Kvant 2. Notesamling....Of doom!

Størrelse: px
Starte visningen fra side:

Download "Kvant 2. Notesamling....Of doom!"

Transkript

1 Kvant 2 Notesamling...Of doom!

2 Indhold 1 To-partikelsystemer 1 2 Brint 1 3 Perturbation Udartet perturbationsteori Zeeman-effekt Tidsafhængig perturbation Variationsprincippet 5 5 WKB-approximation TM Tunnelering Snedige ting Symmetriske perturbationsmatricer Harmonisk oscillator Feynman-Hellmannteoremet Slater-determinant Kommutatorer for brint

3 1 To-partikelsystemer For skelnelige partikler i tilstande ψ a og ψ b kan den samlede bølgefunktion skrives som: ψ(r 1, r 2 ) = ψ a (r 1 )ψ b (r 2 ) (1) For ikke-skelnelige partikler ser det straks værre ud (dam dam dammmmm). De skal opfylde symmetrikravet (5.14): ψ(r 1, r 2 ) = ± ψ(r 2, r 1 ) (2) (plus for bosoner (som er symmetriske) og minus for fermioner (som er antisymmetriske)). Generelt kan en bølgefunktion skrives som et produkt af en rumdel φ(r) og en spindel χ(s) som kan være individuelt symmetriske eller antisymmetriske. Afhængigt af dette bliver den samlede bølgefunktion: symmetrisk symmetrisk = symmetrisk symmetrisk antisymmetrisk = antisymmetrisk antisymmetrisk antisymmetrisk = symmetrisk For systemer med to fermioner (ihvertfald med to elektroner), er det er snedigt at huske på at: Tilstande med antisymmetrisk spindel kaldes singlet-tilstande Tilstande med symmetrisk spindel kaldes triplet-tilstande 2 Brint Oversigt over egenværdier L, S og J-operatoerer på brint: 1

4 L 2 l m l = 2 l(l + 1) l m l L z l m l = m l l m l L ± l m l = (l m l )(l ± m l + 1) l (m l ± 1) S 2 s m s = 2 s(s + 1) s m s S z s m s = m s s m s S ± s m s = (s m s )(s ± m s + 1) s (m s ± 1) J 2 j m j = 2 j(j + 1) j m j J z j m j = m j j m j J ± j m j = (j m j )(j ± m j + 1) j (m j ± 1) -hvor J L + S er god at bruge ved spin-orbit-kobling. Kvantetallene kan kun antage bestemte værdier: n: 1, 2, 3,... l: 0, 1,..., n 1 m l : l, l + 1,..., l s: 0, 1/2, 1, 3/2,... m s : s. s + 1,..., s j: l s, l s + 1,..., l + s m j : j. j + 1,...j Relevante kommutatorer er opgivet i afsnit 6.5! 3 Perturbation Man pertuberer når hamiltonoperatoren for et kendt system (med hamiltonoperator Ĥ0 ) ændres en lille smule Ĥ0 Ĥ0 + Ĥ. Vi skal vist kunne udregne førsteordenskorrektionerne til både energier (E 1 n) og bølgefunktioner (ψ 1 n) og andenordenskorrektioner til energier (E 2 n). Det er ikke så slemt hvis energiniveauerne ikke er udartede: Førsteordensperturbation af energien findes med (6.9) fra Griffiths: E 1 n = ψ 0 n Ĥ ψ 0 n (3) 2

5 Andenordensperturbation af energien findes ved (6.15): E 2 n = m n ψ 0 m Ĥ ψ 0 n 2 E 0 n E 0 m (4) Til beregning af førsteordensperturbationer til bølgefunktioner kan jeg personligt anbefale ligning (6.13): ψ 1 n = m n 3.1 Udartet perturbationsteori ψm 0 Ĥ ψn 0 En 0 Em 0 ψm 0 (5) Det ser straks værre ud med udartet perturbationsteori - Så er man nødt til at bruge (6.27) som siger: E 1 ± = 1 2 (W aa + W bb ± (W aa W bb ) W ab 2 ) (6) - hvor W erne er defineret som perturbationens matrixelementer i basen af ψ er, dvs. W ij ψ 0 i Ĥ ψ 0 j. Det er dermed ulejligheden værd at udtrykke Ĥ i en basis hvor den er diagonal da dette vil betyde at W ab = 0, hvilket gør (6) mere overskuelig. Dette kan gøres på to måder: Hvis man er 1337 hax0r til at regne matrixelementer, kan man benytte sig af, at en matrices egenværdier er uafhængige af, hvilken basis de udtrykkes i, og skifte base til en god linearkombination TM af ψa 0 og ψb 0, ved at løse egenværdiligningen: ( Waa W ab W ba W bb ) ( α β ) ( = E 1 α β ) (7) (Dette er ækvivalent med at løse ligning (6.22) og (6.24) i Griffiths hvis man bedre kan lide det) Hvis man er snedig kan man bruge moralen fra teoremet på side og finde en operator  som kommuterer med både Ĥ0 og Ĥ og finde en linearkombination af egentilstande til Ĥ 0 som også er egentilstand til  (husk at alle linearkombinationer af egentilstande til Ĥ 0 automatisk er egentilstande til Ĥ 0 ). Ofte er det snedigt at anvende paritetsoperatoren A: Âf(x) = f( x) (som har egenværdierne ±1, da Â2 f(x) = f(x)). Endnu en grund til at paritetsoperatoren er et kløgtigt valg er at [Â, Ĥ0 ]f(x) = (V ( x) V (x))f( x), dvs. de kommuterer for symmetriske potentialer. Eksempelvis er bølgefunktionen i opgave 6.7 udtrykt ved ψ(x) = αe (ikx) + βe ( ikx), og man kan med lidt snilde se at for at ψ kan være egenfunktion for  skal koefficienterne opfylde β = ±α. Dette trick er absurd smart, og det kan virkelig anbefales at lære det. 3

