Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Størrelse: px
Starte visningen fra side:

Download "Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler."

Transkript

1 Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med kapitlet er det hensigten, at eleverne får overblik over mængden af reelle tal og arbejder med eksempler på tallenes anvendelse i hverdagen. Gennem arbejdet med opgaverne i det første mundtlige opslag på side 2 3 skal eleverne erfare, at vi har brug for flere tal end de naturlige tal og må udvide til de hele tal og dernæst til de rationale tal. Vi har brug for endnu flere tal, og de irrationale tal introduceres. Eleverne har tidligere arbejdet med π som er et eksempel på et irrationalt tal. Hele kapitlet er struktureret ud fra dette første opslag, dvs. der fortrinsvist på side 4 8 arbejdes med de naturlige og hele tal. side 9 11 arbejdes med de rationale tal, herunder tierpotenser. side arbejdes med de reelle tal, herunder irrationale tal. I forbindelse med de hele tal sættes der fokus på regning med negative tal. Det er vanskeligt at forklare, hvorfor minus gange minus giver plus og nærmest umuligt at finde et eksempel fra elevernes hverdag, som kan anskueliggøre, hvorfor resultatet bliver positivt. Vi har bl.a. derfor valgt at lade eleverne arbejde med en faglig argumentation forklaringen skal altså findes inde i matematikken. Her har eleverne mulighed for at arbejde med deres ræsonnementskompetence, mens de arbejder med forskellige argumenter for resultaterne af regning med negative tal. I forbindelse med de rationale tal skal eleverne arbejde med meget små og meget store tal, og videnskabelig skrivemåde introduceres som en bekvem måde at skrive på, så tallene bliver lettere at læse og skrive. I den forbindelse skal eleverne arbejde med, hvordan der kan regnes med tierpotenser både på lommeregneren og i regneark. På den måde styrkes elevernes hjælpemiddelkompetence. Bemærk, at når eleverne på side 11 skal skrive tierpotenser i regneark, fungerer det som en formel. De skal derfor starte med at skrive =. Lighedstegnet ses ikke på sidens skærmdump. Udvidelsen fra rationale til reelle tal tager udgangspunkt i et kvadrat med arealet 2. Vi har brug for et tal for sidelængden, og kvadratrødder introduceres. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. I kapitlet arbejdes med følgende centrale matematiske begreber: titalssystemet som positionssystem naturlige tal, hele tal, rationale tal, irrationale tal og reelle tal de fire regningsarter, positive og negative tal overslag og afrunding produkt og kvotient tierpotens, eksponent, rod, videnskabelig skrivemåde kvadratrod TAL OG REGNING 1

2 Huskeliste: Regneark (til side 11) Sømbræt og elastikker (til side 13) FRA FAGHÆFTET Kompetencer udtænke, gennemføre, forstå og vurdere mundtlige og skriftlige matematiske ræsonnementer og arbejde med enkle beviser (ræsonnementskompetence) forstå og benytte variable og symboler, bl.a. når regler og sammenhænge skal vises, samt oversætte mellem dagligsprog og symbolsprog (symbolbehandlingskompetence) kende forskellige hjælpemidler, herunder it, og deres muligheder og begrænsninger, samt anvende dem hensigtsmæssigt, bl.a. til eksperimenterende udforskning af matematiske sammenhænge, til beregninger og til præsentationer (hjælpemiddelkompetence) Matematiske emner I arbejdet med tal og algebra at kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge kende regningsarternes hierarki samt begrunde og anvende regneregler Matematik i anvendelse arbejde med problemstillinger vedrørende dagligdagen, bl.a. i forbindelse med privatøkonomi, bolig og transport Matematiske arbejdsmåder undersøge, systematisere og ræsonnere med henblik på at generalisere arbejde individuelt og sammen med andre om problemløsning i mundtligt og skriftligt arbejde Indhold og mål I dette kapitel skal I arbejde med tal og forskellige regneregler. Målet er, at I får indblik i ligheder og forskelle mellem naturlige tal, hele tal, rationale tal og irrationale tal. får forståelse for og erfaringer med, hvordan man regner med negative tal. lærer at skrive meget små og meget store tal som tierpotenser. lærer om kvadratrødder. TAL OG REGNING 2

