Mat2SS Vejledende besvarelse uge 11

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Mat2SS Vejledende besvarelse uge 11"

Transkript

1 MatSS Vejledende besvarelse uge Eksamen V99/00 opg. a Kønsfordelingen 996 den samme for de tre skoler Mænd Kvinder I alt København 5 = n x 56 = x 8 = n Odense 9 = n x 06 = x 5 = n Århus 0 = n x 40 = x 70 = n I alt 84 = n x 40 = x 486 = n Lad X, X og X betegne antallet af kvinder optaget på sociale højskoler i hhv. København, Odense og Århus i 996. Da er 56 en observation af X, 06 en observation af X og 40 en observation af X. Vi antager at de tre stokastiske variable X, X og X er indbyrdes uafhængige. Vi antager også at hver X i binn i, p i. Vi har altså en statistisk model som i IH5.. med k = : {0,,..., 8} {0,,..., 5} {0,,..., 70}, P p,p,p p,p,p [0,] P p X = x = p x x p 8 x p x x p 5 x p x x p 70 x Vi ønsker at undersøge om forholdet mellem mænd og kvinder er det samme i de tre grupper. Vi vil altså teste for om andelen af kvinder kan antages at være den samme i de tre grupper: H : p = p = p = p [0, ] IH5.. giver kvotientteststørrelsen, og vi beregner log Qx = 56 log + 5 log + 06 log log + 40 log + 0 log =,0 min{n x, x } min{n, n, n } 84 5 = =, 5 n 486 kan vi ifgl. bem. 5.. approksimere testsandsynligheden: ɛx F χ,0 = 0,8% Vi godkender altså hypotesen og kan således antage at kønsfordelingen er den samme på de tre skoler. Kvindeandelen på skolerne estimeres til ˆp = = 8,7%, og estimatorens fordeling er givet ved 486ˆp bin486, p, jf. IH5... b Kønsfordelingen ændret sig fra 984 til 996 Mænd Kvinder I alt = m y 8 = y 0 = m = m y 40 = y 486 = m I alt 59 = m y 60 = y 789 = m

2 Lad nu Y betegne kvindeandelen i 984, og Y kvindeandelen i 996. Det antages at Y bin0, q og at Y og Y er uafhængige. Da Y = X + X + X har vi da X i binn i, p ifgl. den i a godkendte hypotese at Y bin486, q med q = p, jf. MS er således en observation af Y og 40 en observation af Y, og vores statistiske model er således som i IH5.. med k = : {0,,..., 0} {0,,..., 486}, P q,q q,q [0,] P q Y = y = p y y p 0 y p y y p 486 y p y y p 70 y Vi ønsker at undersøge om forholdet mellem mænd og kvinder er det samme de to år. Vi vil altså teste for om andelen af kvinder kan antages at være den samme i de to grupper: H : q = q = q [0, ] IH5.. giver kvotientteststørrelsen, og vi beregner log Qy = 8 log + 75 log log + 84 log = 6,6 min{m y, y } min{m, m, m } 59 0 = = 6 5 m 789 kan vi ifgl. bem. 5.. approksimere testsandsynligheden: ɛy F χ 6,6 =,% Vi forkaster altså hypotesen. For 984 estimeres kvindeandelen til ˆq = 8 0 = 75,%, og for 996 til ˆq = ˆp = 8,7%. Kvindeandelen er således vokset. Estimatorernes fordelinger er desuden givet ved 0ˆq bin0, q og ˆq bin486, q. Eksamen S00 opg. a Arbejdsstilling ifht. tilbagetrækningsform På en gang Delvis Fleksibel arbejdstid Andet/uoplyst I alt Selvstændige 6 = x 7 = x = x 8 = x 4 74 = n Lønmodtagere 9 = x 5 = x 4 = x = x 4 90 = n I alt 9 = x 69 = x 57 = x 9 = x 4 64 = n Lad X rs betegne antallet af folk med arbejdsstilling r der planlægger tilbagetrækningsform s. r = svarer til selvstændige, r = lønmodtagere. s = svarer til På en gang, s = til Delvis, s = til Fleksibel arbejdstid, og s = 4 til Andet/uoplyst. Sæt X = X, X, X, X 4 og X = X, X, X, X 4. 6, 7,, 8 er da en observation af X, og 9, 5, 4, en observation af X. Det antages at X poly74, p og X poly90, p med p = p, p, p, p 4, p = p, p, p, p 4 4, samt at X og X er uafhængige. Vores statistiske model er da som i IH6.. med k = og m = 4:

3 D 4 74 D 4 90, P p,p p,p P p,p X = x = p xs s x, x, x, x 4 x, x, x, x 4 Da vi skal undersøge om de to grupper har samme ønsker om tilbagetrækningsform, tester vi for H : p = p = p 4 IH6.. giver kvotientteststørrelsen, og vi beregner log Qx = 8, udfra de i skemaet angivne værdier for x rs erne og n og n. s= min{n, n } min{x, x, x, x 4 } 74 9 = n 64 =,86 < 5 så bem. 6.. giver os egentlig ikke lov til at approksimere testsandsynligheden med χ -fordelingen, men siden F χ 4 8, =, 0 6 kan vi stadig være sikre på at testsandsynligheden ɛx er klart mindre end 5% eftersom testsandsynligheden ikke afviger så kraftigt fra χ -fordelingen, så at sige. Så hypotesen forkastes altså. Vi kan antage at de to grupper har forskellige ønsker om tilbagetrækningsform. Fordelingen på de enkelte tilbagetrækningstyper = 5%, %, %, % og for lønmodtagerne til ˆp = 9 90, 5 90, 4 90, 90 = 67%, 8%, %, 4%, og disse estimaters fordelinger er givet ved 74ˆp poly74, p og 90ˆp poly90, p, jf. IH6... estimeres for de selvstændige til ˆp = 6 74, 7 74, 74, 8 74 b Estimat for andelen der ønsker at trække sig tilbage på en gang Der er i alt 6 selvstændige og 46 4 lønmodtagere. Et skøn for hvor mange der ønsker at trække sig tilbage på en gang, må således være 6ˆp + 464ˆp = = Bemærk: jeg angiver estimatet i hele tal da andet ikke ville give mening. c Undersøgelsens ifht. arbejdsstyrkens fordeling i de to grupper Lønmodtagere Selvstændige I alt Undersøgelsen 90 = m y 74 = y 64 = m Arbejdsstyrken 464 = m y 6 = y = m I alt 466 = m y 687 = y 0780 = m Lad nu Y betegne antal selvstændige i undersøgelsen, og Y antal selvstændige i arbejdsstyrken. Det antages at Y bin64, q, at Y bin07456, q, og at Y og Y er uafhængige. 74 er således en observation af Y og 6 en observation af Y. Vores statistiske model er således som i IH5.. med k = : {0,,..., 64} {0,,..., 07456}, P q,q q,q [0,] P q Y = y = p y p 64 y p y y p y p y y p 70 y y s= p xs s

4 Vi ønsker at undersøge om forholdet mellem selvstændige og lønmodtagere er det samme i de to grupper: H : q = q = q [0, ] IH5.. giver kvotientteststørrelsen, og vi beregner log Qy = 74 log + 90 log log log = 0,0465 min{m y, y } min{m, m, m } = = 7 5 m 0780 kan vi ifgl. bem. 5.. approksimere testsandsynligheden: ɛy F χ 0,0465 = 8,9% Så hypotesen godkendes. Det kan antages at undersøgelsens andel af selvstændige svarer til arbejdsstyrkens. Andelen af selvstændige estimeres desuden til ˆq = = 9,9%, og dette estimats fordeling er givet ved 0780ˆq bin0780, q, jf. IH5... Eksamen V0/04 opg. Lad X bin, p hvor p [0, ]. Definer Y = {} X. I.e. en ny stokastisk variabel Y defineres til når X er lig, og 0 ellers. a Sandsynlighedsfunktionen p for Y Y er koncentreret på {0, } så p : {0, } [0, ] med p = P Y = = P X = = p p = p p b EZ = p + p p p 0 = p = p p Definer Z = X + Y. MS.7.7 giver EX + Y = EX + EY. Da X bin, p giver MS s. 9 at EX = p, og EY = 0 p p + p p = p p. Dermed: EZ = p + p p = p p p. c CovX, Y = p p p, samt hvornår X, Y er ukorrelerede eller uafhængige Vi bemærker først at XY = Y. Herefter bruges MS s. 96: CovX, Y = EXY EXEY = EY EXEY = EXEY = pp p 4