6 3.2 Zeeman-effekt Zeeman-effekten er den opsplitning af energiniveauerne i atom som forekommer når det placeres i et eksternt magnetisk felt. Helt generelt for Zeeman-effekt er perturbationen givet ved Ĥ Z = (µ l + µ s ) B ext, hvor µ s = e m S, µ l = e 2m L. Man taler om stærk eller svag Zeeman-effekt afhængigt af forholdet mellem det interne (fine structure) og eksterne magnetiske felt: Der er stærk Zeeman-effekt hvis Der er svag Zeeman-effekt hvis Hvor B int = 1 e 4πɛ 0 mc 2 a 12T 3 B ext B int B ext B int Svag Zeeman Gode kvantetal: n, l, j og m j, Ved svag Zeeman-effekt dominerer det interne magnetfelt (finstrukturen) og det eksterne magnetfelt behandles derfor som perturbationen. Dermed er E 0 givet ved den almindelige grundenergi for brint (ligning 6.67): E nj = 13.6eV n 2 [1 + α2 n 2 ( n )] j + 1/2 3/4 De voksne (Griffiths, ligning 6.76) siger at førsteordensperturbationsenergien findes ved: [ ] EZ 1 = µ Bg J B ext m j, hvor µ B e 2m og g J 1 + j(j+1) l(l+1)+3/4 2j(j+1) Stærk Zeeman Gode kvantetal: n, l, m l og m s, Ved stærk Zeeman-effekt dominerer det eksterne magnetfelt og det interne magnetfelt betragtes som perturbationen. Altså er E 0 givet ved den normale grundtilstandsenergi for brint (uden finstruktur) plus energien fra Ĥ Z, dvs. E nml m s (8) = 13.6eV n 2 + µ B B ext (m l + 2m s ) (9) Igen har de voksne (ligning 6.82) udregnet førsteordensperturbationsenergien for os: E 1 fs = 13.6eV n 3 α 2 [ ] 3 l(l + 1) 4n ml m s l(l + 1/2)(l + 1) } {{ } =1, for l=0 4

7 Middel-Zeeman tjah... se side Tidsafhængig perturbation I tidsafhængig perturbationsregning afhænger ændringen af hamiltonoperatoren af tiden, Ĥ (t). De voksne (Griffiths) siger at diagonalelementerne i perturbationen ofte forsvinder, Ĥ aa = Ĥ bb = 0. Hvis dette er tilfældet, og hvis den upertuberede tilstand skrives som Ψ(t) = c a (t)ψ a e ieat/ +c b (t)ψ b e iebt/, kan man ved hjælp af den tidsafhængige schrödingerligning og lidt fancy footwork TM deducere sig frem til at koefficienterne opfylder: ċ a = i Ĥ abe iω0t, ċ b = i Ĥ bae iω0t (10) hvor ω 0 E b E a. I tilfælde af at Ĥ aa, Ĥ bb at bruge 0 ser det hele straks sortere ud og man er nødt til Og ikke nok med det! Ydermere er ċ a = i (c aĥ aa + c b Ĥ abe iω0t ) (11) ċ b = i (c bĥ bb + c a Ĥ bae iω0t ) (12) Ved at integrere (10) kan man få et fint udtryk for c b som funktion af tiden. Tidspunktet hvor perturbationen starter kaldes t 0 og det antages at c a (t 0 ) = 1, c b (t 0 ) = 0. Koefficienterne skal naturligvis opfylde at c a 2 + c b 2 = 1. Anyway: c (1) b (t) = i t t 0 Ĥ ab(t )e iω0t dt (13) Det er praktisk hvis man skal udregne sandsynligheden for at måle et system i tilstand b som funktion af tiden, da denne er P (1) a b (t) = c b(t) 2 (14) til første orden. Skal man finde anden orden eller højere er der en fin guide på side Variationsprincippet Variationsprincippet er en fantastisk metode til at estimere en øvre grænse for grundtilstandsenergien for et system uden en kendt bølgefunktion, som DU kan prøve derhjemme! Det eneste du skal bruge er en normaliseret testfunktion 5

