Danske elevers udfordringer i matematik. Uffe Thomas Jankvist AU (DPU) & RUC

Størrelse: px
Starte visningen fra side:

Download "Danske elevers udfordringer i matematik. Uffe Thomas Jankvist AU (DPU) & RUC"

Transkript

1 Danske elevers udfordringer i matematik Uffe Thomas Jankvist AU (DPU) & RUC

2 Disposition for de næste 30 min. Matematikspecifikke udfordringer matematikvanskeligheder Hvad ved vi fra PISA set fra et fagdidaktisk synspunkt? Hvad ved vi fra RUC s matematikvejlederuddannelse til gymnasiet? Eksempler på matematikvanskeligheder i gymnasiet Kort om at være matematikvejleder i gymnasiet Om brobygning mellem folkeskole og gymnasium 2

3 Om matematikvanskeligheder Det er vigtigt at skelne mellem på den ene side: dyskalkuli, som ofte regnes for at være mere neurologisk betinget; og egentlige matematikvanskeligheder, som bl.a. omfatter følgende: Vanskeligheder med matematisk begrebsdannelse Vanskeligheder med matematisk ræsonnement og bevis Vanskeligheder med matematisk problemløsning Vanskeligheder med matematisk modellering og modeller Vanskeligheder med sprog i relation til matematik Osv. 3

4 Matematik-kompetencer (Niss & Jensen, 2002) 4

5 Matematik i PISA Lindenskov 5 & Jankvist (2013)

6 PISA s Mathematical literacy... en persons formåen til at formulere, udføre og fortolke matematik i en mangfoldighed af sammenhænge. Det omfatter at kunne ræsonnere matematisk og gøre brug af matematiske begreber, procedurer, kendsgerninger og redskaber til at beskrive, forklare og forudsige fænomener. Det er en hjælp til at erkende den rolle, som matematik spiller i verden og til at foretage og træffe velfunderede vurderinger og beslutninger som konstruktive, engagerede og reflekterende borgere (OECD, 2013, s. 25, egen oversættelse) 6

7 PISA 2012: matematiske idéområder For danske elever går det bedst mht. størrelser og usikkerhed og data Danske elever klarer sig på det jævne mht. forandringer og sammenhænge Danske elever har sværest ved rum og form 7

8 PISA 2012: matematiske processer Danske elever er over gennemsnittet mht. at fortolke dvs. at af-matematisere; oversætte det matematiske resultat tilbage til den ikke-matematiske kontekst Danske elever er gennemsnitlige mht. at formulere dvs. at matematisere; at bringe noget fra en ikke-matematisk kontekst på matematikform Danske elever er under gennemsnittet mht. at udføre består i høj grad i at problemløse inden for det matematiske domæne, dvs bl.a. at regne ; anvende korrekte formler i korrekt sammenhæng; flytte rundt i formler; mv.... 8

9 Et eksempel på en PISA-opgave Et pizzeria serverer to runde frokostpizzaer af samme slags og tykkelse, men i forskellig størrelse. Den mindste har en diameter på 30 cm og koster 30 kr. Den største har en diameter på 40 cm og koster 40 kr. Hvilken pizza giver mest for pengene? Vis, hvordan du kom frem til dit resultat. [M154Q01; frigivet efter PISA 2006] 9

10 Kode-guide til denne PISA-opgave QUESTION INTENT: Applies understanding of area to solving a value for money comparison Code 2: Gives general reasoning that the surface area of pizza increases more rapidly than the price of pizza to conclude that the larger pizza is better value. The diameter of the pizzas is the same number as their price, but the amount of pizza you get is found using diameter 2, so you will get more pizza per zeds from the larger one Code 1: Calculates the area and amount per zed for each pizza to conclude that the larger pizza is better value. Area of smaller pizza is 0.25 x π x 30 x 30 = 225π; amount per zed is 23.6 cm 2 area of larger pizza is 0.25 x π x 40 x 40 = 400π; amount per zed is 31.4 cm 2 so larger pizza is better value Code 8: They are the same value for money. (This incorrect answer is coded separately, because we would like to keep track of how many students have this misconception). 10 Code 0: Other incorrect responses OR a correct answer without correct reasoning. Code 9: Missing.