3 Facit Side 2 Side 3 Side 4 1. Eksempler: et antal varer, der skal handles, antal indbudte gæster, alder, skostørrelser 2. a. Når naturlige tal adderes bliver summen altid positiv. b. Ved subtraktion bliver differensen negativ, hvis subtrahenden er større end minuenden, og 0 hvis subtrahend og minuend er lige store. 3. Eksempler: temperatur, gæld. 4. a. Ved multiplikation af hele tal, bliver produktet altid et helt tal. b. Ved division af hele tal bliver kvotienten kun et helt tal, hvis dividenden går op i divisoren. 5. Eksempler: priser, rumfang af sodavandsflasker, varedeklarationer. 6. 0,75 kan skrives som. 7. Figuren viser, hvordan mængderne kan placeres i forhold til hinanden. Man kan se, at de naturlige tal er en del af de hele tal, og at de hele tal er en del af de rationale tal. 1. De naturlige tal og de negative tal bruges til at angive de forventede temperaturer. De negative tal anvendes i forbindelse med frostgrader. De naturlige tal bruges også til at beskrive vindstyrken. 2. Man kan finde forskellen mellem to tal ved at trække dem fra hinanden. (-1) er dagtemperaturen, og (-5) er nattemperaturen. 3. a b. 0 (-5). 4. a. 14. b a. Torsdag. b. Lørdag. 6. Side 5 1. a b c. 51,74 d. 7,2145 e. 218 f. 2,8 g. 1,61 h. 41 i. 47 j a b. 10,26 c. 5,44 d e. 361,5 f. 124 g. 0,45 h. 3,5 i. 14,5 j. 0, a. 19,8 b. 8,9 c. 9,0 d. 29,0 4. a. 20 b. 20 c. 100 d. 0 TAL OG REGNING 3

4 5. a. 7,28 b. 14,19 c. 3,015 d. De er lige store. 6. a. Sandt b. Sandt c. Falsk d. Sandt e. Falsk f. Sandt 7. a. 57. Tre led. b To led. c. 0. Tre led. d. 15. Tre led. e Et led. f. 85. Et led. 8. a. ca. 38 b. ca c. ca. 5 d. ca. 11 e. ca. 25 f. ca. 100 g. ca. 183 h. ca a. 3 b. 1 c. 2 d. 1 Side 6 1. Multiplikation kan forstås som gentagen addition. 4 (-2) betyder at have (-2) fire gange. 2. To personer skylder begge 25 kroner. 3. x (-2) Resu ltat 4 (-2) -8 3 (-2) -6 2 (-2) -4 1 (-2) -2 0 (-2) 0 (-1) (-2) 2 (-2) (-2) 4 (-3) (-2) 6 (-4) (-2) 8 Hver gang x vokser med 1, vokser resultatet med 2 Side 7 4. Linje 1: 0 omskrives til et additionsstykke med resultatet 0. Linje 2: Når man ganger med 0, bliver produktet altid 0. Derfor kan vi gange fx -4 med (2 + (-2)) og stadig få 0. Linje 3: (-4) ganges ind i hvert led i parentesen. Linje 4: (-4) 2 reduceres til Da regneudtrykket på højre side af lighedstegnet fortsat skal give 0, må (-4) (-2) = a. Produktet af to tal bliver positivt, når begge tal har samme fortegn. b. Produktet af to tal bliver negativt, når de to tal har forskellige fortegn. 7. Vi kan bruge, at multiplikation er modsat regningsart af division, og at faktorernes orden er ligegyldig. 8. Tre venner har tilsammen en gæld på 300 kr. Hvor meget skal de betale hver, hvis de betaler lige meget? 9. Når man 3 gange springer (-2) på tallinjen, kommer man til Når man dividerer to tal med hinanden, bliver kvotienten positiv, hvis de to tal har samme fortegn Når man dividerer to tal med hinanden, der har forskelligt fortegn, bliver kvotienten negativ. 11. a. -4 TAL OG REGNING 4

