T ALKUNNEN. Tilnærmede tal og computertal

Størrelse: px
Starte visningen fra side:

Download "T ALKUNNEN. Tilnærmede tal og computertal"

Transkript

1 T ALKUNNEN 6 Allan C Allan C.. Malmberg Tilnærmede tal og computertal INFA Matematik

2 INFA - IT i skolens matematik Projektledelse: Allan C. Malmberg Inge B. Larsen INFA-Klubben: Leif Glud Holm IT-Konsulent Agnete C. Malmberg Pædagogisk Konsulent Distribution af programmer og tekster: INFA, Danmarks Pædagogiske Universitet Emdrupvej 101, 2400 København NV Telefon: , lokal 2697 Fax: infa@infa.dk Web: * Tekst: Layout: Allan C. Malmberg Leif Glud Holm INFA

3 Indhold Tilnærmede tal 1. Betydende cifre Regning med tilnærmede tal Addition og subtraktion...5 Praksisregel Multiplikation og division...11 Praksisregel Potensopløftning of roduddragning...16 Praksisregel Praksisregel Fejlgrænseregler E-angivne tal En oversigt Opgaver til Tilnærmede tal...24 Computertal 1. De aritmetiske grundoperationer Sammensatte regninger Rødderne i en andengradsligning Opgaver til Computertal

4 Tilnærmede tal 1. Betydende cifre Når vi benytter en talangivelse i hverdagens meddelelser, er det underforstået at vi følger nogle regler som sikrer at modtageren af talinformationen ikke bliver vildledt. Når vi angiver et måleresultat ved tallet 2.45, er det underforstået at den rigtige værdi ikke nødvendigvis er lige præcis 2.45, det kan godt tænkes at den afviger en smule fra dette tal. Men afvigelsen er så lille at den rigtige værdi er nærmere ved 2.45 end ved 2.44 og ved Med andre ord: Hvis måleresultatet angives med to decimaler, så er 2.45 den mest nøjagtige værdi der kan benyttes. Hver gang vi angiver et måleresultat, indfører vi en fejl, nemlig afvigelsen mellem den rette værdi og det benyttede måleresultat. I almindelighed kender vi ikke fejlens størrelse når vi angiver et måleresultat, vi kender kun en grænse for hvor stor fejlen kan være. Når vi angiver et måleresultat som 2.45, kan fejlen højst beløbe sig til Den rette værdi vil jo ligge mellem og Fejlen er altså højst 5 enheder på den tredje decimals plads, eller sagt på en anden måde: Fejlen er højst ½ enhed i den sidste decimal i tallet. Ved angivelse af måleresultater vil vi gå ud fra at tallene er angivet på en sådan måde at fejlen i talangivelsen højst er ½ enhed i den sidste decimal. Angivelsen er dermed så nøjagtig som den kan være med det valgte antal af decimaler. I måleresultatet 2.45 kan vi derfor have tillid til alle de angivne cifre. Vi siger at talangivelsen indeholder tre betydende cifre. I angivelser af måleresultater bør vi benytte talangivelser hvori alle cifre er betydende cifre. Kun derved kan vi sikre at den information der gives, er til at stole på. 4

5 Hvis vi ikke er i stand til at angive talværdier med et tal hvori alle cifre er betydende cifre, så må vi til talangivelsen knytte en oplysning som fortæller hvor meget talangivelsen kan afvige fra den rigtige værdi. Når vi i hverdagens brug af tal benytter talangivelser som ikke helt gengiver den nøjagtige værdi, så taler vi om tilnærmede tal. De angivne tal er tilnærmelser til de korrekte værdier. Vi ved ikke hvor meget de tilnærmede tal afviger fra de korrekte værdier, men hvis vi har kendskab til antallet af betydende cifre i angivelserne af de tilnærmede værdier, så ved vi hvor meget de kan afvige fra de korrekte værdier. 2. Regning med tilnærmede tal Med adgang til en lommeregner kan vi let udføre beregninger med tal som indeholder et stort antal cifre. For eksempel kan vi på et øjeblik multiplicere de tre tal 2.45, 3.56 og 4.78: 2.47 * 3.56 * 4.78 = Spørgsmålet er imidlertid om det har nogen mening at angive resultatet af beregningen med seks decimaler. Lommeregneren leverer selvfølgelig de seks decimaler, den kan jo ikke vide hvor mange betydende cifre der er i det angivne resultat. Det kan kun den der udfører beregningen og som har kendskab til de tal der indgår i beregningen. 2.1 Addition og subtraktion Vi ser først på nogle beregninger der består i at lægge to tilnærmede tal sammen. Lad os antage at vi vil beregne summen a + b, hvor a og b er angivet ved tallene: a = 2.45 og b = For summen har vi (hovedregning): a + b =

6 Hvis vi nu antager at både a og b er angivet med tre betydende cifre, kan vi da gå ud fra at summen på 6.23 også indeholder tre betydende cifre? Eller sagt på en anden måde: Er den angivne sum på 6.23 så nær ved den korrekte værdi at der højst er tale om en fejl på ½ enhed i sidste decimal, altså en fejl på 0.005? Vi belyser spørgsmålet ved et fejlgrænseskema: Beregningsstørrelse Nedre grænse Øvre grænse a b a + b Vi ser altså at den rigtige værdi for summen a + b ligger mellem og Når vi angiver summen som 6.23, kan vi altså ikke garantere at det sidste ciffer er korrekt. Vi kan dermed ikke fastholde at resultatet 6.23 indeholder tre betydende cifre. Hvis vi vil være helt korrekte, kan vi da angive resultatet ved: 6.23 (fg: 0.01). Med oplysningen i parentesen fortæller vi at talangivelsen 6.23 har en fejlgrænse på Den rette værdi kan altså ligge mellem og Af skemaet ser vi at fejlen i den angivne sum kan have en størrelse på 0.010, dvs. 2 gange den fejl på som kan forekomme i hver af de to angivelser for a og b. Havde vi i stedet foretaget en beregning med fire tal som hver var angivet med to decimaler, så ville vi være kommet til at fejlgrænsen for summen ville være 4 gange 0.005, altså I et fejlgrænseskema udfører vi to beregninger: Den ene viser hvad den nedre grænse for resultatet er, den anden hvad den øvre grænse er. Vi udfører en dobbeltregning. 6

