Mujtaba og Farid Integralregning

Størrelse: px
Starte visningen fra side:

Download "Mujtaba og Farid Integralregning 06-08-2011"

Transkript

1 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven: ) Integration af potensfunktioner: ) Integration af sum og Differens: ) Integration ved Multiplikation med konstant: ) Integration af Naturlig Eksponentialfunktion: ) Integration af Cosinus og Sinus: ) Bestemmelse af konstanten:... 5 Partiel Integration eller delvis integration: ) Integration af den naturlige logaritmefunktion: ) Integral ved substitution: Bestemte integraler:... 6 Venstre summen:... 7 Højresummen:... 9 Trapez summer: Regneregler for bestemt integral: Partiel integration Indskudsreglen: Arealebestemelser: Hovedsætning om Arealbestemmelse Eksempel Eksempel:

2 Integral regning: Integral er udvidelser af summering er uendelige mange små dele. Ved hjælp af integral kan vi find arealer for de længder som er svære at regne ud ligesom at finde arealet en bue osv. Ubestemt integral: Der er sammenhænge mellem differentiation og integration hvor vi kan se den på nedenstående model. Differentier F Integrer. f Integrer. Differentier f.f (x) F (x) den afledte af (x) stamfunktion til f (F (X))` = f(x) Skrive måde ved integration: F (x) = Definition: Hvis funktionen F opflyder betingelsen F (x)= f(x), så er F(x) stamfunktion til f eller det ubestemte integral. = f(x ) Da. F (x) = 2

3 Integrationsprøven: Ved integrationsprøven kan man kontrollere om en funktion F er en stamfunktion til f ved at differentier F og se om vi får f(x). F (x) = f (x) Mængden af stamfunktion: Hvis F er stamfunktion til f så er alle funktioner af typen F + K også er en stamfunktion til f og der findes ikke andre stamfunktioner. K er en vilkårlig konstant. 1) Integration af potensfunktioner: For en potensfunktion f (x) = x a gælder, at For a -1 for a = -1 For x >0 k= є R 2) Integration af sum og Differens: For to funktioner f og g gælder:

4 I disse polynomierne integrer man hver led for sig, og tilsvarende teknik kan anvendes også på andre funktioner som er en sum eller differens af nogle elementære funktioner. 3) Integration ved Multiplikation med konstant: For en funktion f og k gælder. Note: Konstante faktorer sættes udenfor integral tegnet for at give overblik. Hvis integral er en polynomiums brøk, hvor tællers grad er større eller lige med nævnernes udfør polynomiers division. 4) Integration af Naturlig Eksponentialfunktion: For den naturlige eksponentialfunktion f(x) =e x gælder, at Hvor K = R er en vilkårlig konstant. 5) Integration af Cosinus og Sinus: For funktionerne cosinus og sinus gælder, at Hvor K = є R er en vilkårlig konstant. 4

5 6) Bestemmelse af konstanten: Sker ved hvis stamfunktionen skal går igennem et specifikt punkt. Eksempel: vi vil gerne bestemme stamfunktion F til f(x) = 4x 3 og F(2) =1 F(x) = Hvor K = є R er en vilkårlig konstant. F(2) = 1 Vi sætter 2 i x s plads. 2*2 2-3*2+k=1 K=1-8+6 K=-1 F(x) = 2x 2-3x-1 Partiel Integration eller delvis integration: Funktioner som kan udtrykkes som et produkt eller en brøk af to andre funktioner samt sammensætte funktioner, kan løses ved hjælp af delvis integration. For to funktioner f og g med stamfunktion G gælder at 5

6 7) Integration af den naturlige logaritmefunktion: For den naturlige logaritmefunktion ln(x) gælder at Bevis:.f(x)= ln (x) hvor f (X)= g(x)= 1 G(x)= x 8) Integral ved substitution: Denne regel benyttes ofte til integration af sammensatte funktioner og betegnes substitution. Hvis vi har en sammensat funktion. Af formen f(g(x))*g (x) så gælder der at..t= g(x) 2 Bestemte integraler: Ved hjælp af bestemt integral kan vi bestemme arealet af en figur som ikke er begrænset af rette linjestykker. For eksempel denne figur. Y A.a.b x 6