5 Side 8 b. -4 c. 4 d. 9 e. -7,5 f Det første regneudtryk giver -50. Resultatet er negativt, da der indgår ét negativt tal. Det andet regneudtryk giver 50. Resultatet er positivt, da der kun er positive tal. Det tredje regneudtryk giver 50. Resultatet er positivt, da der er to negative tal. 13. a. -27 b. -28 c. 70 d e. 42 f a. -30 b. -12 c. 30 d. 48 e. -5 f. 24 g. -45 h a. Sandt b. Sandt c. Falsk d. Falsk e. Falsk f. Sandt 3. a. 7 b. -7 c. 7 d. -11 e f. 57 g. -8 h. 310 Side 9 4. a. Alle positive tal og 0. b. Alle tal bortset fra 0. c. Alle positive tal. d. Alle positive tal. e. Alle negative tal. f. Alle negative tal. g. Alle positive tal. 5. a. 0 b. 22 c. -3 d. -70 e. -6 f. 1,5 6. a. Fx 2 18 og 4 9. b. Fx -3 8 og 4 (-6). c. Fx 5 2,5 og 1, d. Fx og 4 (-5). 7. a. Fx 10 : 2 og 100 : 20. b. Fx 4 : (-2) og (-30) : 15. c. Fx (-20) : 2 og 10 : (-1). d. Fx -3 : 6 og 14 : (-28). e. Fx 4 : 16 og 10 : a. 8. b. 6 c. 14 d. -1 e. 9 f Fx ved indkøb. 2. Ca. 135 kr ,65 kr ,50 kr. 5. a. 133 kj. b. 57 kj. c. 19 kj d. 3,8 kj e. 15,2 kj TAL OG REGNING 5

6 6. Fedtenergiprocenten i sødmælk: 49,3 % letmælk: 30 % minimælk: 11,9 % skummetmælk: 2,7 % kakaoskummetmælk: 6,3 % Side Side a. Ca. 9 mm eller 9,125 mm b. ca.0,0125 mm. c. ca.0,00021 mm. 4. a. Mellem 0,0018 cm og 0,018 cm. b. Mellem 0,018 mm og 0,18 mm. 5. Opgave 1 Opgave 2 Opgave 3: a. 9, b. 1, c. 2, Opgave 4: a. Mellem 1, cm og 1, b. Mellem 1, mm og 1, Når 1,99 ganges med 1030, svarer det til at flytte kommaet 30 gange til højre. 2. a. 5, kg b. 7, kg c. 1, kg d. 6, kg 3. At gange med svarer til at dividere med Når 2,991 divideres med 10 26, svarer det til at flytte kommaet 26 gange til venstre. 4. a. 1, g b. 4, g Solens masse Jordens masse Månens masse Jupiters masse Mars' masse Massen af et vandmolekyle Massen af et brintatom Massen af en bakterie Side 12 1,99E+30 5,98E+24 7,35E+22 1,8986E+27 6,4185E+23 2,991E-26 1,67E-24 4,5E I kvadratet til venstre kan man gange længden af siderne med hinanden eller tælle antallet af små kvadrater i kvadratet. I kvadratet til højre kan man tælle antallet af små kvadrater Sidelængden er skrå på sømbrættet. Længden kan ikke angives med et helt tal a. Ca. 1,414 b. 6 c. 10 d. 3,5 e. 3 f. Ca. 2,828 g. Ca. 3,873 Side TAL OG REGNING 6