8 ψ test, som i princippet kan antage en hvilken som helst form, og systemets hamiltonoperator. Variationsprincippet (ligning 7.1 i bogen) siger da: E gs ψ test Ĥ ψ test Ĥ (15) hvor det er værd at skrive sig bag øret at Ĥ = T + V ( T og V er forventningsværdierne af hhv kinetisk og potentielenergi for testfunktionen). Dermed er E gs ψ test T ψ test + ψ test V ψ test } {{ } } {{ } T V (16) Ofte vælger man at bruge en gaussisk funktion, ψ test = Ae bx2, A = ( ) 2b 1/4 π, som altid opfylder T = 2 b 2m. Da variationsprincippet giver en øvre grænse for grundtilstandsenergien vil det være kløgtigt, strategisk og smart at minimere højresiden af (16) ved at differentiere mht b. 5 WKB-approximation TM WKB er en metode til at approximere bølgefunktioner i potentialer som afhænger af x. Den virker fortræffeligt hvis: bølgefunktionens amplitude ændrer sig laaaaangsomt man ikke approximerer i nærheden af klassiske turning points, dvs hvor E V man gør det rigtigt Selve approximationen er udtrykt i ligning 8.10 i bogen: ψ(x) C e ± i p(x)dx, p(x) = 2m(E V (x)) (17) p(x) I nærheden af disse turning points er man nødt til at anvende nogle lappefunktioner som er djælvelsk besværlige at arbejde med. Heldigvis har Griffiths udført en del af fodarbejdet i et par eksempler i afsnit 8.1 og 8.3 og udregnet nogle betingelser som skal opfyldes i forskellige potentialer: Potentialer med to lodrette vægge: -med koordinater x = 0 og x = a (ligning 8.16): a 0 p(x)dx = nπ (18) Potentialer med én lodret væg -med koordinat x = 0 og turning point i x = x 2 (ligning 8.47): x2 0 p(x)dx = (n 1/4)π (19) 6

9 Potentialer uden lodrette vægge -med turning points i x = x 1 og x = x 2 (ligning 8.51): x2 5.1 Tunnelering x 1 p(x)dx = (n 1/2)π (20) Hvis man er i besiddelse af en linearkombination af snilde og snarrådighed, som ingen grænser kender, kan man også bruge WKB-metoden til at beregne tunnelleringskoefficienter: For en partikel som i området 0 < x < a har E < V kan tunneleringssandsynligheden findes (8.22) i Griffiths: 6 Snedige ting T = e 2γ, γ = 1 a 6.1 Symmetriske perturbationsmatricer Fra problem 7.15: I perturbationssærtilfældet hvor ψ a Ĥ ψ b = ψ b Ĥ ψ a = h således at den samlede hamiltonoperator er ( ) Ea h Ĥ = Ĥ0 + Ĥ = h Eb 0 2m(V (x) E)dx (21) bliver perturbationsenergierne E 1 a = E 1 b = 0, og: h 2 Ea 2 = (E b E a ), h 2 E2 b = (E b E a ) (22) 6.2 Harmonisk oscillator I harmoniske potentialer er det ofte givtigt at skrive x om til hæve/sænkeoperatorer, dvs benytte at: x = 2mω (â + + â ), â + ψ n = n + 1 ψ n+1 â ψ n = n ψ n 1 Ved høje potenser af x kan det dog være at man bliver gladere for at bruge tricket beskrevet i afsnit

10 6.3 Feynman-Hellmannteoremet Feynman-Hellmannteoremet ser sådan her ud hvis både ψ n, Ĥ og E n kan afhænge af en parameter λ: E n λ = ψ n Ĥ λ ψ n (23) Man kan ofte få nogle fornuftige ligninger hvis man differentierer efter parametre som kun ét led i Ĥ afhænger af. Et glimrende eksempel er vores allesammens harmoniske oscillator, der som bekendt har Ĥ = 2 [ 2 2m x + 1 ] [ 2 mω2 x 2 og E n = ω(n + 1/2). (24) Hvis man gerne vil beregne forventningsværdien af potentialet kan man enten være hardcore og skrive x 2 -leddet ud som hæve/sænkeoperatorer, eller man kan være snedig og differentiere mht ω, da det første led i Ĥ så forsvinder. Dette giver: E n = (n + 1/2) ω (25) Ĥ ω = mωx2 = 2 V ω, (26) V = ω 2 ψ n Ĥ ω ψ n V = ω 2 (n + 1/2) = 1 2 E n (27) -Især hvis ens potentiale afhænger af f.eks. x 128 vil man hellere bruge denne metode end at omskrive V (â + + â ) 128 (avavav). 6.4 Slater-determinant Hvis man skal konstruere en antisymmetrisk rumdel ud fra et større antal bølgefunktioner end man umiddelbart kan overskue, kan man opskrive den som Slater-determinanten: ψ(r 1, r 2,, r n ) = ψ a (r 1 ) ψ b (r 1 ) ψ n (r 1 ) ψ a (r 2 ) ψ b (r 2 ) ψ n (r 2 ) ψ a (r n ) ψ b (r n ) ψ n (r n ) (28) 6.5 Kommutatorer for brint Snedige kommutatorer: [L S, L] = i (L S) [L S, S] = i (S L) [L S, J] = [L S, L 2 ] = [L S, S 2 ] = [L S, J 2 ] = 0 8

Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2...

Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2... Introduktion til kvantemekanik Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2... 6 Hvordan må bølgefunktionen se ud...

Læs mere

Statitisk fysik Minilex

Statitisk fysik Minilex Statitisk fysik Minilex Henrik Dahl 15. januar 006 Indhold 1 Sandsynlighedsteori Fordelinger 3 Eksperimentelle usikkerheder 3 4 Parameterbestemmelse 3 5 Priors, entropi 3 6 Termodynamik 4 6.1 Kanonisk

Læs mere

Øvelse i kvantemekanik Elektron-spin resonans (ESR)

Øvelse i kvantemekanik Elektron-spin resonans (ESR) 14 Øvelse i kvantemekanik Elektron-spin resonans (ESR) 3.1 Spin og magnetisk moment Spin er en partikel-egenskab med dimension af angulært moment. For en elektron har spinnets projektion på en akse netop

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Lys på (kvante-)spring: fra paradox til præcision

Lys på (kvante-)spring: fra paradox til præcision Lys på (kvante-)spring: fra paradox til præcision Metrologidag, 18. maj, 2015, Industriens Hus Lys og Bohrs atomteori, 1913 Kvantemekanikken, 1925-26 Tilfældigheder, usikkerhedsprincippet Kampen mellem

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

#$%$!&$#$!$ # ) * ##! % " ## ##%$ $!(!$*-!!.%!

#$%$!&$#$!$ # ) * ##! %  ## ##%$ $!(!$*-!!.%! !" #$%$!&$#$!$ # #%'!(" ) * ##! % " ## ##%$ $!( +,$*(#,"%$!$*-!!.%!.&.% /0 1 233+++0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 333$*,*#40 0 0 0 0 30 0 0 0 0 3330 0 0 0 0 0 0 0 0 33 33 3$"# $0 0 0 0 0 0 0 0

Læs mere

Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She

Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She Substitutionernes fest 53 Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She Substitution en masse Vi vil i denne artikel vise, hvorledes man kan løse den generelle tredjegradsligning

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig som også findes i en trigonometrisk variant, den såkaldte 'appelsin'-formel: Men da en trekants form

Læs mere

Kriegers Flak Idefasen - Projektområde. Oversigt over detailkort

Kriegers Flak Idefasen - Projektområde. Oversigt over detailkort Kort nr. 1 Kort nr. 2 Kort nr. 3 Kort nr. 4 Kort nr. 5 Kort nr. 6 Kort nr. 7 Kort nr. 8 Kort nr. 9 Kort nr. 1 Kort nr. 11 i 1. offentlighedsfase (). Kort nr. 12 Kilometers 1 -. Oversigt over detailkort

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Studieretningsprojekter i machine learning

Studieretningsprojekter i machine learning i machine learning 1 Introduktion Machine learning (ml) er et område indenfor kunstig intelligens, der beskæftiger sig med at konstruere programmer, der kan kan lære fra data. Tanken er at give en computer

Læs mere

Gribskov Kommune. Tillæg nr. 4 til Gribskov kommunes spildevandsplan. Nye oplande RGL03SN og RGL04SN i Rågeleje-Udsholt. Udkast 10.

Gribskov Kommune. Tillæg nr. 4 til Gribskov kommunes spildevandsplan. Nye oplande RGL03SN og RGL04SN i Rågeleje-Udsholt. Udkast 10. Gribskov Kommune Tillæg nr. 4 til Gribskov kommunes spildevandsplan Nye oplande RGL03SN og RGL04SN i Rågeleje-Udsholt Udkast 10. september 2014 1. Indledning 2. Lovgrundlag 3. Nuværende forhold 4. Fremtidige

Læs mere

LOKALPLAN NR. 24. VEDTAGET l BYRÅDET D.8OKT.1980 ØLSTYKKE KOMMUNE

LOKALPLAN NR. 24. VEDTAGET l BYRÅDET D.8OKT.1980 ØLSTYKKE KOMMUNE LOKALPLAN NR. 24 ENDELIG VEDTAGET l BYRÅDET D.8OKT.1980 ØLSTYKKE KOMMUNE ØLSTYKKE KOMMUNE Lokalplan nr. 24 for et område beliggende øst for Ny Toftegårdsvej, vest for Sperrestrupvej, syd for projekteret

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

Ændring af rammeområde 2.B.6 Østbyvej

Ændring af rammeområde 2.B.6 Østbyvej Ændring af rammeområde 2.B.6 Østbyvej Tillæg 12 til Roskilde Kommuneplan 2013 2.B.6 2.BT.4 0 500 m 500 Forord HVAD ER ET TILLÆG TIL KOMMUNEPLANEN? Den fysiske planlægning reguleres bl.a. gennem kommuneplanlægning.

