Integralregning Infinitesimalregning

Størrelse: px
Starte visningen fra side:

Download "Integralregning Infinitesimalregning"

Transkript

1 Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement til kapitel III side 101 til 122 i Vejen til matematik B2. Endvidere er der supplerende materiale omkring omdrejningslegemer fra A2. Sct. Knud Gymnasium Henrik S. Hansen

2 Indhold Infinitesimalregning... 1 Integralregning... 1 Integrering og det ubestemte integral... 2 Sætning: Stamfunktioner... 2 Sætning: Bestemmelse af stamfunktion... 2 Arealer og bestemte integraler... 4 Sætning: Arealfunktion... 5 Sætning: Det bestemte integral... 6 Sætning: Integralet som grænseværdi for summer... 7 Sætning: Regneregler for det bestemte integral... 8 Areal mellem grafer... 9 Rumfang... 9 Sætning: Rumfanget af et omdrejningslegeme Integration ved substitution Sætning: Integration ved substitution... 12

3 Infinitesimalregning Infinitesimalregning er en gren inden for matematikken, grundlagt af Isaac Newton og Gottfried Leibniz med skabelsen af differentialregning. Der var en lang kontrovers om, hvorvidt det var Newton eller Leibniz, der skabte infinitesimalregningen. Den almindelige konsensus er, at begge opdagede den uafhængigt af hinanden, men at Newton kom først, og Leibniz publicerede først. Infinitesimalregning beskæftiger sig med "uendeligt små" ændringer af kontinuerte funktioner, dvs. matematiske funktioner, der beskriver noget, der ændrer sig "glat". Et eksempel er bevægelse; man kan ikke bevæge sig fra et sted til et andet uden at have været alle steder imellem. For at forstå begrebet "uendeligt lille" (differentielt) kan man som analogi betragte fotografering: Vi tænker på et fotografi som et billede taget på et bestemt tidspunkt, men i virkeligheden er billedet eksponeret i et kort tidsrum. Jo kortere man kan gøre eksponeringstiden, jo mindre ser man rystelser etc. Hvis eksponeringstiden kunne gøres uendelig kort, ville billedet blive perfekt. Infinitesimalregningen kan groft sagt opdeles i to intimt relaterede discipliner: Differentialregning og integralregning. Vi vil i det efterfølgende kigge nærmere på integralregningen. Integralregning I noterne om differentialregning så vi hvordan at væksten til en bestemt -værdi på en graf kunne bestemmes ud fra differentialkvotienten. Vi blev i stand til at differentiere og dermed finde en funktion, som kunne bestemme differentialkvotienten (væksthastigheden hældningen på tangenten i punktet) ud fra en given x-værdi. Når vi differentierede en funktion fik vi også kaldet den afledede funktion. Eks. hvis vi har så kunne vi gætte på at. Det antog vi som sandt da vi netop fik når vi differentierede. Faktisk har vi lige lavet integrationsprøven Integralregning handler om arealer og kan opfattes som det modsatte af at differentiere. Nå vi integrerer får vi en ny funktion og denne kaldes en stamfunktion. Definition (video) En funktion kaldes en stamfunktion til, hvis. En stamfunktion til funktionen betegnes også som kaldes også for det ubestemte integral af, og kaldes integranden. 1

4 Integrering og det ubestemte integral Ud fra definitionen kan vi opstille følgende sætning: Sætning: Stamfunktioner Hvis er en stamfunktion til så må alle funktioner af typen, hvor c er en konstant, være stamfunktioner til Bevis: (video) Da er en stamfunktion til, må der gælde at. Vi kigger da på Hermed bevist. Hvis det handler om at arbejde modsat af at differentiere, så må følgende sætning gælde: Sætning: Bestemmelse af stamfunktion Hvis så vil en vilkårlig stamfunktion kunne bestemmes ved, hvor c er en vilkårlig konstant, og Bevis (video) Vi benytter definitionen af stamfunktion Da dette nu er vores er sætningen bevist. I praksis kalder vi det integrationsprøven, når vi prøver at differentiere den tiltænkte og se om det giver Vi kunne også kalde det at gætte en stamfunktion. Eksempelvis: Vi ved at så må da Når vi bestemmer stamfunktionen, så bestemmer vi det ubestemte integral. Lav opgave 121 side 119, øvelse 1.18 (a,c,e) side 107, opgave 122 side 119 og opgave 123 side 119 2