7 8. a. Error b. Et kvadrat kan ikke have en side, hvor længden er negativ. 9. a. Fx. b. Fx. 10. a (2 + 6) = = = = 10 b. 4 10^2 5 = = = 350 Side = 1, = 2, = 3, = 4, = 5, = 6, = 7, = 8, = 9, = Figur a består af to kvadrater. Hvert kvadrat har arealet 3 cm², derfor er sidelængden i hvert kvadrat cm. 4. Figur b: 3. Figur c: Figur a: 2 = 2 3 = 6 Figur b: 3 = 3 5 = 15 Figur c: 2 = 2 2 = 4 2 = 8. b c d. 0,09 4. a b. 1, = c d a. x = 2 b. x = 2 c. x = 2 d. x = 3 e. x = 1 6. a. 6 cm b. 10 cm c. 9 cm d. 1 cm 7. a = i, b = f, c = j, d = g, e = h 8. a. Sandt b. Falsk c. Sandt d. Falsk 9. a. 13 b. 28 c. 13 d. 2489,5 e f Side a b c d e a. 0,001 b. 0,05 c. 0,0003 d. 0,1 3. a TAL OG REGNING 7

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget Fælles Mål II MATEMATIK Formål for faget Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Årsplan for matematik i 3. klasse

Årsplan for matematik i 3. klasse www.aalborg-friskole.dk Sohngårdsholmsvej 47, 9000 Aalborg, Tlf.98 14 70 33, E-mail: kontor@aalborg-friskole.dk Årsplan for matematik i 3. klasse Mål Eleverne bliver i stand til at forstå og anvende matematik

Læs mere

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen I dette kapitel beskrives det, hvilke Fælles Mål man kan nå inden for udvalgte fag, når man i skolen laver aktiviteter med Space Challenge.

Læs mere

Års- og aktivitetsplan i matematik hold 4 2014/2015

Års- og aktivitetsplan i matematik hold 4 2014/2015 Års- og aktivitetsplan i matematik hold 4 2014/2015 Der arbejdes hen mod slutmålene i matematik efter 10. klassetrin. www.uvm.dk => Fælles Mål 2009 => Faghæfter alfabetisk => Matematik => Slutmål for faget

Læs mere

It i Fælles mål 2009- Matematik

It i Fælles mål 2009- Matematik It i Fælles mål 2009- Matematik Markeringer af hvor it er nævnt. Markeringen er ikke udtømmende og endelig. Flemming Holt, PITT Aalborg Kommune Fælles Mål 2009 - Matematik Faghæfte 12 Formål for faget

Læs mere

Fag- og indholdsplan 9. kl.:

Fag- og indholdsplan 9. kl.: Fag- og indholdsplan 9. kl.: Indholdsområder: Tal og algebra: Tal - regneregler og formler Størrelser måling, beregning og sammenligning. Matematiske udtryk Algebra - teoretiske sammenhænge absolut og

Læs mere

Årsplan for matematik i 1.-2. kl.

Årsplan for matematik i 1.-2. kl. Årsplan for matematik i 1.-2. kl. Lærer Martin Jensen Mål for undervisningen Målet for undervisningen er, at eleverne tilegner sig matematiske kompetencer og arbejdsmetoder jævnfør Fælles Mål. Eleverne

Læs mere

Årsplan matematik 5.klasse - skoleår 12/13- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 5.klasse - skoleår 12/13- Ida Skov Andersen Med ret til ændringer og justeringer BASIS: Klassen består af 22 elever og der er afsat 4 ugentlige timer + 1 time klassens tid, hvor der skal være tid til det sociale i klassen. Grundbog: Vi vil arbejde ud fra Matematrix 5, arbejds- og grundbog,

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Matematik UVMs Trinmål synoptisk fremstillet

Matematik UVMs Trinmål synoptisk fremstillet Matematik UVMs Trinmål synoptisk fremstillet Matematiske kompetencer Trinmål efter 3. klassetrin Trinmål efter 6. klassetrin Trinmål efter 9. klassetrin indgå i dialog om spørgsmål og svar, som er karakteristiske

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Årsplan matematik 6.klasse - skoleår 13/14- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 6.klasse - skoleår 13/14- Ida Skov Andersen Med ret til ændringer og justeringer BASIS: Klassen består af 22 elever og der er afsat 5 ugentlige timer til faget. Grundbog: Vi vil arbejde ud fra Matematrix 6, arbejds- og grundbog, tilhørende kopisider + CD-rom, REMA og andre relevante

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 Indholdsfortegnelse Side De fire regningsarter... 3 Flerleddede størrelser... 5 Talbehandling... 8 Forholdsregning... 10 Procentregning...