5 Vi bemærker nu at CovX, Y = 0 hviss corrx, Y = 0, jf. MS def Så når vi skal finde de p for hvilke X og Y er ukorrelerede, skal vi blot finde rødderne i pp p. Og disse er 0, og. Formuleringen er Er der værdier af p for hvilke X og Y er uafhængige? så det er nok at angive blot een værdi af p for hvilke det gælder. Da X og Y er ukorrelerede hvis de er uafhængige jf. MS s. 00 vil et evt. brugbart p være 0, eller. Selvom det er nok at angive een værdi, går jeg dem alle tre igennem: p = I dette tilfælde er X, Y koncentreret på {0, 0,, 0,,,, }. Da denne mængde ikke er en produktmængde, er X og Y ikke uafhængige, jf. MS s. 84. p = 0 I dette tilfælde er X, Y koncentreret på {0, 0} og P X, Y = 0, 0 = = = P X = 0 P Y = 0 trivielt, så X og Y uafhængige. p = I dette tilfælde er X, Y koncentreret på {, 0} og P X, Y =, 0 = = = P X = P Y = 0 trivielt, så X og Y uafhængige. så X og Y er uafhængige netop når p {0, }. d Variansen af Z MS s. 97 giver en måde at beregne variansen af en sum udfra kovariansen: VarZ = VarX + VarY + CovX, Y = p p + p p p p + p p p da X bin, p og Y bin, p p, og variansen for binomialfordelingen er angivet MS s. 0. e Simultane sandsynlighedsfunktion p for X, Y X, Y er koncentreret på {0, 0,, 0,,,, 0}, så p : {0, 0,, 0,,,, 0} [0, ]. For x, y {0, 0,, 0,,,, 0} har vi p x, y = P X, Y = x, y = P X = x = p x p x x f Sandsynlighedsfunktionen p for Z Z er koncentreret på {0,, } så p : {0,, } [0, ]. Eksamen S0 opg. p 0 = P X = 0 = p p = P X = = p p p = P X = + P X = = p p + p a Matematisk linje: kønsfordeling uafh. af afgangsklassetrin? Piger Drenge I alt 9. klasse 7 = n x = x 48 = n 0. klasse 8 = n x 8 = x 6 = n I alt 5 = n x 9 = x 64 = n 5

6 Lad nu X betegne antal drenge fra 9. klasse, og X antal drenge fra 0. klasse. Det antages at X bin48, p, at X bin6, p, og at X og X er uafhængige. er således en observation af X og 8 en observation af X. Vores statistiske model er således som i IH5.. med k = : {0,,..., 48} {0,,..., 6}, P p,p p,p [0,] P p X = x = p x p 48 x p x x p 6 x p x x p 70 x x Vi ønsker at undersøge om forholdet mellem selvstændige og lønmodtagere er det samme i de to grupper: H : p = p = p [0, ] IH5.. giver kvotientteststørrelsen, og vi beregner log Qx = log + 7 log log + 8 log = 0,89 min{n x, x } min{n, n, n } 9 6 = = 7,5 5 n 64 kan vi ifgl. bem. 5.. approksimere testsandsynligheden: ɛx F χ 0,89 = 66,4% Så hypotesen godkendes. Det kan antages at kønsfordelingen er den samme for de to afgangsklassetrin. Drengeandelen estimeres desuden til ˆp = 9 64 = 45,%, og dette estimats fordeling er givet ved 64ˆp bin64, p, jf. IH5... b Sammenhæng mellem afgangsklassetrin og valg af gymnasial uddannelse? Matematisk Sproglig HHX HTX I alt 9. klasse 48 = x = x = x 0 = x 4 4 = n 0. klasse 6 = x 4 = x = x 5 = x 4 56 = n I alt 64 = x 7 = x 4 = x 5 = x 4 70 = n Lad X rs betegne antallet af elever med fra afgangsklassetrin r der har valgt gymnasial uddannelse s. r = svarer til 9. klasse, r = 0. klasse. s = svarer til matematisk linje, s = til sproglig linje, s = til HHX, og s = 4 til HTX. Sæt X = X, X, X, X 4 og X = X, X, X, X 4. 48,,, 0 er da en observation af X, og 6, 4,, 5 en observation af X. Det antages at X poly4, p og X poly56, p med p = p, p, p, p 4, p = p, p, p, p 4 4, samt at X og X er uafhængige. Vores statistiske model er da som i IH6.. med k = og m = 4: D 4 4 D 4 56, P p,p p,p 4 P p,p X = x = 4 x, x, x, x s= p xs s 56 x, x, x, x 4 4 s= p xs s