7 Øvelse 1 Opstil et fejlgrænseskema for beregningen af summen: Alle de anførte cifre er betydende. Vi ser nu på en subtraktion: Vi vælger igen tallene 2.45 og 3.78 og beregner differensen Vi opstiller et fejlgrænseskema: Beregningsstørrelse Nedre grænse Øvre grænse a b b - a Bemærk hvordan de to grænser for b - a beregnes: Den nedre grænse er fremkommet som , og den øvre grænse som Ved beregningen af får vi resultatet Af skemaet kan vi se at den korrekte værdi for b - a kan ligge imellem og Når vi angiver resultatet af beregningen som 1.33, kan vi derfor ikke garantere at det sidste ciffer er korrekt. Vi kan altså heller ikke i denne beregning være sikre på at resultatet 1.33 indeholder tre betydende cifre. Men vi kan korrekt angive resultatet som: 1.33 (fg:0.01). Ved hjælp af fejlgrænseskemaer kan vi undersøge hvilke fejl der kan forekomme ved additioner og subtraktioner af tilnærmede tal. Hvert af de tal der indgår i beregningen kan for- 7

8 øge resultatets fejlgrænse med ½ enhed i den sidste decimal i tallet. Har vi fx en beregning der omfatter et regnestykke med 10 tal der alle er angivet med to decimaler, så vil fejlgrænsen for resultatet være 10 gange 0.005, dvs Fejlen kan altså beløbe sig til 5 enheder i anden decimal. I en sådan situation kan det være nødvendigt at oplyse om fejlgrænsen når vi anfører beregningens resultat. Lad os nu se på et eksempel hvor tallene ikke er angivet med samme antal decimaler. Vi ser på summen af de to tal 6.3 og Det første af de to tal er angivet med én decimal, det andet med to decimaler. Vi opstiller et fejlgrænseskema for beregningen. Beregningsstørrelse Nedre grænse Øvre grænse a b a + b Ved beregning af summen får vi Af skemaet ser vi at den korrekte værdi for summen ligger mellem og Når vi angiver summen ved resultatet 9.22, kan der være en fejl på op til 0.055, nemlig en fejl på 0.05 som stammer fra tallet 6.3 og en fejl på som stammer fra tallet Det er altså fejlgrænsen for tallet 6.3 som dominerer fejlgrænsen for summen. I den forelagte beregning bør vi derfor ikke angive resultatet med mere end én decimal, dvs. som 9.2. Selv i dette resultat kan vi ikke være sikre på at det sidste ciffer er korrekt. Som vi ser af fejlgrænseskemaet, kan den korrekte angivelse af summen med én decimal jo være 9.2 eller

9 Hvis vi ville angive resultatet med oplysning om fejlgrænse, kunne vi oplyse: 9.22 (fg:0.055), eller med samme antal decimaler i tal og fejlgrænse: 9.22 (fg:0.06). Hvis vi ville benytte tallet 9.2 som resultat, måtte vi benytte angivelsen: 9.2 (fg:0.1). Vi kan af eksemplerne se hvordan vi kan finde størrelsen af fejlgrænsen i en beregning der omfatter additioner og subtraktioner: Vi finder fejlgrænsen for hvert af de tal der indgår i beregningen, og disse fejlgrænser lægges sammen (de skal også lægges sammen når det drejer sig om subtraktioner). Øvelse 2 Angiv fejlgrænsen for resultatet af følgende beregning med tilnærmede tal: Hvordan vil du angive resultatet af beregningen? Ved udregningen af fejlgrænsen for resultatet af en beregning der består af additioner og subtraktioner, ser vi altså at de enkelte tals fejlgrænser skal lægges sammen. Vi ved ikke hvordan fejlene på de enkelte tal er fordelt: I nogle tilfælde vil den tilnærmede værdi være større end den rette værdi, i andre tilfælde vil det være omvendt. Vi kan derfor satse på at fejlene delvis vil udligne hinanden, således at den samlede fejl på beregningen ligger langt under det der er givet ved den beregnede fejlgrænse. Fejlgrænsen fortæller jo kun hvor galt det kan gå i værste fald, dvs. når alle tilnærmede tal afviger så meget som muligt fra de rette værdier og når afvigelserne enten alle er positive eller alle er negative. 9

10 Vi vil derfor formulere en regne-praksis regel som kan vejlede os når vi skal angive resultatet af en beregning med tilnærmede tal. Praksis-regel 1 Ved addition og subtraktion af tilnærmede tal angives resultatet med det mindste antal decimaler der forekommer blandt de tilnærmede tal. Som vi allerede har set, sikrer denne regel os ikke at vi angiver resultatet med lutter betydende cifre. Der kan stadig være usikkerhed om de sidste cifre. Men reglen vil sørge for at vi opnår en balance mellem det teoretiske korrekte og det praktisk ønskelige. Reglen er at opfatte som en tommelfingerregel som kan bruges i daglig omgang med tilnærmede tal. Til finere brug må vi foretage beregninger af fejlgrænser. Eksempler (1) Efter regel 1 skal resultatet her angives med én decimal. (2) Efter regel 1 skal resultatet her angives med to decimaler. (3) Efter regel 1 skal resultatet her angives som helt tal, dvs. med 0 decimaler. Øvelse 3 Angiv resultaterne af de tre beregninger i eksemplerne. Skulle der i en beregning både indgå tilnærmede tal og tal som ikke er tilnærmede, dvs. eksakte tal, så skal der ved anvendelse af regel 1 kun tages hensyn til de tilnærmede værdier. I en beregning som 10

11 hvor kun de to første tal er tilnærmede, kan resultatet angives med én decimal (hvad bliver resultatet?). I en beregning med tilnærmede tal som ikke er angivet ved betydende cifre, men ved angivelse af fejlgrænse, må vi anvende fejlgrænseberegninger når vi beslutter os for hvordan resultatet skal angives. Skal vi til eksempel beregne summen: 3.2 (fg:0.5) (fg:0.07) (fg:0.05) så kan vi ikke benytte regel 1. Vi må i stedet foretage en beregning af resultatets fejlgrænse og benytte den ved angivelse af resultatet. 2.2 Multiplikation og division Vi ser nu på multiplikation af tilnærmede tal. Lad os antage at vi skal udføre beregningen 2.45 * 3.7, hvor de to tal er angivet med henholdsvis tre og to betydende cifre. Ved brug af en lommeregner finder vi: 2.45 * 3.7 = Men hvor mange af cifrene i resultatet kan vi have tillid til? Vi gør brug af et fejlgrænseskema. Ved dobbeltregning får vi: Beregningsstørrelse Nedre grænse Øvre grænse a b a * b