Læs mere

Hvorfor guld er det ædleste metal et studie med tæthedsfunktionalteori

Hvorfor guld er det ædleste metal et studie med tæthedsfunktionalteori Hvorfor guld er det ædleste metal et studie med tæthedsfunktionalteori Af Lasse B. Vilhelmsen og Anton M.H. Rasmussen, Institut for Fysik og Astronomi, Aarhus Universitet De fleste er klar over, at guld

Læs mere

Matr. nr. 271lRødby Markjorder

Matr. nr. 271lRødby Markjorder Matr. nr. 271lRødby Markjorder 549a 271k 13a Finlandsvej 271i 629 m² 271l 2 m² 271n Sulkavavej 271m 271o 271q 271d 271p Sulkavavej 244ec Tegningsnr. : LE34_ 100128-1043_ 3 Ret til at udvide veje (midlertidigt

Læs mere

Projektkatalog SRP hos ScienceTalenter

Projektkatalog SRP hos ScienceTalenter Projektkatalog SRP hos ScienceTalenter Katalog over udbudte studieretningsprojekter ScienceTalenter udbyder i skoleåret 2014/2015 en række studieretningsprojekter, hvori talenter tilbydes kompetent og

Læs mere

Byplanvedtægt 19. Område af Vallerød og Usserød by

Byplanvedtægt 19. Område af Vallerød og Usserød by Byplanvedtægt 19 Område af Vallerød og Usserød by HØRSHOLM KOMMUNE Partiel byplanvedtægt nr. 19 for et område af Vallerød og Usserød by I medfør af byplanloven (boligministeriets lovbekendtgørelse nr.

Læs mere

Ren versus ligesvævende stemning

Ren versus ligesvævende stemning Ren versus ligesvævende 1. Toner, frekvenser, overtoner og intervaller En oktav består af 12 halvtoner. Til hver tone er knyttet en frekvens. Kammertonen A4 defineres f.eks. til at have frekvensen 440

Læs mere

>> Analyse af et rektangels dimensioner

>> Analyse af et rektangels dimensioner >> Analyse af et rektangels dimensioner Kommensurabilitet Tag et stykke kvadreret papir og klip ud langs stregerne et rektangel så nogenlunde stort og tilfældigt. Nu vil vi finde forholdet mellem længde

Læs mere

Numeriske metoder. Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn. Side 1 af 15

Numeriske metoder. Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn. Side 1 af 15 Numeriske metoder Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn Side 1 af 15 Indholdsfortegnelse Matematik forklaring... 3 Lineær regression... 3 Numerisk differentiation...

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Mondiso matematik for 1. til 3. klasse

Mondiso matematik for 1. til 3. klasse Mondiso matematik for 1. til 3. klasse Programmet henvender sig til elever i indskoling. Det kan også benyttes af børn på højere klassetrin, som har behov for at få genopfrisket det grundlæggende i matematikken.

Læs mere

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com Matrix Algebra med Excel Forelæsningsnoter til FR86 Jesper Lund mail@jesperlund.com http://www.jesperlund.com 28. august 2002 1 Indledning Matrix algebra er et uundværligt redskab til økonometri, herunder

Læs mere

BYPLANVEDTÆGT NR. 5. Frydendal-kvarteret. Byplanvedtægt for et område i Aalborg kommune, beliggende ved Gugvej - Th. Sauersvej.

BYPLANVEDTÆGT NR. 5. Frydendal-kvarteret. Byplanvedtægt for et område i Aalborg kommune, beliggende ved Gugvej - Th. Sauersvej. BYPLANVEDTÆGT NR. 5. Frydendal-kvarteret. Byplanvedtægt for et område i Aalborg kommune, beliggende ved Gugvej - Th. Sauersvej. STADSARKITEKTEN I AALBORG. AUGUST 1962. I medfør af byplanloven (lovbekendtgørelse

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

att.: Lise Overby Nørgaard Hune 5 januar 2010

att.: Lise Overby Nørgaard Hune 5 januar 2010 Jammerbugt Kommune Toftevej 43 9440 Aabybro att.: Lise Overby Nørgaard Hune 5 januar 2010 vedr. høring forud for evt. dispensation fra lokalplan 228. Som medlem af Grundejerforeningen Klitheden er jeg

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 1. Basis Jorden elektron Hvor mange elektroner svarer Jordens masse til? 1. Basis 1.0 Indledning 1.1 Tal 1. Brøker 1. Reduktioner 11