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

Matematik. Jonas Albrekt Karmann (JK) Mål for undervisningen:

Matematik. Jonas Albrekt Karmann (JK) Mål for undervisningen: Matematik Årgang: Lærer: 9. årgang Jonas Albrekt Karmann (JK) Mål for : Formålet med er, at udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

7. KLASSE 6. KLASSE 5. KLASSE 4. KLASSE 3. KLASSE 2. KLASSE 1. KLASSE BH. KLASSE

7. KLASSE 6. KLASSE 5. KLASSE 4. KLASSE 3. KLASSE 2. KLASSE 1. KLASSE BH. KLASSE 7. KLASSE 6. KLASSE 5. KLASSE 4. KLASSE 3. KLASSE 2. KLASSE 1. KLASSE BH. KLASSE FORORD At leve i et demokratisk samfund er ensbetydende med, at alle har ret til uddannelse, uanset deres forskellige kultur,

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Komplekse tal. Jan Scholtyßek 29.04.2009

Komplekse tal. Jan Scholtyßek 29.04.2009 Komplekse tal Jan Scholtyßek 29.04.2009 1 Grundlag Underlige begreber er det, der opstår i matematikken. Blandt andet komplekse tal. Hvad for fanden er det? Lyder...komplekst. Men bare roligt. Så komplekst

Læs mere

Årsplan for matematik 4. klasse 14/15

Årsplan for matematik 4. klasse 14/15 Årsplan for matematik 4. klasse 14/15 Status: 4.b er en klasse der består af ca. 20 elever. Der er en god fordeling mellem piger og drenge i klasser. Klassen har 5 matematiktimer om ugen. Vi fortsætter

Læs mere

Mundtlighed i matematikundervisningen

Mundtlighed i matematikundervisningen Mundtlighed i matematikundervisningen 1 Mundtlighed Annette Lilholt Side 2 Udsagn! Det er nemt at give karakter i færdighedsregning. Mine elever får generelt højere standpunktskarakter i færdighedsregning

Læs mere

ÅRSPLAN MATEMATIK 5.KLASSE

ÅRSPLAN MATEMATIK 5.KLASSE ÅRSPLAN MATEMATIK 5.KLASSE Matematiklærerens tænkebobler illustrerer, at matematikundervisning ikke udelukkende handler om opgaver, men om en (lige!) blanding af: Kompetencer Indhold Arbejdsmåder CENTRALE

Læs mere

Fagplan for matematik på Bakkelandets Friskole

Fagplan for matematik på Bakkelandets Friskole Fagplan for matematik på Bakkelandets Friskole Formål for faget matematik: Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører

Læs mere

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen)

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Bog: Vi bruger grundbogssystemet Format, som er et fleksibelt matematiksystem, der tager udgangspunkt i læringsstile.

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Årsplan. 1. klasse. Bageriet marked. Tal i hverdagen Plus på spil Byens former En tur i center Indianere De gamle

Årsplan. 1. klasse. Bageriet marked. Tal i hverdagen Plus på spil Byens former En tur i center Indianere De gamle Årsplan 1. klasse Tal i hverdagen Plus på spil Byens former En tur i center Indianere De gamle Bageriet Loppearabere marked ca. 4-5 uger ca. 4-5 uger ca. 4-5 uger ca. 4-5 uger ca. 4-5 uger ca. 4-5 uger

Læs mere

Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk

Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk Øresunds Internationale Skole læseplan for matematik. Formål for faget matematik Formålet med

Læs mere

Forenklede Fælles Mål. Matematik i marts 27. marts 2014

Forenklede Fælles Mål. Matematik i marts 27. marts 2014 Forenklede Fælles Mål Matematik i marts 27. marts 2014 Læringskonsulenter klar med bistand Side 2 Forenklede Fælles Mål hvad ligger der i de nye mål? Hvorfor nye Fælles Mål? Hvorfor? Målene bruges generelt

Læs mere

Læseplan for matematik på Aalborg Friskole

Læseplan for matematik på Aalborg Friskole Læseplan for matematik på Aalborg Friskole LÆSEPLAN FOR MATEMATIK PÅ AALBORG FRISKOLE 1 1. FORLØB 1.-3. KLASSETRIN 2 ARBEJDET MED TAL OG ALGEBRA 2 ARBEJDET MED GEOMETRI 2 MATEMATIK I ANVENDELSE 3 KOMMUNIKATION

Læs mere

Indhold. Bind 1. 1 Eksperimentel geometri 3. 2 Areal 33

Indhold. Bind 1. 1 Eksperimentel geometri 3. 2 Areal 33 Indhold Bind 1 del I: Eksperimenterende geometri og måling 1 Eksperimentel geometri 3 Hvorfor eksperimenterende undersøgelse? 4 Eksperimentel undersøgelse: På opdagelse med sømbrættet 6 Geometriske konstruktioner

Læs mere

En forståelsesramme for de reelle tal med kompositioner.

En forståelsesramme for de reelle tal med kompositioner. 1 En forståelsesramme for de reelle tal med kompositioner. af Ulrich Christiansen, sem.lekt. KDAS. Den traditionelle tallinjemodel, hvor tallene svarer til punkter langs tallinjen, dækker fornuftigt (R,

Læs mere

Grundlæggende matematik

Grundlæggende matematik Grundlæggende matematik Noterne vil indeholde gennemgang af grundlæggende regneregler og regneoperationer afledt af disse. Dette er (vil mange påstå) det vigtigste at mestre for at kunne begå sig i (samt

Læs mere

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik:

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik: TW 2011/12 Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag Formål for faget matematik: Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik potenstal og rodtal trin 2 preben bernitt brikkerne til regning & matematik potenstal og rodtal, trin 2 ISBN: 978-87-92488-06-0 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Matematik. Læseplan og formål:

Matematik. Læseplan og formål: Matematik Læseplan og formål: Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold.

Læs mere

5. KLASSE UNDERVISNINGSPLAN MATEMATIK

5. KLASSE UNDERVISNINGSPLAN MATEMATIK Lærer: SS Forord til faget i klassen Vi vil i matematik arbejde differentieret i hovedemnerne geometri, statistik og sandsynlighed samt tal og algebra. Vi vil i 5. kl. dagligt arbejde med matematisk kommunikation

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Fagplan for faget matematik

Fagplan for faget matematik Fagplan for faget matematik Der undervises i matematik på alle klassetrin (0. - 7. klasse). De centrale kundskabs- og færdighedsområder er: I matematik skal de grundlæggende kundskaber og færdigheder i

Læs mere

Formål for faget Matematik

Formål for faget Matematik Formål for faget Matematik Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold.

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

T ALKUNNEN. Tilnærmede tal og computertal

T ALKUNNEN. Tilnærmede tal og computertal T ALKUNNEN 6 Allan C Allan C.. Malmberg Tilnærmede tal og computertal INFA Matematik - 2000 1 INFA - IT i skolens matematik Projektledelse: Allan C. Malmberg Inge B. Larsen INFA-Klubben: Leif Glud Holm

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter Fag: Matematik Hold: 26 Lærer: Harriet Tipsmark Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter 33-35 Målet for undervisningen er, at eleverne tilegner sig gode matematiske færdigheder og at