7 Da vi skal undersøge om de to grupper har samme ønsker om tilbagetrækningsform, tester vi for H : p = p = p 4 IH6.. giver kvotientteststørrelsen, og vi beregner log Qx = 0,5 udfra de i skemaet angivne værdier for x rs erne og n og n. min{n, n } min{x, x, x, x 4 } 56 4 = n 70 =, 5 så ifgl. bem. 6.. kan vi approksimere testsandsynligheden: ɛx F χ 4 0,5 =,4 0 4 Så hypotesen forkastes. Valg af gymnasial uddannelse afhænger af afgangsklassetrin. Fordelingen på de enkelte uddannelser estimeres for 9. klasse til ˆp = 48 4, 4, 4, 0 4 = 4%, 0%, %, 6% og for 0. klasse til ˆp = 6 56, 4 56, 56, 5 56 = 9%, 5%, 8%, 9%, og disse estimaters fordelinger er givet ved 4ˆp poly4, p og 56ˆp poly56, p, jf. IH6... c Pigeandel i Høje Taastrup ifht. på landsplan Lad nu X betegne antallet af piger på der startede på gymnasiale uddannelser i Høje Taastrup 00. Da er = 0 en observation af X. Det antages at X bin90, p hvor p [0, ] er pigeandelen på de gymnasiale uddannelser i Høje Taastrup. Den statistiske model er således som i IH4..: {0,,..., 90}, Pp p [0,] 90 P p X = x = p x p 90 x x IH4.. giver således et estimat af pigeandelen: ˆp = 0 90 = 57,9%, og dette estimat har fordelingen 90ˆp bin90, p. I eksamenssættet angives pigeandelen på landsplan til xx. IH4.. bruges nu med xx som sætningens p 0, testet udføres og der konkluderes. Sara Arklint

Statistik og Sandsynlighedsregning 1. IH kapitel 6

Statistik og Sandsynlighedsregning 1. IH kapitel 6 Statistik og Sandsynlighedsregning 1 IH kapitel 6 Overheads til forelæsninger. Uge 41/2005 1 Test i Polynomialfordelingen Forsøg: n uafhængige gentagelse af forsøg med m udfald. Vi observerer x = x 1,...,

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag    susanne Statistik og Sandsynlighedsregning 1 STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 7. undervisningsuge, mandag 1 Estimation og konfidensintervaller

Læs mere

Statistik i basketball

Statistik i basketball En note til opgaveskrivning jerome@falconbasket.dk 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ. Statistiske modeller (Definitioner) Statistik og Sandsynlighedsregning 2 IH kapitel 0 og En observation er en vektor af tal x (x,..., x n ) E, der repræsenterer udfaldet af et (eller flere) eksperimenter.

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Lineære transformationer, middelværdi og varians Helle Sørensen Uge 8, onsdag SaSt2 (Uge 8, onsdag) Lineære transf. og middelværdi 1 / 15 Program I formiddag: Fordeling

Læs mere

hvor a og b er konstanter. Ved middelværdidannelse fås videre

hvor a og b er konstanter. Ved middelværdidannelse fås videre Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den

Læs mere

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Stastistik og Databehandling på en TI-83

Stastistik og Databehandling på en TI-83 Stastistik og Databehandling på en TI-83 Af Jonas L. Jensen (jonas@imf.au.dk). 1 Fordelingsfunktioner Husk på, at en fordelingsfunktion for en stokastisk variabel X er funktionen F X (t) = P (X t) og at

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte

Læs mere

Nanostatistik: Opgavebesvarelser

Nanostatistik: Opgavebesvarelser Nanostatistik: Opgavebesvarelser JLJ Nanostatistik: Opgavebesvarelser p. 1/16 Pakkemaskine En producent hævder at poserne indeholder i gennemsnit 16 ounces sukker. Data: 10 pakker sukker: 16.1, 15.8, 15.8,

Læs mere

Repetition Stokastisk variabel

Repetition Stokastisk variabel Repetition Stokastisk variabel Diskret stokastisk variabel Udfaldsrum endelige eller tællelige mange antal elementer Sandsynlighedsfunktion f(x) er ofte tabellagt Udregning af sandsynligheder P( a < X

Læs mere

Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@imm.dtu.dk Dagens nye emner afsnit 6.3 (og 6.4 Betingede