5 Vi kan se, at når vi bestemmer det ubestemte integral, så får vi et konstantled. Hvis vi skal angive en værdi for dette led, så skal vi blot kende et punkt som integralet/stamfunktionen løber igennem. Eksempel Bestem stamfunktionen til som går gennem punktet (2,15) Vores vilkårlige stamfunktion må være Vi bestemmer c ved at løse Altså bliver stamfunktionen Lav opgave 127 side 119 og opgave 128 side 120 3

6 Arealer og bestemte integraler Differentiering kunne benyttes til at bestemme væksthastigheder. Integrering benyttes til at bestemme arealet mellem funktionsgrafen og x-aksen. (video) Lad os kigge på en genstand, der falder i det frie rum. Vi kan indtegne grafen som følgende. angiver faldhastigheden efter x sekunder. Eks. falder vores genstand efter 4 sekunder med m/s Men hvor langt er den faldet efter de 4 sekunder? Da grafen for giver os hastigheden til en bestemt tid, så må kunne give os information om, hvor langt den er nået til en bestemt tid. Hvis vi bestemmer stamfunktionen til f(x) og antager at den er falder med 0 m/s idet den slippes. (gennem punktet (0,0) ) så får vi følgende. Vi kan se at meter Hvis vi kigger på den første graf igen, så må vi kunne bestemme den tilbagelagte afstand ved at kigge arealet under grafen. Grunden til dette er tid*hastighed=distance. Vi inddeler intervallet i lige store dele med længden og gør hele tiden denne afstand mindre. Dette resulterer i (som graferne viser) n-pinde. Hver pind har arealet højde gange bredde. Der vil gælde at. Når vi så lader så vil I vores eksempel vil arealet under graf væren som vist på figuren. meter F(x) = 4.91*x^ (4, 78.56) sekunder y 50 f(x) = 9.82x y 50 f(x) = 9.82x x x meter/sekund f(x) = 9.82*x integral = Lad os se nærmere på det sekunder 4

7 Sætning: Arealfunktion Arealfunktionen for en kontinuert funktion er differentiabel og der gælder Arealfunktionen er altså en stamfunktion til. Bevis: (video) Vi opfinder en såkaldt arealfunktion, idet vi lader y f(x) betegne arealet under grafen fra a til b. Funktionen er blot en bagvedliggende funktion til, men med den funktion at den til en given x-værdi angiver arealet undergrafen. Der gælder at er kontinuert og differentiabel. A(6) Arealfunktionen opfylder, at når vi beregner giver størrelsen af arealet af undergrafen fra a og til 6. Endelig er hele arealet undergrafen fra a til b. a b x Vi ser stadig på en vores positive og voksende funktion y f(x) f(x) Vi kigger på som er. Vi kigger på det som tre arealer, og opstiller en undersum og en oversum og da får vi a b x og den er kontinuert og differentiabel. da Endvidere vil når Da hele tiden er klemt inde vil i grænseområdet. Dermed må være en stamfunktion til Hermed bevist 5

8 Som det fremgår af figuren, så er arealet under grafen lig med funktionens værdi i tallet b, dvs at Arealet af under vores graf kan altså nu bestemmes hvis vi kender stamfunktionen. Hvis vi bestemmer en stamfunktion som tidligere nævnt, så kan vi ikke vide, om det netop er, vi har fundet, eller en anden stamfunktion. Men vi ved dog at de kun adskiller sig ved en konstant. Altså at Sætning: Det bestemte integral Lad være en stamfunktion til. Tallet kaldes det bestemte integral af og man skriver Bevis: (video) Vi har tidligere vist at arealfunktionens værdi i tallet b er givet ved Da er en stamfunktion så kan den kun adskille sig fra ved en konstant., da fås Altså bliver Hermed bevist Det gode er her, at vi kan bruge en vilkårlig stamfunktion, da c går ud med hinanden. Eksempelvis: Bestem det bestemte integral for og x-aksen) på intervallet [-2;1]. (arealet mellem graf 6