12 Af skemaet ser vi at den korrekte værdi for a * b vil ligge mellem og I det beregnede resultat på vil det derfor være meningsløst at tage alle tre decimaler med, ja selv en angivelse med to decimaler er ikke rimelig. Det bedste vi kan gøre hvis vi igen vil have en balance mellem det teoretisk korrekte og det praktisk ønskelige, er at angive resultatet med to cifre, nemlig som 9.1. Og selv her kan vi ikke være sikker på at det sidste ciffer er korrekt. Hvis vi regner efter, vil vi se at værdien ikke ligger præcist midt imellem de to værdier der er angivet som nedre og øvre grænse for a * b: Afstand fra til 9.065: Afstand fra til 9.065: Der er ikke stor forskel på de to afstande, og vi vil tage den gennemsnitlige afstand på som en praktisk brugbar fejlgrænse ved den udførte beregning. Vi kan derfor ved hjælp af fejlgrænser angive resultatet af beregningen således: 9.07 (fg:0.15). Fejlgrænsen er angivet med to decimaler, og ved fejlgrænser runder vi op for at være på den sikre side. Vi skal nu se hvordan fejlgrænsen for det beregnede produkt er sammenknyttet med fejlgrænserne for de to tal der indgår i multiplikationen. Vi beregner her de relative fejlgrænser, dvs. fejlgrænsernes størrelse i forhold til de tal de er knyttet til. Fejlgrænsen for 2.45 er 0.005, dvs. den relative fejlgrænse er 0.005:2.45 = 0.204% 12

13 Fejlgrænsen for 3.7 er 0.05, dvs. den relative fejlgrænse er 0.05:3.7 = 1.351% For a * b fastlagde vi fejlgrænsen til Den relative fejlgrænse er da :9.065 = 1.555% (Ved beregningerne af de relative fejlgrænser har vi anvendt en lommeregner). Af tallene for de relative fejlgrænser ser vi at summen af de to relative fejlgrænser for a og b netop er den relative fejlgrænse for produktet a * b: 0.204% % = 1.555% Vi har hermed et eksempel som belyser en almen regel: Den relative fejlgrænse for et produkt af tilnærmede tal er lig med summen af de relative fejlgrænser for de enkelte tal. Vi kunne også have angivet resultatet af multiplikationen ved hjælp af den relative fejlgrænse: 9.07 (rfg:1.6%) Vi vender nu tilbage til beregningen fra side 5: 2.47 * 3.56 * 4.78 = Lad os foretage en vurdering af den relative fejlgrænse for det angivne resultat. Vi vil her bruge de relative fejlgrænser og benytte summen af dem som et praktisk bud på den relative fejlgrænse for beregningens resultat. 13

14 De relative fejlgrænser for de tre tal er: 0.005:2.47 = 0.20% 0.005:3.56 = 0.14% 0.005:4.78 = 0.10% I alt 0.44% Tager vi nu 0.44% af det anførte resultat på får vi: Vi kan herefter beregne at det rette resultat af beregningen vil ligge imellem = og = Herefter kan vi overveje hvor mange cifre vi bør medtage når vi angiver resultatet af beregningen. Vi kan hurtigt se at de fem sidste decimaler i ingen mening har. Vi kan derimod gå med til at den ene decimal bevares, og vi angiver derfor resultatet af beregningen som: Men i dette resultat gælder som tidligere: Vi kan ikke garantere for korrektheden af sidste ciffer. Ved hjælp af fejlgrænser og relative fejlgrænser kunne resultatet mere oplysende angives som: (fg:0.19) eller (rfg:0.44%). Øvelse 4 Gennemfør en beregning af fejlgrænsen for beregningen ved hjælp af et fejlgrænseskema. - Beregningen vil ikke give helt samme resultat som det vi fik ved at tage summen af de relative fejlgrænser, men det vil ligge så tæt på at forskellen ikke har nogen praktisk betydning. * 14

15 For division med tilnærmede tal kan vi gennemføre de samme overvejelser som ved multiplikation. Også her vil vi kunne finde en praktisk relative fejlgrænse for resultatet ved at tage summen af de relative fejlgrænser for de enkelte tal der indgår i beregningen. Øvelse 5 Opstil et fejlgrænseskema for beregningen af 3.78:2.13. Beregn derefter de relative fejlgrænser for de to tal og for beregningsresultatet. Angiv beregningens resultat med et passende antal cifre og angiv resultatet ved hjælp af fejlgrænser. Vi opstiller herefter en regel der gælder for regningsarterne multiplikation og division. Praksis-regel 2 Ved multiplikation og division af tilnærmede tal angives resultatet med det mindste antal cifre der forekommer blandt de tilnærmede tal. Bemærk, at ved multiplikation og division er antallet af decimaler i de tilnærmede tal uden betydning. Det er alene antallet af cifre der tæller. Når vi tæller cifre i tilnærmede tal, medregner vi ikke de indledende nuller i decimaltal. Talangivelsen indeholder derfor kun to cifre. 15

16 Eksempler (1) * 8.9 * 3.47 Efter regel 2 angives resultatet med to cifre. (2) * * 78.0 Efter regel 2 angives resultatet med tre cifre. (3) * * Efter regel 2 angives resultatet med fire cifre. Øvelse 6 Angiv resultaterne af beregningerne i de tre eksempler. Øvelse 7 Foretag en beregning af den relative fejlgrænse for resultatet af de tre beregninger. Angiv derefter resultaterne ved hjælp af relative fejlgrænser. 2.3 Potensopløftning og roduddragning Ved udregninger hvor tilnærmede tal opløftes til en potens, kan vi benytte resultaterne fra multiplikation. Beregningen af 2.34 opløftet i tredje potens svarer jo til beregningen 2.34 * 2.34 * 2.34 = Den relative fejlgrænse for talangivelsen 2.34 er 0.005:2.34 = 0.214% Ved anvendelse af regel 2 har vi da at en praktisk relativ fejlgrænse for beregningens resultat er 3*0.214% = 0.642%. De 0.642% af beregningsresultatet svarer til ca Vi ser altså 16

17 at den rette værdi af resultatet vil ligge mellem ca og Det vil således ikke være rimeligt at medtage mere end tre cifre i angivelsen af resultatet af beregningen. Vi angiver derfor resultatet til: Ved hjælp af fejlgrænser har vi: (fg:0.09) eller (rfg:0.65%). Vi kan dermed anvende regel 2 på potensopløftning: I resultatet medtager vi det antal cifre der findes i det tilnærmede tal der skal opløftes. Vi skal imidlertid være varsom når det drejer sig om potensopløftning med høje værdier af eksponenten. Ved opløftning af et tilnærmet tal til eksponenten 10 vil vi få et resultat som har en relativ fejlgrænse af en størrelse på ca. 10 gange den relative fejlgrænse for det tal der opløftes. Til eksempel vil beregningen af 1.12 opløftet i 10. potens give et resultat med en relativ fejlgrænse på 10 * 0.005:1.12 = ca. 4.5% Lommeregneren udregner resultatet af potensopløftningen til Med en relativ fejl på 4.5% vil det rette resultat ligge mellem ca og Af lommeregnerens 9 decimaler kan vi se helt bort fra de 7 sidste, de er uden mening. Men vi kan endda dårligt nok beholde tre cifre i resultatet og angive det som Det vil være bedre at nøjes med to cifre og angive resultatet som 3.1. Og selv i denne angivelse kan vi ikke være sikker på at sidste ciffer er korrekt.- Men vi kan benytte fejlgrænser og angive resultatet som: 3.11 (rfg:4.5%) eller som: 3.11 (fg:0.14). 17

18 Ved beregning af 1.12 opløftet til eksponenten 50 må vi efter vor regel regne med en relativ fejlgrænse på ca. 23%. I væksttabellen i folkeskolens tabelsamling kan man finde resultatet af beregningen angivet til Med en relativ fejlgrænse på 23% kan vi da skønne at den rigtige værdi ligger mellem ca. 232 og 357. Så i dette tilfælde kan vi ikke bruge nogen af de cifre der er anført i tabellens resultat på Det bedste vi kan gøre er nok at angive resultatet som 289 (fg:66) eller 290 (fg:70) eller 289 (rfg:23%) Vi formulerer nu regel nr. 3. Praksis-regel 3 Ved opløftning af et tilnærmet tal til en potens med en moderat eksponent vil resultatet kunne angives med det antal cifre der indgår i det tilnærmede tal. Ved opløftning til høje eksponenter vil en beregning af fejlgrænser kunne afgøre hvor mange cifre der kan benyttes i angivelsen af resultatet. Til sidst ser vi på roduddragning. Lad os til eksempel se på uddragningen af kvadratroden af Ved hjælp af en lommeregner får vi resultatet Hvor mange af disse decimaler bør vi benytte når 1.23 er en tilnærmet værdi for et ukendt tal? Vi ved at den rette værdi af det ukendte tal ligger mellem og Vi har da at grænserne for den rette værdi af den søgte kvadratrod er: Nedre grænse. Kvadratroden af 1.225: Øvre grænse. Kvadratroden af 1.235:

19 Vi ser heraf at vi kan afrunde lommeregnerens resultat til tre cifre: I dette tilfælde er vi oven i købet sikre på at alle tre cifre er betydende cifre. Ved uddragning af kvadratroden af et tilnærmet tal er den relative fejlgrænse det halve af fejlgrænsen for det tilnærmede tal, og ved uddragning af kubikroden er den relative fejlgrænse en tredjedel af fejlgrænsen for det tilnærmede tal. Ved uddragning af roden af et tilnærmet tal er situationen faktisk den at vi somme tider kan angive resultatet med flere cifre end der indgår i det tilnærmede tal. Det er således tilfældet når vi benytter roduddragning med en høj rodeksponent. Men vi formulerer alligevel regel 4 i en forsigtig udgave: Praksis-regel 4 Ved uddragning af en rod af et tilnærmet tal kan vi angive resultatet med det antal cifre der indgår i det tilnærmede tal. Det skal understreges at de fire regnepraksis-regler er regler som kan være til hjælp når vi arbejder med tilnærmede tal. Reglerne fører ikke frem til skudsikre resultater, de er blot nogle let anvendelige tommelfingerregler som kan anvendes i den daglige omgang med tilnærmede tal. Hvis vi ønsker et solidere grundlag for vore talangivelser, må vi gøre brug af fejlgrænseberegninger. Ved anvendelsen af fejlgrænser kan vi støtte os på følgende regler: 19

20 Fejlgrænseregler 1. Fejlgrænsen for en beregning der består af additioner og subtraktioner er lig med summen af fejlgrænserne for de tilnærmede tal der indgår i beregningen: fg(a+b)= fg(a) + fg(b) 2. Den relative fejlgrænse for en beregning der består af multiplikationer og divisioner er lig med summen af de relative fejlgrænser for de tilnærmede tal der indgår i beregningen: rfg(a*b) = rfg(a) + rfg(b) 3. Den relative fejlgrænse for den n te potens af et tilnærmet tal er lig med n gange den relative fejlgrænse for det tilnærmede tal: rfg(a n ) = n*rfg(a) 4. Den relative fejl for den n te rod af et tilnærmet tal er lig med en n tedel af den relative fejlgrænse for det tilnærmede tal: rfg( n a ) = rfg(a):n 20

21 3. E-angivne tal I nogle situationer kan man komme ud for at tilnærmede tal ikke kan angives ved de sædvanlige skrivemåder. For eksempel kan der være forelagt en talinformation der fortæller at den ukendte talværdi vil være 1800 når den afrundes til hundreder. Dermed fortæller vi at den rette værdi ligger imellem 1750 og 1850, med andre ord at tallet skal opfattes som: 1800 (fg:50). Men hvis vi blot angiver den ukendte værdi ved det tilnærmede tal 1800, vil man tro at der foreligger et tal med fire betydende cifre, og hvis vi anvender dette antal af betydende cifre i de efterfølgende beregninger, vil vi komme til fejlagtige resultater. I virkeligheden er der jo kun to betydende cifre i tallet 1800 i den foreliggende situation, nemlig cifrene 18. At der foreligger et tal med to betydende cifre kan man fortælle ved hjælp af den såkaldte eksponentnotation: 18*10 2 Man kan også se dette tal anført som 18E2. Her fortæller tilføjelsen E2 at det angivne tal foran E et skal ganges med Tilnærmede tal der er angivet afrundet til tiere, hundreder, tusinder, osv. bør angives i eksponentnotation så det klart fremgår hvor mange betydende cifre der forekommer i talangivelsen. Vi vil kalde sådanne tilnærmede tal for E-angivne tal. Når E-angivne tal indgår i beregninger, er der ingen vanskeligheder ved anvendelse af regnepraksis-reglerne 2, 3 og 4. Her skal man jo tælle cifre i de tilnærmede tal, og ved et E-angivet tal skal man blot se på det tal der er anført til venstre for E et. Undervejs i beregningen må man selvfølgelig regne med den fulde talværdi, dvs. 18E2 må i beregningerne indgå som tallet

22 Anderledes stiller det sig ved anvendelse af regel 1. Her skal jo tælles decimaler, og ved et tal der er afrundet til hundreder er der ingen decimaler på tale. Vi kan imidlertid kunstigt regne med et decimalantal på minus 2 i et sådant tal, og tilsvarende regne med et decimaltantal på minus 1 i tal der er afrundet til tiere og et decimaltal på minus 3 i tal der er afrundet til tusinder. Med denne fortolkning af antallet af decimaler i et tal kan vi gøre brug af regel 1 selv om der indgår E-angivne tal i beregningerne. Eksempler (1) E2 Efter regel 1 skal resultatet angives med minus 2 decimaler, dvs. det skal angives afrundet til hundreder. Vi kan derfor angive resultatet som: 21E2. Eller vi kan skrive: 2100 (afrundet til hundreder). (2) E2 + 6E3 Efter regel 1 skal resultatet angives med minus 3 decimaler, dvs. det skal angives afrundet til tusinder. Vi kan derfor angive resultatet som: 12E3. Eller vi kan skrive: (afrundet til tusinder). Øvelse 8 Gennemfør de to beregninger ved anvendelse af fejlgrænser og angiv resultaterne med tilhørende fejlgrænse. 22