11 Svar af gym.elever i 2013 (mat.vejl. RUC) Man får 1 cm pizza for 1 kr. [oftest forekommende fejlsvar!] Ingen af dem giver mest for pengene, da man betaler 1 kr. per 1 cm i diameter pizza for dem begge. Der er ingen forskel? En pizza koster 10 kr pr diameter. Hvis du skal have den til 40 kr, kan det godt være du betaler 10 kr mere end den pizza til 30 kr, men du får så også 10 diameter mere pizza [2g elev på Borupgaard Gymnasium] 11

12 Niveauer i forhold til PISA point Niveau 6: Score > 669,3 Niveau 5: 669,3 Score > 607,0 Niveau 4: 607,0 Score > 544,7 Niveau 3: 544,7 Score > 482,5 Niveau 2: 482,5 Score > 420,1 Niveau 1: 420,1 Score > 357,8 Niveau 0: 357,8 Score 12

13 Niveaufordeling i Danmark Niveauer DK DK 2003 DK 2006 DK 2009 Under niveau 1 Niveau 1 Niveau 2 Niveau 3 Niveau 4 Niveau 5 Niveau 6 DK % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Lindenskov 13 & Jankvist (2013)

14 Så hvordan ligger landet? Der er kommet flere elever i gymnasiet end nogensinde før Og skal vi tro på PISA 2012 så må der være kommet færre af de dygtige Dvs. at der må være langt flere elever fra mellemniveauet (i PISA) Samtidig lader det til, at mange af dem der kommer i gymnasiet er vældig udfordrede ift. at udføre, herunder at regne og problemløse Qua mat.vejl.udd. til gym. kan vi endda sige noget mere præcist om hvor (nogle af) hundene ligger begravet for disse elever! 14

15 Brøker og division a b a : b Elever opfatter brøkstreger og : som noget forskelligt når der divideres Brøker når det handler om noget der skal spises (pizzaer, kager, osv.) Division er noget med penge, flasker osv. (Matematikvejledere fra Næstved Gymnasium) 15

16 I forhold til ligninger Problemer med at forstå: hvad en ligning er; hvad en løsning er; hvad lighedstegn betyder; løsningsstrategi; negative tal, brøker, osv. giver ofte besvær... enten hver for sig eller i diverse kombinationer... Regler som at rykke rundt og flytte over er ofte uheldige, hvis de ikke ledsages af relationel forståelse... 16

17 Ligningsløsning det at tage kvadratrod bliver til et kirurgisk indgreb der kan udføres på udvalgte besværlige led gange læses som plus der divideres (selektivt) igennem med s bemærk, at s/s=s (Schou 17 & Pihl, 2014)

18 Ligningsløsning og talbegreb Problemer med variabel-begreb: Jeg kan ikke sige 3x-1, fordi jeg ikke kan trække 1 fra x. Man kan ikke trække et tal fra et bogstav. Elev om 24/6: Det ved jeg ikke, når det er så store tal. At en betydelig snublesten for løsning af ligninger kan være manglende udvikling af talbegrebet! (Christensen & Mortensen, 2014) 18

19 Det farlige 0 a a 5 5 = a b = 0 = 0 2 b a 0 opfattes ikke som et egentlig tal, på lige fod med andre tal, men derimod som en pladsholder for fravær. (Niss & Jankvist, IMFUFA-seminar, 2014) 19

20 Eksempel 20 (Myrup & Nielsen, 2014)

21 Et bevis-eksempel Det følgende skal forestille et bevis for at ethvert tal er lig med 0. Vi ser på et vilkårligt tal a og sætter b=a. Ved at gange med a på begge sider af lighedstegnet får vi ab=a 2. Så kan vi udregne a (b-a) = ab a 2 = 0 (da vi har ab = a 2 ). Da 0 gange hvad som helst (fx b-a) er 0, er 0 = 0 (b-a), som sættes ind ovenfor, så vi får a (b-a) = 0 = 0 (b-a). Nu kan vi dividere med b-a på begge sider af lighedstegnet. Tilbage står a = 0. Da a var vilkårligt valgt er ethvert tal lig med 0. a) Er det sandt, at ethvert tal er lig med 0? Ja: Nej: Jeg kan ikke svare: b) Er det anførte bevis korrekt? Ja: Nej: Jeg kan ikke svare: c) Hvis du mener, at det anførte bevis er ukorrekt, hvad er så galt med det? 21

22 Et andet bevis-eksempel Nedenstående figur udgør et bevis for at en trekants vinkelsum altid er 180 grader, hvilket ses ved at trekantens vinkelsum er u+v+w, den samme sum som ved den øverste linje, hvor summen klart er lig 180. Har vi bevist at alle trekanter har en vinkelsum på 180 grader? Ja: Nej: Jeg kan ikke svare: Eller bliver vi nødt til at måle på de konkrete trekanter, som vi betragter? Ja: Nej: Jeg kan ikke svare: 22