Læs mere

En mekanisk analog til klassisk elektrodynamik

En mekanisk analog til klassisk elektrodynamik En mekanisk analog til klassisk elektrodynamik Af (f. 1970) er cand.scient i fysik fra Niels Bohr Institutet i 2000. Artiklen bygger på hans speciale. I dag arbejder han som softwareudikler på Danmarks

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b stk. Peter Harremoës Matematik A med hjælpemidler 16. december 2013 Opagve 6 Variables a isoleres: M = S 1 + a = a + b b a b a = b 1 ( ) 1 b 1 a = b 1 a = b 1 1 b 1 a = b Hvis b = 1, så gælder ligningen

Læs mere

1. Opbygning af et regneark

1. Opbygning af et regneark 1. Opbygning af et regneark Et regneark er et skema. Vandrette rækker og lodrette kolonner danner celler, hvori man kan indtaste tal, tekst, datoer og formler. De indtastede tal og data kan bearbejdes

Læs mere

Vejledende opgaver i kernestofområdet i fysik-a Elektriske og magnetiske felter

Vejledende opgaver i kernestofområdet i fysik-a Elektriske og magnetiske felter Oktober 2012 Vejledende opgaver i kernestofområdet i fysik-a Elektriske og magnetiske felter Da læreplanen for fysik på A-niveau i stx blev revideret i 2010, blev kernestoffet udvidet med emnet Elektriske

Læs mere

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2 MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Indledning: I B-bogen har vi i studieretningskapitlet i B-bogen om matematik-fsik set på parallelkoblinger af resistanser

Læs mere

Tema-lokalplan vedrørende helårsboligformål

Tema-lokalplan vedrørende helårsboligformål Lokalplan027 Tema-lokalplan vedrørende helårsboligformål Kort revideres Delvist ophævet juni 2015 Teknik & Miljø 2007 2 INDHOLDSFORTEGNELSE LOKALPLAN 027 TEMA-LOKALPLAN VEDRØRENDE HELÅRSBEBOELSE REDEGØRELSE...

Læs mere

Bevægelse i to dimensioner

Bevægelse i to dimensioner Side af 7 Bevægelse i to dimensioner Når man beskriver bevægelse i to dimensioner, som funktion af tiden, ser man bevægelsen som var den i et almindeligt koordinatsystem (med x- og y-akse). Ud fra dette

Læs mere

Internet hitlister. En geometrisk præsentation af interesse-afstande Køreplan 01005 Matematik 1 - FORÅR 2006

Internet hitlister. En geometrisk præsentation af interesse-afstande Køreplan 01005 Matematik 1 - FORÅR 2006 Internet hitlister En geometrisk præsentation af interesse-afstande Køreplan 01005 Matematik 1 - FORÅR 2006 1 Formål Formålet med denne projekt-opgave er at finde en geometrisk repræsentation (i 2D eller

Læs mere

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul Bogstavregning En indledning for stx og hf 2008 Karsten Juul Dette hæfte træner elever i den mest grundlæggende bogstavregning (som omtrent springes over i lærebøger for stx og hf). Når elever har lært

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere

Regneark for begyndere

Regneark for begyndere Regneark for begyndere Regneark i Open- og LibreOffice Version: August 2012 Indholdsfortegnelse Hvad er et regneark?...4 Grundlæggende opbygning...4 Kast dig ud i det!...5 Du arbejder med: Din første

Læs mere

Kollektor. Teknisk skole Ringsted Fysikrapport Af Kenneth René Larsen Afleveret d.26. maj 1999. Emitter

Kollektor. Teknisk skole Ringsted Fysikrapport Af Kenneth René Larsen Afleveret d.26. maj 1999. Emitter Kollektor Teknisk skole Ringsted Fysikrapport Af Kenneth René Larsen Afleveret d.26. maj 1999 Basis Emitter 1 Indholdsfortegnelse Problemformulering 3 Transistorens opbygning 4 Transistoren DC forhold

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

LEKTION 4 MODSPILSREGLER

LEKTION 4 MODSPILSREGLER LEKTION 4 MODSPILSREGLER Udover at have visse fastsatte regler med hensyn til udspil, må man også se på andre forhold, når man skal præstere et fornuftigt modspil. Netop modspillet bliver af de fleste

Læs mere

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen Lærervejledning Træn matematik på computer Materialet består af 31 selvrettende emner til brug i matematikundervisningen i overbygningen. De fleste emner består af 3 sider med stigende sværhedsgrad. I

Læs mere

!"!&0 &%%"!" *#&!&&!"!&#-!"# $%&!&!*&!,$" $%0 "#% ) &!,$" (&!"%!0 &'$(""#$) "!* 4&%,&!40!4&%14,&!42!"+11%

!!&0 &%%! *#&!&&!!&#-!# $%&!&!*&!,$ $%0 #% ) &!,$ (&!%!0 &'$(#$) !* 4&%,&!40!4&%14,&!42!+11% Bygningskontoret & Koncern H R,Fysisk Arbejdsm iljø !"#!$%$ %""#$!!$# % $!"#$%&!&!'(&)* $%+,,- "".//!"!&0 &%%"!" *#&!&&!"!&#-!"# $%&!&!*&!,$" $%0 "#% ) &!,$" (&!"%!0 &'$(""#$) "!* ""0"1"2!"+11%!"3"0+!1"34"2!"+11%