9 ( ) integral = 3. Altså fandt vi det bestemte integral til 3. Grafisk ser løsningen ud som på grafen til højre Lav øvelse 2.10 side 115, øvelse 2.11 side 115, opgave 129 side 120, opgave 131 side 120 og opgave 139 side 121 Det bestemte integral er altså vores areal. Areal under x-aksen er negativt og areal over x-aksen er positivt. Vores eksempel ovenover viser altså at største delen af arealet ligger over x-aksen. Det skal her kort nævnes, at vi også kan kigge på arealet mellem graf og x-asken som en sum af middelværdier. Hvis vi i stedet for over- og undersummer skabe en middelsum af n lige store delintervaller, som det ses på nedenstående tegning, så vil vi når vi lader antallet af delintervaller stige nærme os arealet under grafen. Sætning: Integralet som grænseværdi for summer For en funktion, der er kontinuert i intervallet gælder, at en middelsum på intervallet har en grænseværdi for som er lig med integralet fra a til b (altså arealet under grafen) for Bevis: (video) Vi tegner en tænkt kontinuert, ikke negativ og glat kurve, og inddeler denne i n lige store delintervaller med bredden. Vi vælger nu i hvert interval en tilfældig x-værdi, og hertil bestemmes funktionsværdien. Nu kan vi tegne et rektangel med bredden og højden, og når vi samler alle arealerne fås følgende sum: 7

10 Vi kan se at hvis vi sætter antallet af delintervaller op, så nærmer summen sig det aktuelle areal. for Hermed bevist. Da vi tidligere mødte det bestemte integral for første gang var det som værdien af en arealfunktion. Integralet var lig med et areal. Så længe vi kigger på en positiv og kontinuert funktion så er det lige meget hvad vi vælger. Areal, det bestemte integral og middelsum er samme tal. Sætning: Regneregler for det bestemte integral 1. Sum og differensregel 2. Konstantregel 3. Indskudsregel Bevis (video) 1. Jf. sætningen om det bestemte integral må der gælde at ( ) Tilsvarende for minus. Hermed bevist 2. Jf. sætningen om det bestemte integral må der gælde at ( ) 8

11 Hermed bevist. 3. Jf. sætningen om det bestemte integral må der gælde at Hermed bevist. Areal mellem grafer På grafen til højre ser vi to positive og kontinuerte grafer. Der er markeret en punktmængde M hvor der gælder for alle x i intervallet at y f(x) Det er umiddelbart klart, at arealet af M må være lig med arealet under g minus arealet under f. M g(x) x Prøv at kontrollere dette, når det oplyses at og a b Lav øvelse 3.4 side 208 A2, opgave 279 side 234 A2 og opgave 280 A2 Rumfang Integraler blev benyttet til at bestemme arealer i planen mellem grafer og linjer, men hvis vi drejer dette areal rundt om eksempelvis x-aksen får vi et omdrejningslegeme, som vi kan bestemme rumfanget af. (video) 9

12 Tidligere så vi at arealet i planen var givet som uendelige mange tynde pinde med arealet gælde at, som resulterede i. Det vi skal se nu er uendelig mange cylindere med arealet eller hos os (hvor vi tænker os at cylinderen ligger ned). Vi må altså få rumfanget til. Når vi lader får vi Sætning: Rumfanget af et omdrejningslegeme Det omdrejningslegeme der fremkommer, når punktmængden { } altså arealet mellem graf og x-aksen, drejes 360 omkring x-aksen, har rumfanget Bevis: (video) Vi vælger at inddele omdrejningslegemet i mindre skiver med bredden. Således får vi skiver. Jo mindre jo flere skiver. Finder vi rumfanget af alle disse skiver tilsammen, så har vi rumfanget af omdrejningslegemet. Som under arealet i planen kigger vi først på et voksende interval. Vi får et undervolumen og et overvolumen i forhold til det korrekte volumen. Da vi har valgt fås følgende 10

13 Vi lader nu og får dermed Vi integrerer på begge sider og får Hermed er sætningen vist. Beviset føres tilsvarende for konstant eller aftagende Eksempelvis. Grafen for afgrænser en punktmængde M. og linjen 6 5 y f(x) Hvor stort bliver rumfanget af den figur som fremkommer når 4 3 punktmængden roteres 360 rundt om x-aksen? 2 1 M g(x) Den nedre og øvre grænse kan bestemmes til eller x Det er umiddelbart klart, at vi finder punktmængden M ved ( ) (overvej hvorfor) Men vi skal bestemme rumfanget af omdrejningslegemet omkring x- aksen. Så vi må trække rumfanget af den figur, som fremkommer ved roterer punktmængden under f(x), fra rumfanget af den cylinder som fremkommer ved at rotere g(x). y f(x) g(x) M x M Lav øvelse 5.5 side 225 A2, øvelse 5.7 side 225 A2 og opgave 288 side 235 A2 11

14 Integration ved substitution Ved hjælp af følgende regneregel, kan man beregne mange integraler. Desværre er det ikke altid at reglen virker. Metoden er baseret på følgende sætning Sætning: Integration ved substitution For differentiable funktioner f og g gælder, at hvis er kontinuert, så er ( ) ( ) hvor er en stamfunktion til Et lommebevis: Ovenstående kan via Leibniz. Først sætter vi. Nu kan vi skrive det som ( ) Bevis: (video) Da der skal gælde at, kan vi differentiere højre siden, og får vi integranden fra venstreside, så har vi bevist sætningen. Ifølge sætningerne om differentiering af en sum og af en sammensat funktion fås ( ( ) ) ( ( )) ( ) ( ) Hermed bevist. I praksis benyttet vi sjældent sætningen direkte, men udnytter Leibniz skrivemåde. Eksempelvis. Beregn det ubestemte integral Først sætter vi her efter bestemmes Nu kan vi indsætte (substituere) dette ind i integralet Vi har altså fundet Hvis I skal lave den samme beregning i TI, så vil I få forskellige output afhængig af om TI er 12

15 indstillet til grader eller radianer. Husk på at når funktionen er bygget op på sinus eller cosinus, og når vi indsætter et reelt tal (ikke et antal grader), så skal den stå i radianer. I grader bliver output sin 2 x - 5 x cos 2. x I radianer fås følgende output sin 2 x - 5 x -.5 cos 2. x - 5. Lav øvelse 1.20 side 202 A2, 13

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b 3 -Integralregning Hayati Balo, AAMS,Århus 3. Stamfunktioner Der er to slags integralregning:. Det ubestemte integrale som betegnes med f (x)dx. Det bestemte integrale som betegnes med b a f (x)dx Det

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Arealer under grafer

Arealer under grafer HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2016/2017, eksamen maj-juni 2017 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold December 2015 vinter VUC Vestegnen stx Mat A Gert Friis

Læs mere

Integralregning ( 23-27)

Integralregning ( 23-27) Integralregning ( -7) -7 Side Bestem ved håndkraft samtlige stamfunktioner til hver af funktionerne a) f() =, + 7 ) f() = 7 + 7 c) f() = ep() + ln() d) f() = e ep() + Bestem ved håndkraft samtlige stamfunktioner

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2013/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen 7Ama1V13

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Juni 2017 Institution Horsens HF og VUC Uddannelse Hf-enkeltfag Fag og niveau Matematik B A, 1 år (2016-2017) Lærer Janne Skjøth Winde Hold maaa (1608) Oversigt over gennemførte

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

Kapitel 2. Differentialregning A

Kapitel 2. Differentialregning A Kapitel 2. Differentialregning A Indhold 2.2 Differentiabilitet og tangenter til grafer... 2 2.3 Sammensat funktion, eksponential-, logaritme- og potensfunktioner... 7 2.4 Regneregler for differentiation

Læs mere

MATEMATIK A. Indhold. 92 videoer.

MATEMATIK A. Indhold. 92 videoer. MATEMATIK A Indhold Differentialligninger... 2 Differentialregning... 3 Eksamen... 3 Hvorfor Matematik?... 3 Integralregning... 3 Regression... 4 Statistik... 5 Trigonometriske funktioner... 5 Vektorer

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013/2014 Institution Frederiksberg hf-kursus Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B (hf-enkeltfag)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Th. Langs HF og VUC Uddannelse Fag og niveau Lærer Hold Hfe Mat A Viktor Kristensen

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2014 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Trine Eliasen

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 15 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold stx Matematik A Jan Houmann

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2015 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 14MACB11E14

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 16/17 Institution Hf i Nørre Nissum VIA UC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 2014 Studenterkurset

Læs mere

Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne

Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne 21 Matematik B Kurset svarer til det gymnasiale niveau B 21.2.2 Kernestof Kernestoffet er: regningsarternes hierarki, det udvidede

Læs mere

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Projekt 4.6 Løsning af differentialligninger ved separation af de variable Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses

Læs mere

Betydningen af ordet differentialkvotient...2. Sekant...2

Betydningen af ordet differentialkvotient...2. Sekant...2 PeterSørensen.dk Differentiation Indold Betydningen af ordet differentialkvotient... Sekant... Differentiable funktioner...3 f (x) er grafens ældning i punktet med første-koordinaten x....3 Ikke alle grafpunkter

Læs mere

Matematikprojekt. Differentialregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 4 Oktober 2010

Matematikprojekt. Differentialregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 4 Oktober 2010 Matematikprojekt om Differentialregning Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen 4 Oktober 2010 Indhold I Del 1................................ 3 I Differentialregningens

Læs mere

Undervisningsbeskrivelse Valghold 2011 2012 Matematik A

Undervisningsbeskrivelse Valghold 2011 2012 Matematik A Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2011-2012 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik A Valghold Henrik Pedersen HtxmatA311

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 HTX

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral a f(x) dx = F (b) F (a) Lektion 5 Det bestemte integral Definition Integralregningens Middelværdisætning Integral- og Differentialregningens Hovedsætning Beregning af bestemte integraler Regneregler Areal

Læs mere

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex ADGANGSKURSUS AALBORG UNIVERSITET Formelsamling Brush-up Flex 2016 Indholdsfortegnelse 1. Brøkregning... 2 2. Parenteser... 3 3. Kvadratsætningerne:... 3 4. Potensregneregler... 4 5. Andengradsligninger...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / Juni 2016 Institution Den Jyske Håndværkerskole Uddannelse Fag og niveau Lærer Hold EUX - Tømre Matematik

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Hold Vinter 2016/17 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold STX Matematik A Jesper

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2015 Institution VUC Vest, Stormgade 47, 6700 Esbjerg Uddannelse HF net-undervisning, HFe Fag og niveau

Læs mere

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion ISBN 978877664974 Projekter: Kapitel. Projekt. Omvendt funktion og differentiation af omvendt funktion Projekt. Omvendt funktion og differentiation af omvendt funktion Vi har i Bbogens kapitel 4 afsnit

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2. juni 2014 Institution Kolding HF og VUC, Ålegården 2, 6000 Kolding (tovholder) VUC Vest, Stormgade 47,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Edel-Elise

Læs mere

Integration. Frank Villa. 8. oktober 2012

Integration. Frank Villa. 8. oktober 2012 Integration Frank Villa 8. oktober 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2014/ Januar 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik

Læs mere

10. Differentialregning

10. Differentialregning 10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2010-juni 2013 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2016/17 Institution Viden Djurs - VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold HTX Valghold Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Forår 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold STX Matematik A Bo Løvschall

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2009 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e) Hold Htx Matematik

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet st131-matn/a-6513 Mandag den 6 maj 13 Forberedelsesmateriale til st A Net MATEMATIK Der skal

Læs mere

Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005)

Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005) Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (005) Indholdsfortegnelse Indholdsfortegnelse... Stamfunktion og integralregning...3 Numerisk integration...3 Areal under

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj-juni 2015 HTX Vibenhus

Læs mere

Ugesedler til sommerkursus

Ugesedler til sommerkursus Aalborg Universitet - Adgangskursus Ugesedler til sommerkursus Matematik B til A Jens Friis 12 Adgangskursus Strandvejen 12 14 9000 Aalborg tlf. 99 40 97 70 ak.aau.dk sommer Matematik A 1. Lektion : Mandag

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Selvstuderende Lærer Maj-juni 2014 Skoleår 2013/2014

Læs mere

Differentialregning. Et oplæg Karsten Juul L P

Differentialregning. Et oplæg Karsten Juul L P Differentialregning Et oplæg L P A 2009 Karsten Juul Til eleven Dette hæfte kan I bruge inden I starter på differentialregningen i lærebogen Det meste af hæftet er små spørgsmål med korte svar Spørgsmålene

Læs mere

Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier.

Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier. Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister 1. Polynomier. Redegør for andengradspolynomiets graf og udled en formel for koordinatsættet til parablens toppunkt. 2.