23 RUC: en mat.vejleders rolle i gymnasiet I gymnasiet bliver en matematikvejleders rolle at finde ud af præcis, hvori en elevs vanskelighed består Og så at sætte ind overfor denne ved design af en målrettet og matematikdidaktisk, forskningsbaseret intervention Der er altså ikke som sådan tale om at vejlede kollegaer! Men om at hjælpe de elever, som forsøger og gerne vil lære matematik, men for hvem det ikke sner og dem er der typisk et par stykker af i hver gymnasieklasse... 23

24 Om brobygning En langt større dialog mellem matematiklærere i folkeskolen og matematiklærere i gymnasieskolen synes påkrævet En central faktor omhandler også de forestillinger (beliefs) om faget matematik som elever udstyres med Med den store procentdel af en ungdomsårgang der fortsætter i gymnasiet, er der brug for en: forventningsafstemming mellem skole og gymnasium; og afstemning af den matematiske kultur i de to institutioner 24

25 En opfordring Det var oplagt om det var matematikvejledere fra de to institutioner der var forgangsmænd og -kvinder i denne dialog! Så hermed en opfordring til at åbne op for et større samarbejde på tværs af institutionerne! I første omgang f.eks. ved at invitere matematikvejledere og/eller matematikundervisere fra jeres aftagergymnasier på besøg i matematiktimerne i folkeskolen Og ved at invitere jer selv på besøg hos dem! 25

26 Et sidste eksempel Hans kan gå fra Roskilde Station til Roskilde Domkirke på 6 minutter. Grethe skal bruge 8 minutter. Hvor lang tid tager det, hvis de følges ad? Begrund dit svar. 26

27 Eksempler på gym.elevers svar 6 min., hvis Hans tager Grethe på ryggen. Dog kan det tage kortere tid, hvis de løber. 6 min. fordi Hans viser Grethe smutvejene. 7 minutter [oftest forekommende fejlsvar!] men kun hvis Hans er god til at motivere Grethe. Mindst 8 min., afhængigt af om Hans bor på vej til Domkirken, eller om Grethe skal gå en omvej, eller om de mødes på halvvejen. "Da jeg antager, at dette er i rask gang ud fra udtrykket "kan" vil jeg formode, at de går distancen på omkring 9-10 minutter. Da de undervejs højst sandsynlig kommunikerer og andet der sløver hastigheden grundet menneskets ringe evne til at multitaske. 14 min. lægger 8+6 sammen. 27

28 Tak for jeres opmærksomhed!

Fokusområde Matematik: Erfaringer fra PISA 2012

Fokusområde Matematik: Erfaringer fra PISA 2012 Fokusområde Matematik: Erfaringer fra PISA 2012 Lena Lindenskov & Uffe Thomas Jankvist Institut for Uddannelse og Pædagogik (DPU), Aarhus Universitet, Campus Emdrup 15 16 januar 2015 Hvad vi bl.a. vil

Læs mere

Om matematikvejlederuddannelsen

Om matematikvejlederuddannelsen Om matematikvejlederuddannelsen på RUC - og gymnasieelevers læringsvanskeligheder i matematik Uffe Thomas Jankvist, DPU, AU Kort om uddannelsen Disposition Elevers vanskeligheder ift. begreber og konventioner

Læs mere

IT i forhold til overgangen mellem grundskolen og gymnasiet. Uffe Thomas Jankvist, DPU, AU

IT i forhold til overgangen mellem grundskolen og gymnasiet. Uffe Thomas Jankvist, DPU, AU IT i forhold til overgangen mellem grundskolen og gymnasiet Uffe Thomas Jankvist, DPU, AU Disposition Kort om overgangsproblemer mellem folkeskole og gymnasium (2 rapporter og lidt fra PISA-2012) 405 1.g

Læs mere

PISA-informationsmøde

PISA-informationsmøde PISA-informationsmøde PISA set med den danske folkeskoles briller Klaus Fink, læringskonsulent UVM Side 1 Fagformål forenklede Fælles Mål Eleverne skal i faget matematik udvikle matematiske kompetencer

Læs mere

Kompetencemål for Matematik, klassetrin

Kompetencemål for Matematik, klassetrin Kompetencemål for Matematik, 1.-6. klassetrin Matematik omhandler samspil mellem matematiske emner, matematiske arbejds- og tænkemåder, matematikdidaktik samt matematiklærerens praksis i folkeskolen og

Læs mere

Kære kommende gefionit,

Kære kommende gefionit, Kære kommende gefionit, Mange elever oplever, at det er svært at starte i gymnasiet. Dette skyldes naturligvis blandt andet, at man skal til at vænne sig til en anden skole, andre lærere, andre klassekammerater,

Læs mere

Boligsøgning / Search for accommodation!