23 4. En oversigt Fremgangsmåde ved regning med tilnærmede tal 1. Resultatpræcision. Ved regning med tilnærmede tal kan man ved hjælp af de opstillede regnepraksis-regler indlede med at fastlægge resultatpræcisionen, dvs. bestemme antallet af decimaler eller antallet af cifre der skal indgå i angivelsen af beregningsresultatet. 2. Beregning. Beregningen udføres ved hjælp af hovedregning, papir og blyant, lommeregner eller andre regnetekniske hjælpemidler. 3. Resultat. Resultatet af beregningen angives med den forud fastlagte præcision. Vær opmærksom på at resultatet kan indeholde cifre som ikke er betydende cifre. 4. Mere nøjagtigt resultat. Hvis der ønskes en mere nøjagtig angivelse af resultatet, foretages en beregning af resultatets fejlgrænse eller relative fejlgrænse. Beregningen af fejlgrænser kan foretages ved et fejlgrænseskema eller ved hjælp af de givne fejlgrænseregler for beregning af fejlgrænser i en addition og subtraktion og for beregning af relative fejlgrænser i en multiplikation eller division. Tre muligheder Der er altså tre mulige fremgangsmåder ved beregninger der omfatter tilnærmede tal: 1. Anvendelse af praksis-reglerne 2. Anvendelse af fejlgrænsereglerne 3. Anvendelse af fejlgrænseskemaer 23

24 De bedste resultater fås ved inddragelse af fejlgrænser, men i daglig brug er det ofte tilstrækkeligt at tælle decimaler eller cifre efter de opstillede regnepraksis-regler. Skolens regneopgaver I regneopgaver i skolen er der ikke tradition for at de anførte talværdier opfattes som tilnærmede tal. Her er alle tal eksakte, også dem der vedrører målinger fra den fysiske virkelighed. Så når der skal foretages en beregning af arealet af et rektangel med siderne 2.43 m og 3.78 m, så antages det at de to sidemål er hellige eksakte tal. I konsekvens heraf kan arealet da blot beregnes på lommeregneren og angives med alle lommeregnerens decimaler: Dette tal er det ønskede facit. På denne måde slipper man helt for overvejelser over hvordan et beregningsresultat bør fremlægges. 5. Opgaver til Tilnærmede tal I opgaverne er de anførte tilnærmede tal angivet ved lutter betydende cifre når der ikke er angivet en fejlgrænse for tallet. Angiv beregningsresultaterne med tilhørende fejlgrænse. Ved beregningen af fejlgrænserne kan benyttes de opstillede fejlgrænseregler. Hvor der er tvivl, kan en beregning gennemføres ved hjælp af fejlgrænseskema. Hvor regnepraksis-reglerne kan anvendes, bør de opnåede resultater sammenlignes med dem der fås ved anvendelse af praksis-reglerne. 24

25 1. Beregn (1) (2) (3) Beregn (1) 4.62 * 8.61 (2) 5.9 * 8.18 (3) * Beregn (1) : 0.52 (2) : (3) : Beregn (1) 10.0 * 9.90 (2) * 9.90 (3) 1.0 * 9.9 (4) 1.0 * 9.9 * 1.0 (5) 11 : 1.2 (6) 99 : Beregn 0.19 * 1.08 * 0.27 * * 2.01 *

26 6. Der er givet følgende ti tilnærmede tal: Beregn tallenes sum og deres gennemsnit. Udfør derefter de samme beregninger efter at de ti tal er afrundet til: (a) 2 decimaler (b) 1 decimal (c) Helt tal 7. Beregn arealet af et rektangel hvis sidelængder er målt til: a = 21.1 cm b = 14.8 cm 8. En vej har en bredde på 7.5 m og en længde på 512 m. Beregn vejens areal. 9. En sten har en masse på kg og et rumfang på 7.2 dm 3. Beregn stenens massefylde. 10. En rektangulær bordplade har sidelængder der er målt til: a = 73.5 cm (fg: 0.3) b = 56.8 cm (fg: 0.3) Beregn bordpladens areal. 26

27 11. I en trekant måles en grundlinie og den tilhørende højde til: g = 412 m (fg: 1) h = 108 m (fg: 1) Beregn trekantens areal. 12. Beregn værdien af udtrykket xy 2x + 3y når x og y er målt til: x = 2.4 (fg: 0.2) y = 7.5 (fg: 0.3) Udtrykket kan omformes til: y x Beregn værdien af dette udtryk. Sammenlign resultaterne af de to beregninger og sammenlign de to beregningers fejlgrænser. 13. Beregn arealet af en cirkel hvis radius er målt til 82 cm. 14. En bil gennemkører med konstant hastighed en strækning på 1000 m (fg: 20) på 42 sekunder (fg: 1). Hvad er bilens hastighed? 27

28 15. Beregn rumfanget af en cylinder med følgende mål: højde: 12.8 cm diameter: 6.9 cm Beregn endvidere arealet af cylinderens krumme overflade og beregn arealet af cylinderens totale overflade. 16. Beregn afstanden i koordinatsystemet mellem to punkter A og B hvis koordinater er målt til: A: x = 14.2 y = 3.8 B: x = 32.0 y = En cirkels diameter måles til 13.0 cm og dens omkreds til 41 cm. Beregn herudfra værdien af pi (angiv fejlgrænse). 18. I en trekant måles de tre sider til: a = 188 m b = 132 m c = 145 m Beregn trekantens areal og beregn dernæst en af trekantens højder. 19. En prognose fortæller at befolkningstallet for et område vokser med 2% om året (fg: 0.3%) Beregn hvor meget befolkningen vokser i løbet af 10 år. 20. Radius i en kugle måles til 5.2 cm (fg: 0.1). Beregn kuglens overflade og dens rumfang. 28