Læs mere

Projektopgave til Mat2SS. Espen Højsgaard (CPR xxxx) Rune Højsgaard (CPR xxxx)

Projektopgave til Mat2SS. Espen Højsgaard (CPR xxxx) Rune Højsgaard (CPR xxxx) Projektopgave til MatSS Espen Højsgaard (CPR 04038-xxxx) Rune Højsgaard (CPR 090678-xxxx) 1 1 Samme sandsynlighed for drengefødsel Vi har som udgangspunkt for løsning af opgaven brugt følgende tabeller,

Læs mere

Sandsynlighedsregning Oversigt over begreber og fordelinger

Sandsynlighedsregning Oversigt over begreber og fordelinger Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)

Læs mere

Estimation og konfidensintervaller

Estimation og konfidensintervaller Statistik og Sandsynlighedsregning STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Estimation og konfidensintervaller Antag X Bin(n,

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Betingede sandsynligheder Aase D. Madsen

Betingede sandsynligheder Aase D. Madsen 1 Uge 12 Teoretisk Statistik 15. marts 2004 1. Betingede sandsynligheder Definition Loven om den totale sandsynlighed Bayes formel 2. Betinget middelværdi og varians 3. Kovarians og korrelationskoefficient

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Tidlige eksempler. Susanne Ditlevsen Institut for Matematiske Fag susanne

Tidlige eksempler. Susanne Ditlevsen Institut for Matematiske Fag    susanne Statistik og Sandsynlighedsregning Repetition Statistik Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne New England Journal of Medicine gav i 2000 et

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Sandsynlighedsregning Stokastisk variabel

Sandsynlighedsregning Stokastisk variabel Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på

Læs mere

Nanostatistik: Opgaver

Nanostatistik: Opgaver Nanostatistik: Opgaver Jens Ledet Jensen, 19/01/05 Opgaver 1 Opgaver fra Indblik i Statistik 5 Eksamensopgaver fra tidligere år 11 i ii NANOSTATISTIK: OPGAVER Opgaver Opgave 1 God opgaveskik: Når I regner

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Simultane fordelinger Kovarians og korrelation Uafhængighed Betingede fordelinger - Middelværdi og varians - Sammenhæng med uafhængighed 1 Figur 1: En tæthedsfunktion

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

INSTITUT FOR MATEMATISKE FAG c

INSTITUT FOR MATEMATISKE FAG c INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 2.4-2.5 Bayes sætning Uafhængige stokastiske variable - Simultane fordelinger - Marginale fordelinger - Betingede fordelinger Uafhængige hændelser - Indikatorvariable Afledte stokastiske

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistisk Model Indhold Binomialfordeling Sandsynlighedsfunktion Middelværdi og spredning 1 Aalen: Innføring i statistik med medisinske eksempler

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Estimation: Kapitel 9.7-9.10 Estimationsmetoder kap 9.10 Momentestimation Maximum likelihood estimation Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1

Læs mere

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Oversigt over nyttige fordelinger

Oversigt over nyttige fordelinger Oversigt over nyttige fordelinger Helene Regitze Lund Wandsøe November 14, 2011 1 Bernoulli-fordelingen 1 Når et eksperiment har to mulige udfald: succes eller fiasko. X er en stokastisk variabel med følgende

Læs mere

Opgaver i sandsynlighedsregning

Opgaver i sandsynlighedsregning Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)

Læs mere

Statistik for ankomstprocesser

Statistik for ankomstprocesser Statistik for ankomstprocesser Anders Gorst-Rasmussen 20. september 2006 Resumé Denne note er en kortfattet gennemgang af grundlæggende statistiske værktøjer, man kunne tænke sig brugt til at vurdere rimeligheden

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Vejledende løsninger til opgaver i kapitel 6

Vejledende løsninger til opgaver i kapitel 6 Vejledende løsninger til opgaver i kapitel Opgave 1: a) Den stokastiske variabel, X, der angiver, om en elev består, X = 1, eller dumper, X =, sin eksamen i statistik. b) En binomialfordelt variabel fremkommer

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen Vægte motiverende eksempel Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - kkb@mathaaudk Institut for Matematiske Fag Aalborg Universitet Højdeforskellen mellem punkterne P

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning Fejlforplantning Landmålingens fejlteori Lektion 5 Fejlforplantning - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Landmåling involverer ofte bestemmelse af størrelser som ikke kan

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 17. december 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 17. december 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider Skriftlig prøve, den: 17. december 015 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere

StatDataN: Middelværdi og varians

StatDataN: Middelværdi og varians StatDataN: Middelværdi og varians JLJ StatDataN: Middelværdi og varians p. 1/33 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle egetræer,

Læs mere

Landmålingens fejlteori - Lektion 5 - Fejlforplantning

Landmålingens fejlteori - Lektion 5 - Fejlforplantning Landmålingens fejlteori Lektion 5 Fejlforplantning - kkb@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/30 Fejlforplantning Landmåling involverer ofte bestemmelse af størrelser som ikke

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 0 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Institut for Matematiske Fag Aalborg Universitet 1/1 Vægtet

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Afsnit 3.3-3.5 Varians Eksempel: Forventet nytte Kovarians og korrelation Middelværdi og varians af summer af stokastiske variabler Eksempel: Porteføljevalg 1 Beskrivelse af fordelinger

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 28. maj 2010 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 28. maj 2010 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side af 6 sider Skriftlig prøve, den: 8. maj 00 Kursus nr : 005 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord nr Der

Læs mere

STATISTIKNOTER Simple binomialfordelingsmodeller

STATISTIKNOTER Simple binomialfordelingsmodeller STATISTIKNOTER Simple binomialfordelingsmodeller Jørgen Larsen IMFUFA Roskilde Universitetscenter Februar 1999 IMFUFA, Roskilde Universitetscenter, Postboks 260, DK-4000 Roskilde. Jørgen Larsen: STATISTIKNOTER:

Læs mere

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner Stokastiske variable: udfald

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Løsning til eksamen 16/

Løsning til eksamen 16/ 1 IMM - DTU 245 Probability 24-5-11 BFN/bfn Løsning til eksamen 16/12 23 Spørgsmål 1) 2 44% Man benytter formlen for skalering og positionsskift i forbindelse med varians og standardafvigelse, samt formlen

Læs mere

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1 (a) Denne opgave bygger på resultaterne fra 2 forsøg med epo-behandling af for tidligt fødte børn, idet gruppe 1 og 3 stammer fra første forsøg, mens gruppe 2 og 4 stammer fra det andet. Det må antages,

Læs mere

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro Uge 48 II Teoretisk Statistik 7. november 003 Numerisk modelkontrol af diskrete fordelinger: intro Eksempel: kvalitetskontrol Goodness-of-fit test: generel teori Endeligt udfaldsrum Udfaldsrum uden øvre

Læs mere

Rettevejledning til Kvantitative metoder 1, 2. årsprøve 18. juni timers prøve med hjælpemidler

Rettevejledning til Kvantitative metoder 1, 2. årsprøve 18. juni timers prøve med hjælpemidler Rettevejledning til Kvantitative metoder 1, 2. årsprøve 18. juni 2007 4 timers prøve med hjælpemidler Opgaven består af re delopgaver, som alle skal besvares. De re opgaver indgår med samme vægt. Opgaverne

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Afsnit 4.1-4.2, 4.7: Bernoulli fordeling Binomial fordeling Store Tals Lov (Laws of Averages, Laws of Large Numbers) 1 Bernoulli fordeling Kvantitative Metoder

Læs mere

Sandsynlighed og Statistik

Sandsynlighed og Statistik 36 Sandsynlighed og Statistik 6.1 Indledning Denne note beskriver de statistiske begreber og formler som man med rimelig sandsynlighed kan komme ud for i eksperimentelle øvelser. Alt er yderst korfattet,

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 4 Statistik & sandsynlighedsregning 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser Uge 36 Velkommen tilbage Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl. -2 i Kirkesalen, Studiestræde 38 Øvelser Hold -4 og 6: mandag og onsdag kl. 8-; start 3. september Hold 5: tirsdag

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

3 Stokastiske variable 3.1 Diskrete variable

3 Stokastiske variable 3.1 Diskrete variable 3 Stokastiske variable 3.1 Diskrete variable Punktsandsnligheden benævnes P(x) = P(X = x). {x, P(x)} er en sandsnlighedsfordeling for den stokastiske variabel, X, hvis 1) P(x) $ 0 for alle værdier af x.

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl?

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl? Module 6: Exercises 6.1 To laboranter....................... 2 6.2 Nicotamid i piller..................... 3 6.3 Karakterer......................... 5 6.4 Blodtryk hos kvinder................... 6 6.5

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,

Læs mere

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1

Læs mere