Læs mere

formler og ligninger basis brikkerne til regning & matematik preben bernitt

formler og ligninger basis brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger basis preben bernitt brikkerne til regning & matematik formler og ligninger, basis ISBN: 978-87-92488-07-7 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Parvis. do. do. Aflevering af individuelle lektier s. 12-13

Parvis. do. do. Aflevering af individuelle lektier s. 12-13 Fagårsplan 2010/2011 Matematik 6.A. B side 1 af 8 Brian Sørensen (BS) Kongeskær SkoleNord 32 33 Cirklen 34 35 eleverne tager manglende prøver eleverne og læreren sætter mål for årets arbejde i matematik

Læs mere

FRISKOLEN I STARREKLINTE. Starreklinte, august 2011 UNDERVISNING. faget MATEMATIK

FRISKOLEN I STARREKLINTE. Starreklinte, august 2011 UNDERVISNING. faget MATEMATIK FRISKOLEN I STARREKLINTE Starreklinte, august 2011 UNDERVISNING i faget MATEMATIK Indholdsfortegnelse: Matematik 1. Generelt for faget matematik..... 3 2. Formål for faget matematik... 4 3. Slutmål.....

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 2 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 2 ISBN: 978-87-92488-09-1 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

formler og ligninger trin 1 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 1 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 1 ISBN: 978-87-92488-08-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Introduktion til Calc Open Office med øvelser

Introduktion til Calc Open Office med øvelser Side 1 af 8 Introduktion til Calc Open Office med øvelser Introduktion til Calc Open Office... 2 Indtastning i celler... 2 Formler... 3 Decimaler... 4 Skrifttype... 5 Skrifteffekter... 6 Justering... 6

Læs mere

UVMs Undervisningsvejledning for faget Matematik

UVMs Undervisningsvejledning for faget Matematik UVMs Undervisningsvejledning for faget Matematik Indledning Det er opgaven i faghæftet at beskrive, hvad der er målet med undervisningen i matematik, hvad den bør omfatte, og hvad eleverne skal lære. Og

Læs mere

ALMINDELIGT ANVENDTE FUNKTIONER

ALMINDELIGT ANVENDTE FUNKTIONER ALMINDELIGT ANVENDTE FUNKTIONER I dette kapitel gennemgås de almindelige regnefunktioner, samt en række af de mest nødvendige redigerings- og formateringsfunktioner. De øvrige redigerings- og formateringsfunktioner

Læs mere

Det vigtigste ved læring af subtraktion er, at eleverne

Det vigtigste ved læring af subtraktion er, at eleverne Introduktion Subtraktion er sammen med multiplikation de to sværeste regningsarter. Begge er begrebsmæssigt sværere end addition og division og begge er beregningsmæssigt sværere end addition. Subtraktion

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

forstå, arbejde med og analysere problemstillinger af matematisk art i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold

forstå, arbejde med og analysere problemstillinger af matematisk art i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold Årsplan for undervisningen i matematik på 4. klassetrin 2006/2007 Retningslinjer for undervisningen i matematik: Da Billesborgskolen ikke har egne læseplaner for faget matematik, udgør folkeskolens formål

Læs mere

Repræsentation af tal

Repræsentation af tal Repræsentation af tal DM526 Rolf Fagerberg, 2009 Bitmønstre 01101011 0001100101011011... Bitmønstre skal fortolkes for at have en betydning: Tal (heltal, kommatal) Bogstaver Computerinstruktion (program)

Læs mere

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring Hovedemne 1: Talsystemet og at gange kan anvende flercifrede naturlige tal til at beskrive antal og rækkefølge udvikle metoder til multiplikation og division med naturlige tal udføre beregninger med de

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter: Plus, minus, gange og division... 2 10-tals-systemet... 4 Afrunding af tal... 5 Regning med papir og blyant... 6 Store tal... 8 Negative tal...

Læs mere

brikkerne til regning & matematik tal og algebra preben bernitt

brikkerne til regning & matematik tal og algebra preben bernitt brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

Matematik for C niveau

Matematik for C niveau Matematik for C niveau M. Schmidt 2012 1 Indholdsfortegnelse 1. Tal og bogstavregning... 5 De elementære regnings arter og deres rækkefølge... 5 Brøker... 9 Regning med bogstavudtryk... 12 Talsystemet...

Læs mere

Grundlæggende regneteknik

Grundlæggende regneteknik Grundlæggende regneteknik Anne Ryelund, Mads Friis og Anders Friis 13. november 2014 Indhold Forord Indledning iii iv 1 Regning med brøker 1 1.1 Faktorisering i primtal.............................. 3

Læs mere

FlexMatematik B. Introduktion

FlexMatematik B. Introduktion Introduktion TI-89 er fra start indstillet til at åbne skrivebordet med de forskellige applikationer, når man taster. Almindelige regneoperationer foregår på hovedskærmen som fås ved at vælge applikationen

Læs mere

Introduktion til EXCEL med øvelser

Introduktion til EXCEL med øvelser Side 1 af 10 Introduktion til EXCEL med øvelser Du kender en almindelig regnemaskine, som kan være til stort hjælp, når man skal beregne resultater med store tal. Et regneark er en anden form for regnemaskine,

Læs mere

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 stx MAT A1 stx 005-007 Jens Carstensen, Jesper Frandsen, Jens Studsgaard og Systime A/S Kopiering fra denne bog må kun finde sted i overensstemmelse

Læs mere

2 Brøker, decimaltal og procent

2 Brøker, decimaltal og procent 2 Brøker, decimaltal og procent Faglige mål Kapitlet Brøker, decimaltal og procent tager udgangspunkt i følgende faglige mål: Brøker: kunne opstille brøker efter størrelse samt finde det antal af en helhed,

Læs mere

>> Analyse af et rektangels dimensioner

>> Analyse af et rektangels dimensioner >> Analyse af et rektangels dimensioner Kommensurabilitet Tag et stykke kvadreret papir og klip ud langs stregerne et rektangel så nogenlunde stort og tilfældigt. Nu vil vi finde forholdet mellem længde

Læs mere

matematik grundbog trin 1 preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 ISBN: 978-87-92488-28-2 1. udgave som E-bog 2006 by bernitt-matematik.dk Kopiering af

Læs mere

tråd i matematik Hørsholm Skole har lavet den røde tråd for undervisningen i matematik fra 1.-9. klasse 1. klasse 2. klasse 3.

tråd i matematik Hørsholm Skole har lavet den røde tråd for undervisningen i matematik fra 1.-9. klasse 1. klasse 2. klasse 3. Den tråd i matematik Hørsholm Skole har lavet den røde tråd for undervisningen i matematik fra 1.-9. klasse 1. klasse 2. klasse 3. klasse 4. klasse 5. klasse 6. klasse 7. klasse 8. klasse 9. klasse 1.klasse

Læs mere

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen.

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke addition bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke - decimaltal bunker osv. Det kan desuden vise decimaler og dermed give eleven visuel støtte

Læs mere

Matematik. på AVU. Eksempler til niveau G, F, E og D. Niels Jørgen Andreasen

Matematik. på AVU. Eksempler til niveau G, F, E og D. Niels Jørgen Andreasen Matematik på AVU Eksempler til niveau G, F, E og D Niels Jørgen Andreasen Om brug af denne eksempelsamling Matematik-niveauerne på Almen Voksenuddannelse hedder nu Basis, G og FED. Indtil sommeren 009

Læs mere

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 1 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 1 ISBN: 978-87-92488-17-6 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

UNDERVISNINGSPLAN FOR MATEMATIK 2014

UNDERVISNINGSPLAN FOR MATEMATIK 2014 UNDERVISNINGSPLAN FOR MATEMATIK 2014 Undervisningen følger trin- og slutmål som beskrevet i Undervisningsministeriets faghæfte: Fællesmål 2009 - Matematik. Centrale kundskabs- og færdighedsområder Arbejde

Læs mere