29 21. Beregn længden af hypotenusen i en retvinklet trekant hvor de to andre sider er målt til: 43 cm og 57 cm. 22. Beregn gennemsnitshastigheden for en bil som kører den første halvdel af vejstrækningen med 80 km/t (fg: 2) og den anden halvdel med 68 km/t (fg: 2). 23. Arealet af et rektangel med sidelængder på ca. 70 m og ca. 80 m ønskes fastlagt med tre betydende cifre. Hvor nøjagtig skal de to sidelængder måles for at dette kan opnås? 24. Arealet af en cirkel med en radius på ca. 120 cm ønskes fastlagt med tre betydende cifre. Hvor nøjagtig skal radius måles for at dette kan opnås? 25. Beregn massefylden af en mønt der har en diameter på 21 mm (fg: 0.1), en tykkelse på 1.5 mm (fg: 0.1) og som vejer 7.5 g (fg: 0.2). 26. Et træ har fået toppen kappet af i 8.25 meters højde (fg: 0.25). Den resterende træstamme fældes ved et snit 40 cm (fg: 10) over jorden. Træstammen har så nogenlunde form som en keglestub: Omkredsen i den tykke ende er 120 cm (fg:5) og i den tynde ende 60 cm (fg: 5). Træet skønnes at have en massefylde på 0.85 (fg: 0.05). Giv et skøn over træstammens vægt. 27. Løs andengradsligningen ax 2 + bx + c = 0 hvor a, b og c er målt til: a = 2.14, b = 3.78, c =

Grundlæggende færdigheder

Grundlæggende færdigheder Regnetest A: Grundlæggende færdigheder Træn og Test Niveau: 7. klasse Uden brug af lommeregner 1 INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Regnetest B: Praktisk regning. Træn og Test. Niveau: 9. klasse. Med brug af lommeregner

Regnetest B: Praktisk regning. Træn og Test. Niveau: 9. klasse. Med brug af lommeregner Regnetest B: Praktisk regning Træn og Test Niveau: 9. klasse Med brug af lommeregner 1 INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag Et forskningsprogram

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Anvendelse af matematik til konkrete beregninger

Anvendelse af matematik til konkrete beregninger Anvendelse af matematik til konkrete beregninger ved J.B. Sand, Datalogisk Institut, KU Praktisk/teoretisk PROBLEM BEREGNINGSPROBLEM og INDDATA LØSNINGSMETODE EVT. LØSNING REGNEMASKINE Når man vil regne

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

Regning. Mike Vandal Auerbach ( 7) 4x 2 y 2xy 5. 2x + 4 = 3. (x + 3)(2x 1) = 0. (a + b)(a b) a 2 + b 2 2ab.

Regning. Mike Vandal Auerbach ( 7) 4x 2 y 2xy 5. 2x + 4 = 3. (x + 3)(2x 1) = 0. (a + b)(a b) a 2 + b 2 2ab. Mike Vandal Auerbach Regning + 6 ( 7) (x + )(x 1) = 0 x + = 7 + x y xy 5 7 + 5 (a + (a a + b ab www.mathematicus.dk Regning 1. udgave, 018 Disse noter er en opsamling på generelle regne- og algebraiske

Læs mere

Andengradsligninger. Frank Nasser. 12. april 2011

Andengradsligninger. Frank Nasser. 12. april 2011 Andengradsligninger Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Omskrivningsregler. Frank Nasser. 10. december 2011

Omskrivningsregler. Frank Nasser. 10. december 2011 Omskrivningsregler Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Andengradsligninger. Frank Nasser. 11. juli 2011

Andengradsligninger. Frank Nasser. 11. juli 2011 Andengradsligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne

Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne Umulige figurer Periode Mål Eleverne skal: At opdage muligheden for og blive fascineret af gengivelse af det umulige. At få øvelse

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 Indholdsfortegnelse Side De fire regningsarter... 3 Flerleddede størrelser... 5 Talbehandling... 8 Forholdsregning... 10 Procentregning...

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

i tredje brøkstreg efter lukket tiendedele primtal time

i tredje brøkstreg efter lukket tiendedele primtal time ægte 1 i tredje 3 i anden rumfang år 12 måle kalender lagt sammen resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn efter bagved foran placering kvart fjerdedel lagkage rationale

Læs mere

Projekt 7.4. Rationale tal brøker og decimaltal

Projekt 7.4. Rationale tal brøker og decimaltal ISBN 98806689 Projekter: Kapitel. Projekt.4. Rationale tal brøker decimaltal Projekt.4. Rationale tal brøker decimaltal Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen,,

Læs mere

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet.

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet. Algebra og ligninger - Facitliste Om kapitlet I dette kapitel om algebra og ligninger skal eleverne lære at regne med variable, få erfaringer med at benytte variable Elevmål for kapitlet Målet er, at eleverne:

Læs mere

matematik grundbog Demo trin 2 preben bernitt

matematik grundbog Demo trin 2 preben bernitt matematik grundbog trin preben bernitt matematik grundbog -udgave 00 by bernitt-matematik.dk Kopiering og udskrift af denne bog er kun tilladt efter aftale med bernitt-matematik.dk Læs nærmere om dette

Læs mere

Matematik Delmål og slutmål

Matematik Delmål og slutmål Matematik Delmål og slutmål Ferritslev friskole 2006 SLUTMÅL efter 9. Klasse: Regning med de rationale tal, såvel som de reelle tal skal beherskes. Der skal kunne benyttes og beherskes formler i forbindelse

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 Demo-udgave 2003 by bernitt-matematik.dk Kopiering og udskrift af denne bog er

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Elementær Matematik. Tal og Algebra

Elementær Matematik. Tal og Algebra Elementær Matematik Tal og Algebra Ole Witt-Hansen 0 Indhold Indhold.... De naturlige tal.... Regneregler for naturlige tal.... Kvadratsætningerne..... Regningsarternes hierarki...4. Primtal...4 4. Nul

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også?

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Et tal som både består af et helt tal og en brøk, for eksempel. Hvad hedder det? Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Hvad kalder man tallet over brøkstregen

Læs mere

i tredje sum overslag rationale tal tiendedele primtal kvotient

i tredje sum overslag rationale tal tiendedele primtal kvotient ægte 1 i tredje 3 i anden rumfang år 12 måle kalender hældnings a hældningskoefficient lineær funktion lagt n resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn formel andengradsligning

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Simple udtryk og ligninger

Simple udtryk og ligninger Simple udtryk og ligninger 009 Karsten Juul Til eleven Brug blyant og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt at slå op i under dit videre arbejde med

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5 Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Projekter: Kapitel - Projektet er delt i to små projekter, der kan laves uafhængigt af hinanden. Der afsættes fx - timer til vejledning med efterfølgende

Læs mere

Allan C. Malmberg. Terningkast

Allan C. Malmberg. Terningkast Allan C. Malmberg Terningkast INFA 2008 Programmet Terning Terning er et INFA-program tilrettelagt med henblik på elever i 8. - 10. klasse som har særlig interesse i at arbejde med situationer af chancemæssig

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Kvadratrodsberegning ved hjælp af de fire regningsarter

Kvadratrodsberegning ved hjælp af de fire regningsarter Kvadratrodsberegning ved hjælp af de fire regningsarter Tidligt i historien opstod et behov for at beregne kvadratrødder med stor nøjagtighed. Kvadratrødder optræder i forbindelse med retvinklede trekanter,

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Basal Matematik 2. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 67 Ekstra: 7 Mundtlig: 1 Point:

Basal Matematik 2. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 67 Ekstra: 7 Mundtlig: 1 Point: Matematik / Basal Matematik Navn: Klasse: Matematik Opgave Kompendium Basal Matematik Følgende gennemgås De regnearter Afrunding af tal Større & mindre end Enheds omregning Regne hierarki Brøkregning Potenser

Læs mere

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål:

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formål: Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formålet med undervisningen i matematik er, at eleverne bliver i forstå og anvende matematik i sammenhænge,

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

M A T E M A T I K FAGBESKRIVELSE FOR UNDERVISNING I MATEMATIK PÅ HARESKOVENS LILLESKOLE:

M A T E M A T I K FAGBESKRIVELSE FOR UNDERVISNING I MATEMATIK PÅ HARESKOVENS LILLESKOLE: M A T E M A T I K FAGBESKRIVELSE FOR UNDERVISNING I MATEMATIK PÅ HARESKOVENS LILLESKOLE: Udgangspunktet for Hareskovens Lilleskoles matematikundervisning er vores menneskesyn: det hele menneske. Der lægges

Læs mere

Bedste rette linje ved mindste kvadraters metode

Bedste rette linje ved mindste kvadraters metode 1/9 Bedste rette linje ved mindste kvadraters metode - fra www.borgeleo.dk Figur 1: Tre datapunkter og den bedste rette linje bestemt af A, B og C Målepunkter og bedste rette linje I ovenstående koordinatsystem

Læs mere

Færdigheds- og vidensområder

Færdigheds- og vidensområder Klasse: Mars 6./7. Skoleår: 16/17 Eleverne arbejder med bogsystemet format, hhv. 6. og 7. klasse. Da der er et stort spring i emnerne i mellem disse trin er årsplanen udformet ud fra Format 7, hvortil

Læs mere

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik potenstal og rodtal trin 2 preben bernitt brikkerne til regning & matematik potenstal og rodtal, trin 2 ISBN: 978-87-92488-06-0 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Projekt 3.1 Pyramidestub og cirkelareal

Projekt 3.1 Pyramidestub og cirkelareal Projekt. Pyramidestub og cirkelareal - i tilknytning til afsnit., især for A Indhold Rumfanget af en pyramidestub... Moderne metode... Ægyptisk metode... Kommentarer til den ægyptiske beregning... Arealet

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører: Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave

Læs mere

potenstal og rodtal F+E+D brikkerne til regning & matematik preben bernitt

potenstal og rodtal F+E+D brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt brikkerne til regning & matematik potenstal og rodtal F ISBN: 978-87-92488-06-0 1. udgave som E-bog til tablets 2012 by bernitt-matematik.dk

Læs mere

De 4 regnearter. (aritmetik) Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 42 Ekstra: 5 Point:

De 4 regnearter. (aritmetik) Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 42 Ekstra: 5 Point: Navn: Klasse: Matematik Opgave Kompendium De 4 regnearter (aritmetik) Aritmetik: kommer af græsk: arithmetike = regnekunst arithmos = tal Aritmetik er læren om tal og operationer på tal som de 4 regnearter.

Læs mere

Rettevejledning, FP10, endelig version

Rettevejledning, FP10, endelig version Rettevejledning, FP10, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. I forbindelse med FP10 fremstiller opgavekommissionen

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også?

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Et tal som både består af et helt tal og en brøk, for eksempel 2 " #. Hvad hedder det? Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Hvad kalder man tallet over brøkstregen

Læs mere

Talrækker. Aktivitet Emne Klassetrin Side

Talrækker. Aktivitet Emne Klassetrin Side VisiRegn ideer 3 Talrækker Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Talrækker 2-4 Elevaktiviteter til Talrækker 3.1 Talrækker (1) M-Æ 5-9 3.2 Hanoi-spillet

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

ELEVMÅL FOR KAPITLET HUSKELISTE FÆLLES MÅL FAGLIGE BEGREBER. Målet er, at eleverne: kan forstå sammenhænge og ligheder mellem talmængderne

ELEVMÅL FOR KAPITLET HUSKELISTE FÆLLES MÅL FAGLIGE BEGREBER. Målet er, at eleverne: kan forstå sammenhænge og ligheder mellem talmængderne ELEVMÅL FOR KAPITLET HUSKELISTE Målet er, at eleverne: kan forstå sammenhænge og ligheder mellem talmængderne N, Z, Q og R. kan anvende de naturlige tal, hele tal, rationale tal og reelle tal i forskellige

Læs mere

En forståelsesramme for de reelle tal med kompositioner.

En forståelsesramme for de reelle tal med kompositioner. 1 En forståelsesramme for de reelle tal med kompositioner. af Ulrich Christiansen, sem.lekt. KDAS. Den traditionelle tallinjemodel, hvor tallene svarer til punkter langs tallinjen, dækker fornuftigt (R,

Læs mere

MATEMATIK. Basismål i matematik på 1. klassetrin:

MATEMATIK. Basismål i matematik på 1. klassetrin: MATEMATIK Basismål i matematik på 1. klassetrin: at kunne indgå i samtale om spørgsmål og svar, som er karakteristiske i arbejdet med matematik at kunne afkode og anvende tal og regnetegn og forbinde dem

Læs mere

Trekants- beregning for hf

Trekants- beregning for hf Trekants- beregning for hf C C 5 l 5 A 34 8 B 018 Karsten Juul Indhold 1. Vinkler... 1 1.1 Regler for vinkler.... 1. Omkreds, areal, højde....1 Omkreds..... Rektangel....3 Kvadrat....4 Højde....5 Højde-grundlinje-formel

Læs mere

brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt

brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt brikkerne til regning & matematik potenstal og rodtal F ISBN: 978-87-92488-06-0 2. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 9. klasse handler om de reelle tal. Første halvdel af kapitlet har karakter af at være opsamlende i forhold til, hvad eleverne har arbejdet med på tidligere

Læs mere

VEUD ekstraopgave Opgave nr. 62-11

VEUD ekstraopgave Opgave nr. 62-11 Opgavens art: Opgaveformulering: Fagområde: Opgavens varighed: Teoretisk Gennemgang af lommeregner Sprøjtestøbning 4 lektioner Niveau, sammenlignet med uddannelsen: Henvisning til hjælpemidler: Grunduddannelse

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

π can never be expressed in numbers. William Jones og John Machins algoritme til beregning af π

π can never be expressed in numbers. William Jones og John Machins algoritme til beregning af π can never be expressed in numbers. William Jones og John Machins algoritme til beregning af. Oprindelsen til symbolet Første gang vi møder symbolet som betegnelse for forholdet mellem en cirkels omkreds

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

FlexMatematik B. Introduktion

FlexMatematik B. Introduktion Introduktion TI-89 er fra start indstillet til at åbne skrivebordet med de forskellige applikationer, når man taster. Almindelige regneoperationer foregår på hovedskærmen som fås ved at vælge applikationen

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

tjek.me Forårskatalog 2018 Matematik By Knowmio

tjek.me Forårskatalog 2018 Matematik By Knowmio tjek.me Forårskatalog 2018 Matematik Velkommen til tjek.me forårskatalog for matematik 1. til 9. klasse tjek.me er et online, spilbaseret evalueringsværktøj, som giver indsigt i elevernes progression.

Læs mere

ÅRSPLAN MATEMATIK 5.KLASSE

ÅRSPLAN MATEMATIK 5.KLASSE ÅRSPLAN MATEMATIK 5.KLASSE Matematiklærerens tænkebobler illustrerer, at matematikundervisning ikke udelukkende handler om opgaver, men om en (lige!) blanding af: Kompetencer Indhold Arbejdsmåder CENTRALE

Læs mere

Årsplan 5. Årgang

Årsplan 5. Årgang Årsplan 5. Årgang 2017-2018 Materialer til 5.årgang: - Matematrix grundbog 5.kl - Matematrix arbejdsbog 5.kl - Skrivehæfte - Kopiark - Færdighedsregning 5.kl - Computer Vi skal i løbet af året arbejde

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

Årsplan for 4. klasse matematik på Solhverv Privatskole

Årsplan for 4. klasse matematik på Solhverv Privatskole Årsplan for 4. klasse matematik på Solhverv Privatskole Klasse / hold: 4. klasse Skoleår / periode: 2015/2016 Team / lærere: Grethe Søgaard Der arbejdes ud fra Fælles mål efter 6. klasse. http://uvm.dk/uddannelserog-dagtilbud/folkeskolen/faelles-maal

Læs mere

Start-mat. for stx og hf Karsten Juul

Start-mat. for stx og hf Karsten Juul Start-mat for stx og hf 0,6 5, 9 2017 Karsten Juul Start-mat for stx og hf 2017 Karsten Juul 1/8-2017 (7/8-2017) Nyeste version af dette hæfte kan downloades fra http://mat1.dk/noter.htm. Hæftet må benyttes

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

OM KAPITLET ELEVFORUDSÆTNINGER LÆS OG SKRIV MATEMATIK. 6. Det vil derfor være relativt nyt for de fleste elever, at

OM KAPITLET ELEVFORUDSÆTNINGER LÆS OG SKRIV MATEMATIK. 6. Det vil derfor være relativt nyt for de fleste elever, at OM KAPITLET I dette kapitel om tal i mængder skal eleverne arbejde med de naturlige tal N, de hele tal Z og de rationale tal Q. Eleverne skal ligeledes erfare, at der er brug for endnu flere tal end de

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat8 Noter: Kompetencemål efter 9. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Statistik og sandsynlighed

Statistik og sandsynlighed Navn: Nr.: Klasse: Prøvedato: mat3 Noter: Kompetencemål efter 3. klassetrin Eleven kan udvikle metoder til beregninger med naturlige tal Tal og algebra Tal Titalssystem Decimaltal, brøker og procent Negative

Læs mere

EN SKOLE FOR LIVET ÅRSPLAN 19/20

EN SKOLE FOR LIVET ÅRSPLAN 19/20 ÅRSPLAN 19/20 Lærer: LH Fag: Matematik Eleverne skal i 7. klasse primært arbejde i webbogen, der kommer rundt om de forskellige matematiske emner. Der vil i forbindelse med de enkelte emner og kapitler

Læs mere

Matematik på Humlebæk lille Skole

Matematik på Humlebæk lille Skole Matematik på Humlebæk lille Skole Matematikundervisningen på HLS er i overensstemmelse med Undervisningsministeriets Fælles Mål, dog med få justeringer som passer til vores skoles struktur. Det betyder

Læs mere

Talregning. Aktivitet Emne Klassetrin Side. Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3

Talregning. Aktivitet Emne Klassetrin Side. Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3 VisiRegn ideer 1 Talregning Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3 Vejledning til Talregning

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter: Plus, minus, gange og division... 2 10-tals-systemet... 4 Afrunding af tal... 5 Regning med papir og blyant... 6 Store tal... 8 Negative tal...

Læs mere

Matematisk modellering og numeriske metoder. Lektion 15

Matematisk modellering og numeriske metoder. Lektion 15 Matematisk modellering og numeriske metoder Lektion 15 Morten Grud Rasmussen 1. november, 2013 1 Numerisk analyse [Bogens afsnit 19.1 side 788] 1.1 Grundlæggende numerik Groft sagt handler numerisk analyse

Læs mere

Residualer i grundforløbet

Residualer i grundforløbet Erik Vestergaard www.matematikfysik.dk 1 Residualer i grundforløbet I dette lille tillæg til grundforløbet, skal vi kigge på begreberne residualer, residualplot samt residualspredning. Vi vil se, hvad

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Årsplan matematik 5. klasse. Kapitel 1: Godt i gang

Årsplan matematik 5. klasse. Kapitel 1: Godt i gang Årsplan matematik 5. klasse Kapitel : Godt i gang I bogens første kapitel får eleverne mulighed for at repetere det faglige stof, som de arbejdede med i 4. klasse. Kapitlet er udformet som en storyline

Læs mere

Projekt 2.9 Sumkurver som funktionsudtryk anvendt til Lorenzkurver og Ginikoefficienter (især for B- og A-niveau)

Projekt 2.9 Sumkurver som funktionsudtryk anvendt til Lorenzkurver og Ginikoefficienter (især for B- og A-niveau) Projekt 2.9 Sumkurver som funktionsudtryk anvendt til Lorenzkurver og Ginikoefficienter En sumkurve fremkommer ifølge definitionen, ved at vi forbinder en række punkter afsat i et koordinatsystem med rette

Læs mere

TAL I MÆNGDER ELEVMÅL FOR KAPITLET HUSKELISTE OM KAPITLET FAGLIGE BEGREBER FÆLLES MÅL ELEVFORUDSÆTNINGER

TAL I MÆNGDER ELEVMÅL FOR KAPITLET HUSKELISTE OM KAPITLET FAGLIGE BEGREBER FÆLLES MÅL ELEVFORUDSÆTNINGER TAL I MÆNGDER I den efterfølgende del skal eleverne arbejde med de rationale tal Q, hvor de bla præsenteres for de endelige OM KAPITLET I dette kapitel om tal i mængder skal eleverne arbejde med de naturlige

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring Hovedemne 1: Talsystemet og at gange kan anvende flercifrede naturlige tal til at beskrive antal og rækkefølge udvikle metoder til multiplikation og division med naturlige tal udføre beregninger med de

Læs mere