Boligsøgning / Search for accommodation! Boligsøgning / Search for accommodation! For at guide dig frem til den rigtige vejledning, skal du lige svare på et par spørgsmål: To make sure you are using the correct guide for applying you must answer

Læs mere

Kompetencemål for Matematik, 4.-10. klassetrin

Kompetencemål for Matematik, 4.-10. klassetrin Kompetencemål for Matematik, 4.-10. klassetrin Matematik omhandler samspil mellem matematiske emner, matematiske arbejds- og tænkemåder, matematikdidaktisk teori samt matematiklærerens praksis i folkeskolen

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Brug sømbrættet til at lave sjove figurer. Lav fx: Få de andre til at gætte, hvad du har lavet. Use the nail board to make funny shapes.

Brug sømbrættet til at lave sjove figurer. Lav fx: Få de andre til at gætte, hvad du har lavet. Use the nail board to make funny shapes. Brug sømbrættet til at lave sjove figurer. Lav f: Et dannebrogsflag Et hus med tag, vinduer og dør En fugl En bil En blomst Få de andre til at gætte, hvad du har lavet. Use the nail board to make funn

Læs mere

DMUK forår Ama El-Nazzal 10. Maj 2016

DMUK forår Ama El-Nazzal 10. Maj 2016 DMUK forår 2016 { Ama El-Nazzal 10. Maj 2016 Lidt om mig selv: Ama El-Nazzal, Cand.scient 2007 Gymnasielærer i matematik og kemi, 2007- Preventing Dropout 2011-2014 Matematikvejlederuddannelsen på RUC,

Læs mere

Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm

Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm KOM-rapporten Prøvevejledning Fælles Mål http://pub.uvm.dk/2002/kom/hel.pdf http://qa.uvm.dk/uddannelser-og-dagtilbud/folkeskolen/afsluttendeproever/om-afsluttende-proever/proevevejledninger

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer stille spørgsmål, som er karakteristiske for matematik og have blik for hvilke typer af svar, som kan forventes(tankegangskompetence) erkende, formulere, afgrænse og løse matematiske

Læs mere

Fag- og indholdsplan 9. kl.:

Fag- og indholdsplan 9. kl.: Fag- og indholdsplan 9. kl.: Indholdsområder: Tal og algebra: Tal - regneregler og formler Størrelser måling, beregning og sammenligning. Matematiske udtryk Algebra - teoretiske sammenhænge absolut og

Læs mere

Indhold. Indledning 7 Læsevejledning 9

Indhold. Indledning 7 Læsevejledning 9 Indhold Indledning 7 Læsevejledning 9 1 Hvad er åbne opgaver? 13 2 Hvorfor arbejde med åbne opgaver? 17 3 Udfordringer i arbejdet med åbne opgaver 19 4 En ny didaktisk kontrakt 21 5 Et par eksempler 23

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

DK - Quick Text Translation. HEYYER Net Promoter System Magento extension

DK - Quick Text Translation. HEYYER Net Promoter System Magento extension DK - Quick Text Translation HEYYER Net Promoter System Magento extension Version 1.0 15-11-2013 HEYYER / Email Templates Invitation Email Template Invitation Email English Dansk Title Invitation Email

Læs mere

PISA 2015 Danske unge i en international sammenligning. Orienteringsmøder 15.-16. januar 2015

PISA 2015 Danske unge i en international sammenligning. Orienteringsmøder 15.-16. januar 2015 PISA 2015 Danske unge i en international sammenligning Orienteringsmøder 15.-16. januar 2015 Introduktion PISA er en meget vigtig temperaturmåling på læringen i skolen Vi vil gøre os umage for klart at

Læs mere

Kompetencemål for Matematik, 1.-6. klassetrin

Kompetencemål for Matematik, 1.-6. klassetrin Kompetencemål for Matematik, 1.-6. klassetrin Matematik omhandler samspil mellem matematiske emner, matematiske kompetencer, matematikdidaktik samt matematiklærerens praksis i folkeskolen og bidrager herved

Læs mere

Lærervejledning Modellering (3): Funktioner (1):

Lærervejledning Modellering (3): Funktioner (1): Lærervejledning Formål Gennem undersøgelsesbaseret undervisning anvendes lineære sammenhænge, som middel til at eleverne arbejder med repræsentationsskift og aktiverer algebraiske teknikker. Hvilke overgangsproblemer

Læs mere

Skriftlig Eksamen Diskret matematik med anvendelser (DM72)

Skriftlig Eksamen Diskret matematik med anvendelser (DM72) Skriftlig Eksamen Diskret matematik med anvendelser (DM72) Institut for Matematik & Datalogi Syddansk Universitet, Odense Onsdag den 18. januar 2006 Alle sædvanlige hjælpemidler (lærebøger, notater etc.),

Læs mere

Hvor er mine runde hjørner?