Læs mere

Lektion 13 Homogene lineære differentialligningssystemer

Lektion 13 Homogene lineære differentialligningssystemer Lektion 13 Lineære differentialligningssystemer Homogene lineære differentialligningssystemer med konstante koefficienter Inhomogene systemer To-kammer modeller Lotka Volterra (ikke lineært) 1 To-kammer

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Spildevandsplan 2005. Tillæg nr. 11. Lokalplan 203 - Boliger i høm

Spildevandsplan 2005. Tillæg nr. 11. Lokalplan 203 - Boliger i høm Spildevandsplan 2005 Tillæg nr. 11 Lokalplan 203 - Boliger i høm Februar 2010 Indholdsfortegnelse Indholdsfortegnelse... 1 1. Indledning... 2 2. Lovgrundlag... 2 3. Eksisterende forhold... 2 3.1 Lednings-

Læs mere

1. Kræfter. 2. Gravitationskræfter

1. Kræfter. 2. Gravitationskræfter 1 M1 Isaac Newton 1. Kræfter Vi vil starte med at se på kræfter. Vi ved fra vores hverdag, at der i mange daglige situationer optræder kræfter. Skal man fx. cykle op ad en bakke, bliver man nødt til at

Læs mere

Matematik og Fysik for Daves elever

Matematik og Fysik for Daves elever TEC FREDERIKSBERG www.studymentor.dk Matematik og Fysik for Daves elever MATEMATIK... 2 1. Simple isoleringer (+ og -)... 3 2. Simple isoleringer ( og )... 4 3. Isolering af ubekendt (alle former)... 6

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

BYGGEGRUNDE I ØSTBIRK

BYGGEGRUNDE I ØSTBIRK Ejendomsformidling ApS BYGGEBRUNDE OMGIVET AF SMUK NATUR Nybakken er omgivet af smuk natur, med marker, bakker, søer og grønne områder. De 63 parcelhusgrunde ligger centralt og ugeneret i Østbirk, og et

Læs mere

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen.

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke addition bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke - decimaltal bunker osv. Det kan desuden vise decimaler og dermed give eleven visuel støtte

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Studenterkurset

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Kurser for ledige med ret til 6 ugers selvvalg i samarbejde med Haslev byggetekniske højskole.

Kurser for ledige med ret til 6 ugers selvvalg i samarbejde med Haslev byggetekniske højskole. Kurser for ledige med ret til 6 ugers selvvalg i samarbejde med Haslev byggetekniske højskole. Revit Architecture: På dette kursus vil du lære de grundlæggende funktioner som gør dig effektiv på den moderne

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Fysik A - B Aarhus Tech. Niels Junge. Bølgelærer

Fysik A - B Aarhus Tech. Niels Junge. Bølgelærer Fysik A - B Aarhus Tech Niels Junge Bølgelærer 1 Table of Contents Bølger...3 Overblik...3 Harmoniske bølger kendetegnes ved sinus form samt følgende sammenhæng...4 Udbredelseshastighed...5 Begrebet lydstyrke...6

Læs mere

Introduktion til GLIMMIX

Introduktion til GLIMMIX Introduktion til GLIMMIX Af Jens Dick-Nielsen jens.dick-nielsen@haxholdt-company.com 21.08.2008 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige.

Læs mere

AKTUELT TINGLYST DOKUMENT

AKTUELT TINGLYST DOKUMENT AKTUELT TINGLYST DOKUMENT DOKUMENT: Dato/løbenummer: 04.12.2012-1004117603 TINGLYSNINGSDATO: 04.12.2012 08:44:30 EJENDOM: Adresse: Katkærvej 1 0320b 0320bb Adresse: Skovmærkevej 3 0320c Adresse: Katkærvej

Læs mere

Technicolor ved LHC. Mads T. Frandsen

Technicolor ved LHC. Mads T. Frandsen Technicolor ved LHC Af er ph.d.-studerende ved Niels Bohr Institutet og High Energy Physics Center, Syddansk Universitet. E-mail:toudal@ nbi. dk Resumé I denne artikel vil jeg beskrive Technicolor som

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Ttknisk forvaltning Tlf. nr. (06) 96 16 00. Hammel kommune. Lokalplan nr. 6. "Indre Ringgade 11

Ttknisk forvaltning Tlf. nr. (06) 96 16 00. Hammel kommune. Lokalplan nr. 6. Indre Ringgade 11 Ttknisk forvaltning Tlf. nr. (06) 96 16 00 Lokalplan nr. 6 "Indre Ringgade 11 s o E»il ~ æ c ri-f. S l E '^: Mtr. n r., ejerlav, sogn: el ler (i de sønderjydske landsdele)bd. og bl. i tingbogen, art. nr.,