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 15 Institution VUC Thy-Mors Uddannelse Fag og niveau Lærer(e) Hold stx Matematik niveau A Knud Søgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2012 Institution Uddannelse Fag og niveau VUF - Voksenuddannelsescenter Frederiksberg GSK Matematik

Læs mere

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2015 Institution Kolding HF og VUC, Kolding Åpark 16, 6000 Kolding Uddannelse Flexhold Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2015 Institution Kolding HF og VUC, Kolding Åpark 16, 6000 Kolding Uddannelse HF net-undervisning,

Læs mere

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale STUDENTEREKSAMEN SOMMERTERMIN 13 MATEMATIK A-NIVEAU-Net Forberedelsesmateriale 6 timer med vejledning Forberedelsesmateriale til de skriftlige prøver sommertermin 13 st131-matn/a-6513 Forberedelsesmateriale

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår efterår 16, eksamen december 2016 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik A Kenneth Berg k708hhxa3 Oversigt over gennemførte undervisningsforløb

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Hold Sommer 2016 Thy-Mors HF & VUC Hfe Matematik, niveau

Læs mere

UNDERVISNINGSBESKRIVELSE

UNDERVISNINGSBESKRIVELSE UNDERVISNINGSBESKRIVELSE Termin Maj-juni 2014-2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF2 Matematik B Ineta Sokolowski mab2 Oversigt over gennemførte undervisningsforløb

Læs mere

Differentiation. Frank Nasser. 11. juli 2011

Differentiation. Frank Nasser. 11. juli 2011 Differentiation Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Kapitel 1. Planintegraler

Kapitel 1. Planintegraler Kapitel Planintegraler Denne tekst er en omarbejdet version af kapitel 7 i Gunnar Mohrs noter til faget DiploMat 2, og opgaverne er et lille udpluk af opgaver fra Mogens Oddershede Larsens bog Matematik

Læs mere

Undervisningsbeskrivelse for: 670e 1208 Ma

Undervisningsbeskrivelse for: 670e 1208 Ma Undervisningsbeskrivelse for: 670e 1208 Ma Fag: Matematik C->B, HFE Niveau: B Institution: VoksenUddannelsescenter Frederiksberg (147248) Hold: 670e 1208 Ma (Matematik C-B, halvårshold) Termin: December

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2016 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Gert Friis Nielsen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011-juni 2014 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Kofi Mensah 7Ama1S15

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 15/16, eksamen maj-juni 2016 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin aug 2014 - jun 2015 Institution Vid Gymnasier Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik A Klavs

Læs mere

Stamfunktionsproblemet

Stamfunktionsproblemet Stamfunktionsproblemet Frank Villa 19. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 14 Institution VUC Thy-Mors Uddannelse Fag og niveau Lærer(e) Hold stx Matematik niveau A Knud Søgaard

Læs mere

M A T E M A T I K B 2

M A T E M A T I K B 2 M A T E M A T I K B 2 M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) f a x b () Matematik B2 2. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå Polynomier Kort gennemgang af polynomier og deres asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

M A T E M A T I K A 2

M A T E M A T I K A 2 M A T E M A T I K A 2 M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) f 4 () Matematik A2 2. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2014 Institution VUC Vest, Esbjerg afdeling Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold STX Matematik A Jesper

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2017 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2016 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold GSK Matematik A (stx bekendtgørelse)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold HFe Mat C-B Henrik Jessen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 11/12 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Indhold Carstensen, Frandsen, Studsgaard, MAT B HF, Systime 2006, s , 92.

Indhold Carstensen, Frandsen, Studsgaard, MAT B HF, Systime 2006, s , 92. Undervisningsbeskrivelse Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Vivi Carstensen VICA@kvuc.dk Christine Gråkilde CHGR@kvuc.dk (eksaminator)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 08/09 Htx Sukkertoppen,

Læs mere

Differential- regning

Differential- regning Differential- regning del f(5) () f f () f ( ) I 5 () 006 Karsten Juul Indhold 6 Kontinuert funktion 7 Monotoniforhold7 8 Lokale ekstrema44 9 Grænseværdi5 Differentialregning del udgave 006 006 Karsten

Læs mere

11. Funktionsundersøgelse

11. Funktionsundersøgelse 11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med

Læs mere