Hvor er mine runde hjørner? Hvor er mine runde hjørner? Ofte møder vi fortvivlelse blandt kunder, når de ser deres nye flotte site i deres browser og indser, at det ser anderledes ud, i forhold til det design, de godkendte i starten

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8. 2011 L&R Uddannelse A/S Vognmagergade 11 DK-1148 København K Tlf: 43503030 Email: info@lru.

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8. 2011 L&R Uddannelse A/S Vognmagergade 11 DK-1148 København K Tlf: 43503030 Email: info@lru. 1.1 Introduktion: Euklids algoritme er berømt af mange årsager: Det er en af de første effektive algoritmer man kender i matematikhistorien og den er uløseligt forbundet med problemerne omkring de inkommensurable

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

Undervisningsplan for matematik

Undervisningsplan for matematik Undervisningsplan for matematik Formål for faget Formålet med undervisningen i matematik er, at eleverne udvikler kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

6. KLASSE UNDERVISNINGSPLAN MATEMATIK

6. KLASSE UNDERVISNINGSPLAN MATEMATIK 2016-17 Lærer: Sussi Sønnichsen Forord til matematik i 6. Klasse Vi skal arbejde hen imod følgende kompetencemål: Matematiske kompetencer: Eleven kan handle med overblik i sammensatte situationer med matematik.

Læs mere

Matematisk argumentation

Matematisk argumentation Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.

Læs mere

Financial Literacy among 5-7 years old children

Financial Literacy among 5-7 years old children Financial Literacy among 5-7 years old children -based on a market research survey among the parents in Denmark, Sweden, Norway, Finland, Northern Ireland and Republic of Ireland Page 1 Purpose of the

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Mundtlighed i matematikundervisningen

Mundtlighed i matematikundervisningen Mundtlighed i matematikundervisningen 1 Mundtlighed Annette Lilholt Side 2 Udsagn! Det er nemt at give karakter i færdighedsregning. Mine elever får generelt højere standpunktskarakter i færdighedsregning

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

10.klasse. Naturfaglige fag: Matematik, Fysik/kemi. Matematik. Formål for faget matematik

10.klasse. Naturfaglige fag: Matematik, Fysik/kemi. Matematik. Formål for faget matematik 10.klasse Naturfaglige fag: Matematik, Fysik/kemi Matematik Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

Kompetencemål i undervisningsfaget Matematik yngste klassetrin

Kompetencemål i undervisningsfaget Matematik yngste klassetrin Kompetencemål i undervisningsfaget Matematik yngste klassetrin Kort bestemmelse af faget Faget matematik er i læreruddannelsen karakteriseret ved et samspil mellem matematiske emner, matematiske arbejds-

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Kompetencemål for Matematik, klassetrin

Kompetencemål for Matematik, klassetrin Kompetencemål for Matematik, 4.-10. klassetrin Matematik omhandler samspil mellem matematiske emner, matematiske kompetencer, matematikdidaktisk teori samt matematiklærerens praksis i folkeskolen og bidrager

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Eksempel på den aksiomatisk deduktive metode

Eksempel på den aksiomatisk deduktive metode Eksempel på den aksiomatisk deduktive metode Et rigtig godt eksempel på et aksiomatisk deduktivt system er Euklids Elementer. Euklid var græker og skrev Elemeterne omkring 300 f.kr. Værket består af 13

Læs mere

Senest opdateret: 21. november 2016 SPØRGSMÅL OG SVAR. Vedr. offentligt udbud af rammeaftale

Senest opdateret: 21. november 2016 SPØRGSMÅL OG SVAR. Vedr. offentligt udbud af rammeaftale Senest opdateret: 21. november 2016 SPØRGSMÅL OG SVAR Vedr. offentligt udbud af rammeaftale på levering af en-da/da-en oversættelsesarbejde til Aarhus Universitet Aarhus Universitet Indkøbskontoret Fuglesangs

Læs mere

2 Udfoldning af kompetencebegrebet

2 Udfoldning af kompetencebegrebet Elevplan 2 Udfoldning af kompetencebegrebet Kompetencebegrebet anvendes i dag i mange forskellige sammenhænge og med forskellig betydning. I denne publikation som i bekendtgørelse og vejledning til matematik

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

CAS som grundvilkår. Matematik på hf. Marts 2015 Bodil Bruun, fagkonsulent i matematik stx/hf

CAS som grundvilkår. Matematik på hf. Marts 2015 Bodil Bruun, fagkonsulent i matematik stx/hf CAS som grundvilkår Matematik på hf Marts 2015 Bodil Bruun, fagkonsulent i matematik stx/hf At spørge og svare i, med, om matematik At omgås sprog og redskaber i matematik De 8 kompetencer = 2 + 6 kompetencer

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede

Læs mere

Simple udtryk og ligninger

Simple udtryk og ligninger Simple udtryk og ligninger 009 Karsten Juul Til eleven Brug blyant og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt at slå op i under dit videre arbejde med

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

Nordagerskolen Matematisk læring i det 21. århundrede

Nordagerskolen Matematisk læring i det 21. århundrede Nordagerskolen Matematisk læring i det 21. århundrede 1 Indholdsfortegnelse Overordnet målsætning 3 Elevernes lyst til at lære og bruge matematik 3 Matematikken i førskolealderen 3 Matematikken i indskolingen

Læs mere

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet.

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet. Algebra og ligninger - Facitliste Om kapitlet I dette kapitel om algebra og ligninger skal eleverne lære at regne med variable, få erfaringer med at benytte variable Elevmål for kapitlet Målet er, at eleverne:

Læs mere

At lytte med kroppen! Eksperternes kropsbevidsthed. Miniseminar: talentudvikling indenfor eliteidræt Susanne Ravn sravn@health.sdu.

At lytte med kroppen! Eksperternes kropsbevidsthed. Miniseminar: talentudvikling indenfor eliteidræt Susanne Ravn sravn@health.sdu. At lytte med kroppen! Eksperternes kropsbevidsthed Miniseminar: talentudvikling indenfor eliteidræt Susanne Ravn sravn@health.sdu.dk Formål: at udvikle gængs forståelse forbundet med ekspertise Konstruktivt

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Omskrivningsregler. Frank Nasser. 10. december 2011

Omskrivningsregler. Frank Nasser. 10. december 2011 Omskrivningsregler Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen.  og 052431_EngelskD 08/09/05 13:29 Side 1 De Merkantile Erhvervsuddannelser September 2005 Side 1 af 4 sider Casebaseret eksamen Engelsk Niveau D www.jysk.dk og www.jysk.com Indhold: Opgave 1 Presentation

Læs mere

Projekt 10.11. Det udelukkede tredjes princip

Projekt 10.11. Det udelukkede tredjes princip Projekt 10.11. Det udelukkede tredjes prinip Indhold Indirekte beviser... Eksempel 1. Bevis for, at ikke kan skrives som en brøk, dvs. er inkommensurabel med tallet 1... Eksempel. Påstand: I en retvinklet

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

LGBT person or some of the other letters? We want you!

LGBT person or some of the other letters? We want you! 9. BILAG 1 NR. 1 OPSLAG LGBT person eller nogle af de andre bogstaver? Vi søger dig! Er du homo-, biseksuel, transperson eller en eller flere af de andre bogstaver? Har du lyst til at dele dine erfaringer

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

Årsplan for matematik

Årsplan for matematik Årsplan for matematik 2016-17 Uge Tema/emne Metode/mål 33 Brøker + talforståelse Matematiske arbejdsmåder(metode) 34 Brøker + procent 35 Excel 35 GeoGebra/Geometri 36 Geometri 37 Emneuge 38 Geometri 39

Læs mere

MatematiKan Et matematisk skriveværktøj for hele skoleforløbet

MatematiKan Et matematisk skriveværktøj for hele skoleforløbet MatematiKan Et matematisk skriveværktøj for hele skoleforløbet Tænk, hvis alle elever kunne arbejde med procesorienteret matematik. En arbejdsform, hvor du forsøger at arbejde med matematiske problemstillinger

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Termin hvori undervisningen afsluttes: Juni 2017 HANSENBERG

Læs mere

Bilag. Resume. Side 1 af 12

Bilag. Resume. Side 1 af 12 Bilag Resume I denne opgave, lægges der fokus på unge og ensomhed gennem sociale medier. Vi har i denne opgave valgt at benytte Facebook som det sociale medie vi ligger fokus på, da det er det største

Læs mere

Matematiklærernes dag. 8. November 2010

Matematiklærernes dag. 8. November 2010 Matematiklærernes dag 8. November 2010 Desværre ikke en bi-implikaktion - men ikke ind i himlen.. De forsvundne tegn Eight Franklins Square Bare for at gøre det.. Eight Franklins Square Diameteren i trekanten

Læs mere

4. Elementær brøkregning - En introduktion med opgaver (og facitliste) - En brøk er to tal (eller bogstavudtryk), som adskilles af en brøkstreg.

4. Elementær brøkregning - En introduktion med opgaver (og facitliste) - En brøk er to tal (eller bogstavudtryk), som adskilles af en brøkstreg. . Hvad er brøker?. Elementær brøkregning - En introduktion med opgaver (og facitlist - En brøk er to tal (eller bogstavudtryk), som adskilles af en brøkstreg. Tallet øverst i brøken kaldes tælleren. Tallet

Læs mere

Sport for the elderly

Sport for the elderly Sport for the elderly - Teenagers of the future Play the Game 2013 Aarhus, 29 October 2013 Ditte Toft Danish Institute for Sports Studies +45 3266 1037 ditte.toft@idan.dk A growing group in the population

Læs mere

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal. 4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter

Læs mere

Nogle didaktiske overvejelser vedrørende indledende undervisning i funktionsbegrebet i gymnasiet og nærværende hæftes nytte i så henseende.

Nogle didaktiske overvejelser vedrørende indledende undervisning i funktionsbegrebet i gymnasiet og nærværende hæftes nytte i så henseende. Nogle didaktiske overvejelser vedrørende indledende undervisning i funktionsbegrebet i gymnasiet og nærværende hæftes nytte i så henseende. af Dinna Balling og Jørn Schmidt. Hæftet Lige og ulige sætter

Læs mere

Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM528) Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM58) Institut for Matematik og Datalogi Syddansk Universitet, Odense Torsdag den 1. januar 01 kl. 9 13 Alle sædvanlige hjælpemidler

Læs mere

Undervisningsplan for faget matematik. Ørestad Friskole

Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2

Læs mere

Hvad skal vi leve af i fremtiden?

Hvad skal vi leve af i fremtiden? Konkurrenceevnedebat: Hvad skal vi leve af i fremtiden? Mandag den 3. november 2014 www.regionmidtjylland.dk 1 Agenda Globalisering og dens udfordringer Væsentlige spørgsmål Eksempler 2 www.regionmidtjylland.dk

Læs mere

Hvad får jeg for det?

Hvad får jeg for det? Hvor mange mennesker mon der kommer i dag? Hvordan er de placeret? Er der stole nok eller alt for mange stole? Hvordan finder jeg derud? Hvad tid skal jeg være der? Hvor lang tid er jeg om at cykle derud?

Læs mere

Terese B. Thomsen 1.semester Formidling, projektarbejde og webdesign ITU DMD d. 02/11-2012

Terese B. Thomsen 1.semester Formidling, projektarbejde og webdesign ITU DMD d. 02/11-2012 Server side Programming Wedesign Forelæsning #8 Recap PHP 1. Development Concept Design Coding Testing 2. Social Media Sharing, Images, Videos, Location etc Integrates with your websites 3. Widgets extend

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Omskrivningsgymnastik

Omskrivningsgymnastik Omskrivningsgymnastik Frank Villa 29. december 2013 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Mange definitioner 07-05-2015 PISA. Om talblindhed. WHO har defineret

Mange definitioner 07-05-2015 PISA. Om talblindhed. WHO har defineret 2 Om talblindhed PISA År < niveau 1 Niveau 1 Niveau 2 Niveau 3 Niveau 4 Niveau 5 Niveau 6 2012 4 13 24 29 20 8 2 2009 5 12 23 27 21 9 3 2006 4 10 21 29 22 11 3 2003 5 11 21 26 22 12 4 30 25 20 15 10 5

Læs mere

Nordagerskolen Matematisk læring i det 21. århundrede

Nordagerskolen Matematisk læring i det 21. århundrede Nordagerskolen Matematisk læring i det 21. århundrede 1 2 Indholdsfortegnelse Overordnet målsætning 4 Fokusområder 5 Elevernes lyst til at lære og bruge matematik 5 Matematikken i førskolealderen 6 Matematikken

Læs mere

Danish Language Course for Foreign University Students Copenhagen, 13 July 2 August 2016 Advanced, medium and beginner s level.

Danish Language Course for Foreign University Students Copenhagen, 13 July 2 August 2016 Advanced, medium and beginner s level. Danish Language Course for Foreign University Students Copenhagen, 13 July 2 August 2016 Advanced, medium and beginner s level Application form Must be completed on the computer in Danish or English All

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

Forenklede Fælles Mål. Matematik i marts 27. marts 2014

Forenklede Fælles Mål. Matematik i marts 27. marts 2014 Forenklede Fælles Mål Matematik i marts 27. marts 2014 Læringskonsulenter klar med bistand Side 2 Forenklede Fælles Mål hvad ligger der i de nye mål? Hvorfor nye Fælles Mål? Hvorfor? Målene bruges generelt

Læs mere

Løsning af simple Ligninger

Løsning af simple Ligninger Løsning af simple Ligninger Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder

3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder 3 Algebra Faglige mål Kapitlet Algebra tager udgangspunkt i følgende faglige mål: Variable og brøker: kende enkle algebraiske udtryk med brøker og kunne behandle disse ved at finde fællesnævner. Den distributive

Læs mere

Matematik opgave Projekt afkodning Zehra, Pernille og Remuss

Matematik opgave Projekt afkodning Zehra, Pernille og Remuss Matematik opgave Projekt afkodning Zehra, Pernille og Remuss Opgave A Sæt de overstående symboler ind i en matematisk sammenhæng der gør dem forståelige. Det kan være som en sætning eller med tal og bogstaver

Læs mere

Matematik og skolereformen. Busses Skole 27. Januar 2016

Matematik og skolereformen. Busses Skole 27. Januar 2016 Matematik og skolereformen Busses Skole 27. Januar 2016 De mange spørgsmål Matematiske kompetencer, hvordan kommer de til at være styrende for vores undervisning? Algoritmeudvikling, hvad ved vi? Hvad

Læs mere

Klasse: 3. årgang Fag: Matematik År: 2016/17. Læringsmål Hvad er de overordnet læringsmål for klassen?

Klasse: 3. årgang Fag: Matematik År: 2016/17. Læringsmål Hvad er de overordnet læringsmål for klassen? Årsplan Klasse: 3. årgang Fag: Matematik År: 2016/17 Periode Fælles Mål Hvilke kompetencemål og områder sigtes der mod? Læringsmål Hvad er de overordnet læringsmål for klassen? Tiltag Hvad skal eleverne

Læs mere

Trolling Master Bornholm 2015

Trolling Master Bornholm 2015 Trolling Master Bornholm 2015 (English version further down) Panorama billede fra starten den første dag i 2014 Michael Koldtoft fra Trolling Centrum har brugt lidt tid på at arbejde med billederne fra

Læs mere

Årsplan 5. Årgang

Årsplan 5. Årgang Årsplan 5. Årgang 2016-2017 Materialer til 5.årgang: - Matematrix grundbog 5.kl - Matematrix arbejdsbog 5.kl - Skrivehæfte - Kopiark - Færdighedsregning 5.kl - Computer Vi skal i løbet af året arbejde

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

Andreas Nielsen Kalbyrisskolen 2009

Andreas Nielsen Kalbyrisskolen 2009 Andreas Nielsen Kalbyrisskolen 2009 Matematiske kompetencer. Matematiske emner (tal og algebra, geometri, statistik og sandsynlighed). Matematik i anvendelse. Matematiske arbejdsmåder. Tankegangskompetence

Læs mere

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig

Læs mere

IT i matematikundervisningen - mirakel eller katastrofe?

IT i matematikundervisningen - mirakel eller katastrofe? IT i matematikundervisningen - mirakel eller katastrofe? Mogens Niss IMFUFA/NSM Roskilde Universitet Indledning Diskussionen om IT i matematikundervisningen er meget kompleks og vanskelig. Resultatet er

Læs mere

Measuring the Impact of Bicycle Marketing Messages. Thomas Krag Mobility Advice Trafikdage i Aalborg, 27.08.2013

Measuring the Impact of Bicycle Marketing Messages. Thomas Krag Mobility Advice Trafikdage i Aalborg, 27.08.2013 Measuring the Impact of Bicycle Marketing Messages Thomas Krag Mobility Advice Trafikdage i Aalborg, 27.08.2013 The challenge Compare The pilot pictures The choice The survey technique Only one picture

Læs mere

K R I S T Í N M E U L E N G R A CHT L E D E T H A N N E V E J L G A A R D N I E L S E N G R U P P E 9 DEN REFLEKTERENDE PRAKTIKER BILAGSRAPPORT

K R I S T Í N M E U L E N G R A CHT L E D E T H A N N E V E J L G A A R D N I E L S E N G R U P P E 9 DEN REFLEKTERENDE PRAKTIKER BILAGSRAPPORT K R I S T Í N M E U L E N G R A CHT L E D E T H A N N E V E J L G A A R D N I E L S E N G R U P P E 9 MATEMATIKVEJLEDER DEN REFLEKTERENDE PRAKTIKER BILAGSRAPPORT V E J L E D E R E : S I F F S K J O L D

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Trolling Master Bornholm 2016 Nyhedsbrev nr. 6

Trolling Master Bornholm 2016 Nyhedsbrev nr. 6 Trolling Master Bornholm 2016 Nyhedsbrev nr. 6 English version further down Johnny Nielsen med 8,6 kg laks Laksen blev fanget seks sømil ud for Tejn. Det var faktisk dobbelthug, så et kig ned i køletasken

Læs mere