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

1 Sætninger om hovedidealområder (PID) og faktorielle

1 Sætninger om hovedidealområder (PID) og faktorielle 1 Sætninger om hovedidealområder (PID) og faktorielle ringe (UFD) 1. Introducér ideal, hovedideal 2. I kommutativt integritetsområde R introduceres primelement, irreducibelt element, association 3. Begrebet

Læs mere

Partiklers energitab ved passage gennem stof

Partiklers energitab ved passage gennem stof Partiklers energitab ved passage gennem stof Skrevet af Heidi Lundgaard Sørensen, Shuhab Hussain, Martin Spangenberg og Rastin Matin. Vejleder: Lektor Hans Bøggild. Afleveringsdato: 31. marts 2008. Resumé

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

Tillæg nr. 25 til Spildevandsplan

Tillæg nr. 25 til Spildevandsplan Tillæg nr. 25 til Spildevandsplan 2008-2015 Separering af kloaksystem i Hedensted Nord 1 Indholdsfortegnelse 1. Indledning... 1 2. Lovgrundlag... 1 3. Plangrundlag... 1 4. Spildevandsforhold i Hedensted

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af lommeregner (TI89) og programmerne TI-Nspire og Mathcad 0 3 4 3 4 0 3 0 3 0 3 4 x x x x 3 udgave 03 FORORD Dette notat giver en

Læs mere

Differentialligninger med TI Nspire CAS version 3.1

Differentialligninger med TI Nspire CAS version 3.1 Differentialligninger med TI Nspire CAS version 3.1 Der er tilføjet en ny graftype til Graf værkstedet kaldet Diff lign. Denne nye graftype er en implementering af differentialligningerne som vi kender

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

VTU. Auto College. Virksomhedstilfredshedsmåling 2014 Via spørgeskemaundersøgelse. Uddannelser: Personvognsmekaniker Lastvognsmekaniker.

VTU. Auto College. Virksomhedstilfredshedsmåling 2014 Via spørgeskemaundersøgelse. Uddannelser: Personvognsmekaniker Lastvognsmekaniker. VTU Virksomhedstilfredshedsmåling 2014 Via spørgeskemaundersøgelse Uddannelser: 71,0 77,6 62,4 Administration og information Rekruttering af elever 58,7 71,2 Skoleperiodernes indhold Motivation 72,4 72,1

Læs mere

LLZ DESIGN. Skabeloner og stencils

LLZ DESIGN. Skabeloner og stencils DANSK DESIGN LLZ DESIGN Skabeloner og stencils Kataloget er din inspiration til de mange skabeloner, der findes. Du kan bruge skabelonerne kreativt, dekorativt, samt i dit erhverv. Til at lave vægdekorationer,

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Hvad er CAS? Hvad er algebra? Didaktisk analyse af CAS-brug Hvad kan lærerne gøre?

Hvad er CAS? Hvad er algebra? Didaktisk analyse af CAS-brug Hvad kan lærerne gøre? CAS og folkeskolens matematik muligheder og udfordringer Carl Winsløw winslow@ind.ku.dk http://www.ind.ku.dk/winslow Hvad er CAS? Hvad er algebra? Didaktisk analyse af CAS-brug Hvad kan lærerne gøre? 1

Læs mere

Stokastiske processer og køteori

Stokastiske processer og køteori Info Stokastiske processer og køteori 1. kursusgang Jesper Møller Institut for Matematiske Fag Aalborg Universitet http://www.math.aau.dk/ jm JM (I17) VS7-1. minimodul 1 / 40 Info Praktisk information

Læs mere

PARTIELT MOLÆRT VOLUMEN

PARTIELT MOLÆRT VOLUMEN KemiF1 laboratorieøvelser 2008 ØvelseF1-2 PARTIELT MOLÆRT VOLUMEN Indledning I en binær blanding vil blandingens masse være summen af komponenternes masse; men blandingens volumen vil ikke være summen

Læs mere

Matematik og spil. Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag, Kbh. Uni. Mød MATH på KU (måske sidste chance), november 2014

Matematik og spil. Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag, Kbh. Uni. Mød MATH på KU (måske sidste chance), november 2014 Enhedens navn Matematik og spil Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag, Kbh. Uni. Mød MATH på KU (måske sidste chance), november 2014 På disse slides skal spil læses som væddemål. Hvorfor

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Baggrundsnote om logiske operatorer

Baggrundsnote om logiske operatorer Baggrundsnote om logiske operatorer Man kan regne på udsagn ligesom man kan regne på tal. Regneoperationerne kaldes da logiske operatorer. De tre vigtigste logiske operatorer er NOT, AND og. Den første

Læs mere

MATEMATIK ( 5 h ) DATO: 8. juni 2009

MATEMATIK ( 5 h ) DATO: 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 5 h ) DATO: 8. juni 2009 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere