mobiltelefoni

Øger Transparens Konkurrencen? - Teoretisk modellering og anvendelse på markedet for mobiltelefoni DET SAMFUNDSVIDENSKABELIGE FAKULTET KØBENHAVNS UNIVERSITET Øger Transarens Konkurrencen? - Teoreisk modellering og anvendelse å markede for mobilelefoni Bjørn Kyed Olsen Nr. 97/004 Projek- & Karrierevejledningen

Læs mere

1. Raketligningen. 1.1 Kinematiske forhold ved raketopsendelse fra jorden. Raketfysik

1. Raketligningen. 1.1 Kinematiske forhold ved raketopsendelse fra jorden. Raketfysik Rakefysik. Rakeligningen Rakeligningen kan udlede ud fra iulssæningen. Vi anager a vi har en rake ed asse (), Rakeen drives fre ved a der udslynges en konsan asse µ r. idsenhed µ -d/d ed hasigheden u i

Læs mere

En ny mellemfristet holdbarhedsindikator

En ny mellemfristet holdbarhedsindikator En ny mellemfrie holdbarhedindikaor Andrea Øergaard Iveren Danih aional Economic Agen Model, DEAM Peer Sephenen Danih aional Economic Agen Model, DEAM DEAM Arbejdpapir 03: Februar 03 Abrac Arbejdpapire

Læs mere

Vejen Kommune vil opfylde målet om 2 % CO2 reduktion vha. energiforbedringer af kommunens bygninger.

Vejen Kommune vil opfylde målet om 2 % CO2 reduktion vha. energiforbedringer af kommunens bygninger. CO2 beregning for Vejen Kommune. Vejen Kommunes CO2 beregning er inddel i 2008 2009 og 2009 osv. De skyldes a varmeværkerne afregner i Maj/Juni. Til gengæld afregner elværkerne i december, hvorfor a elforbruge

Læs mere

Berlin eksempel på opgavebesvarelse i Word m/mathematics

Berlin eksempel på opgavebesvarelse i Word m/mathematics Berlin eksempel på opgavebesvarelse i Word m/mathematics 1.1 Gennemsnitsfarten findes ved at dividere den kørte strækning med den forbrugte tid i decimaltal. I regnearket bliver formlen =A24/D24. Resultatet

Læs mere

Bilbeholdningen i ADAM på NR-tal

Bilbeholdningen i ADAM på NR-tal Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh 4. april 2008 Bilbeholdningen i ADAM på NR-al Resumé: Dee papir foreslår a lade bilbeholdningen i ADAM være lig den officielle bilbeholdning fra Naionalregnskabe.

Læs mere

Danmarks Nationalbank

Danmarks Nationalbank Danmarks Naionalbank Kvar al so ver sig 3. kvaral Del 2 202 D A N M A R K S N A T I O N A L B A N K 2 0 2 3 KVARTALSOVERSIGT, 3. KVARTAL 202, Del 2 De lille billede på forsiden viser Arne Jacobsens ur,

Læs mere

Modellering af benzin- og bilforbruget med bilstocken bestemt på baggrund af samlet forbrug

Modellering af benzin- og bilforbruget med bilstocken bestemt på baggrund af samlet forbrug Danmarks Saisik MODELGRUPPEN Arbejdspapir* 13. maj 2005 Modellering af benzin- og bilforbruge med bilsocken besem på baggrund af samle forbrug Resumé: Dee redje papir om en ny model for biler og benzin

Læs mere

Appendisk 1. Formel beskrivelse af modellen

Appendisk 1. Formel beskrivelse af modellen Appendisk. Formel beskrivelse af modellen I dee appendiks foreages en mere formel opsilning af den model, der er beskreve i ariklen. Generel: Renen og alle produenpriser - eksklusiv lønnen - er give fra

Læs mere

Modellering af den Nordiske spotpris på elektricitet

Modellering af den Nordiske spotpris på elektricitet Modellering af den Nordiske spopris på elekricie Speciale Udarbejde af: Randi Krisiansen Oecon. 10. semeser Samfundsøkonomi, Aalborg Universie 2 RANDI KRISTIANSEN STUDIENUMMER 20062862 Tielblad Uddannelse:

Læs mere

TAL OG ALGEBRA/GEOMETRI

TAL OG ALGEBRA/GEOMETRI Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 376 + 2489 = 2. 367 120 = 3. 16 40 = 4. 216 : 12 = Løs ligningen 14. x - 6 = 4 x = 15. 3x = 24 x = Afrund til nærmeste hele tal 5. 21,88 6. 3 3 1 16. 17. 1 4 + 6 6

Læs mere

Prisdannelsen i det danske boligmarked diagnosticering af bobleelement

Prisdannelsen i det danske boligmarked diagnosticering af bobleelement Hovedopgave i finansiering, Insiu for Regnskab, Finansiering og Logisik Forfaer: Troels Lorenzen Vejleder: Tom Engsed Prisdannelsen i de danske boligmarked diagnosicering af bobleelemen Esimering af dynamisk

Læs mere

Lærervejledning til varmeværksted:

Lærervejledning til varmeværksted: Lærervejledning til varmeværksted: Dette værksted er med vores erfaringer tidsmæssigt presset, så det kan over vejes at dele det i to, idet man kan reducere de tre punkter som anført under praktisk gennemførelse.

Læs mere

Den erhvervspolitiske værdi af støtten til den danske vindmølleindustri

Den erhvervspolitiske værdi af støtten til den danske vindmølleindustri N N N '(7.2120,6.( 5c' 6 (. 5 ( 7 $ 5, $ 7 ( 7 Den erhvervspoliiske værdi af søen il den danske vindmølleindusri Svend Jespersen Arbejdspapir 2002:3 Sekreariae udgiver arbejdspapirer, hvori der redegøres

Læs mere

TAL OG ALGEBRA/GEOMETRI

TAL OG ALGEBRA/GEOMETRI Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 467 + 3546 = 2. 354 214 = Afrund til 2 decimaler 14. 21,488 3. 42 23 = 4. 615 : 5 = Løs ligningen 5. x + 9 = 46 x = x 6. = 35 8 x = 15. 16. 17. 1 56 8 7 2 + = 8 8

Læs mere

Trekantsberegning. Udgave 2. 2010 Karsten Juul 25 B

Trekantsberegning. Udgave 2. 2010 Karsten Juul 25 B Trekansberegning Udgave 7,0 3 5 00 Karsen Juul ee häfe indeholder den del af rekansberegningen som skal kunnes på -niveau i gymnasie (sx) og hf. Fra sommer 0 kräves mere. Indhold. real af rekan.... Pyhagoras'

Læs mere

Når enderne af en kobbertråd forbindes til en strømforsyning, bevæger elektronerne i kobbertråden sig (fortrinsvis) i samme retning.

Når enderne af en kobbertråd forbindes til en strømforsyning, bevæger elektronerne i kobbertråden sig (fortrinsvis) i samme retning. E2 Elektrodynamik 1. Strømstyrke Det meste af vores moderne teknologi bygger på virkningerne af elektriske ladninger, som bevæger sig. Elektriske ladninger i bevægelse kalder vi elektrisk strøm. Når enderne

Læs mere

Hvor bliver pick-up et af på realkreditobligationer?

Hvor bliver pick-up et af på realkreditobligationer? Hvor bliver pick-up e af på realkrediobligaioner? Kvanmøde 2, Finansanalyikerforeningen 20. April 2004 Jesper Lund Quaniaive Research Plan for dee indlæg Realkredi OAS som mål for relaiv værdi Herunder:

Læs mere

Fysik- kalorimetri Roskilde Tekniske Gymnasium 30. oktober Flammetemperatur. Klasse 1.5 Filip Olsen. Indledning Materialer...

Fysik- kalorimetri Roskilde Tekniske Gymnasium 30. oktober Flammetemperatur. Klasse 1.5 Filip Olsen. Indledning Materialer... Flammetemperatur Klasse 1.5 Filip Olsen Indholdsfortegnelse Indledning... 2 Materialer... 3 Metode... 3 Resultater... 4 Diskussion... 4 Konklusion... 5 Kilder... Error! Bookmark not defined. 1 Indledning

Læs mere

Opgavesæt om Gudenaacentralen

Opgavesæt om Gudenaacentralen Opgavesæt om Gudenaacentralen ELMUSEET 2000 Indholdsfortegnelse: Side Gudenaacentralen... 1 1. Vandet i tilløbskanalen... 1 2. Hvor kommer vandet fra... 2 3. Turbinerne... 3 4. Vandets potentielle energi...

Læs mere

Artikel 1: Energi og sukker

Artikel 1: Energi og sukker Artikel 1: Energi og sukker Selvom der er meget fokus på, hvor vigtigt det er at spise sundt, viser de seneste undersøgelser, at danskerne stadig har svært at holde fingrene fra de søde sager og fedtet.

Læs mere

Udlånsvækst drives af efterspørgslen

Udlånsvækst drives af efterspørgslen N O T A T Udlånsvæks drives af eferspørgslen 12. januar 211 Kor resumé Der har den senese id være megen fokus på bankers og realkrediinsiuers udlån il virksomheder og husholdninger. Især er bankerne fra

Læs mere

Sundhedskonsulenterne

Sundhedskonsulenterne Sundhedskonsulenterne Opgaven I Faaborg kommune sidder et udvalg af lokalpolitikere og embedsmænd og arbejder på at finde sund og billig skolemad til alle elever i den nye Faaborg-Midtfyns kommune. Projektet

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Pricing of Oil Derivatives. -With the SABR and Schwartz models. Prisfastsættelse af Oliederivater. -Med SABR og Schwartz modellerne

Pricing of Oil Derivatives. -With the SABR and Schwartz models. Prisfastsættelse af Oliederivater. -Med SABR og Schwartz modellerne Pricing of Oil Derivaives -Wih he SABR and Schwarz models Prisfassæelse af Oliederivaer -Med SABR og Schwarz modellerne Mark Søndergaard Pedersen CPR xxxxxx-xxxx Alex Rusanov CPR xxxxxx-xxxx Vejleder:

Læs mere