7 Ved hjælp af denne formel kan vi bestem arealet mellem punktet a og punktet b. Under grafen f. I forbindelse med det bestemte integral regning kan vi finde arealer vha. summer. Vi kan finde det vha. venstre, højre og trapez sum. Jo mindre intervallerne er jo tættere kommer man på den rigtigt svar. Vi ønsker at bestemme arealet af det markerede område (A) fra a til b. A er bestemt ved: A =,(x, y) a x b ^ 0 y f(x)- Man kan inddele intervallet *a;b+ i et antal små delintervaller, hver af bredden/intervallængde Δx. Intervallængden bestemmes som: Δx = x i x i-1 = b-a / n, i = 1,2,, n. Venstre summen: For at finde arealet vha. af venstre summen, skal man dele x-aksen i en del intervaller, som bliver til rektangler. Rektanglernes højde er funktionsværdien i venstre endepunkt. Man finder arealet af hver eneste rektangel og ligger dem sammen. I første omgang siger vi, at vores rektanglers bredde er 1 og det skal man gange med højden. Man kan finde arealet endnu mere præcist, hvis man deler A i flere intervaller, hvor bredden bliver til ½. Nu får vi dobbelt så mange intervaller og derfor bliver vores areal mere præcist. På denne måde kan man fortsætte. Jo mindre bredden af intervallerne bliver jo mere præcist resultat får vi. Nedenfor har vi tegnet en graf, hvor vi skal finde arealet af kurven. Først deler vi grafen ud i 7 intervaller og regner arealet, derefter deler vi grafen (A) i 14 intervaller, hvor vi får et andet areal. vi får to forskellige resultater, hvilket beviser at med en forøgelse af intervaller øges præcisionen af resultatet. 7

8 Nu viser vi, hvordan vi finder arealet af de to grafer med forskellige antal intervaller. Først finder vi den med 7 intervaller og bagefter den med 14 intervaller. V(n) = 1 * (f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)) V(7) = 1*( 3,5+5,6+6,8+7,3+7,5+7+5,3) = 43 V(n)= ½ *( f(1½)+f(2)+f(2½)+f(3)+f(3½)+f(4)+f(4½)+f(5)+f(5½)+f(6)+f(6½)+f(7)+f(7½)+f(8)+f(8,5)) V(14)= ½ *( 2,2+3,5+4,6+5,6+6,1+6,8+7,1+7,3+7,5+7,5+7,3+7+6,2+5,3) = 42 V n A for n Her kan vi se, at vi får to forskellige resultater, da vi har inddelt den ene graf i 7 intervaller og den anden i 14 intervaller. Vi får et mere præcist resultat i den med flere intervaller, så arealet af A er ca

9 Højresummen: At finde arealer vha. højre summen ligner meget metoden med venstre summen. Her rammer rektanglers højde endepunkterne på deres højre side, som vi har tegnet det nedenfor. Resten er fuldstændig ligesom at venstre summe, hvor man kan dele det i intervaller med 1 i bredde, intervaller med ½ brede eller intervaller med 1/4. Så lægger man alle intervallerne sammen og ganger det med bredden af intervallerne. Vi regner arealet ud på samme måde. Her finder jeg arealet vha. højre summen, hvor jeg har delt grafen i 8 intervaller med bredden en, man kan selvfølgelige også dele i flere intervaller og regne ud. H(n) = 1 * (f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)+f(9)) H(8)= 1* ( 4,3+6+6,5+6,1+5,3+4,3+2,8+1,2 = 42,5 H n A for n 9

10 Trapez summer: Her deler man det også i intervaller, men som vi kan se på tegningen nedenfor, så er intervallernes sider i forskellige højder. For at finde arealet vha. trapezsummen måler vi begge sider af intervallerne og divider den med en halv. På den måde kommer vi tættest på arealet. Når vi divider den med 2 er det fordi, at vi lægger begge siders højder sammen og dividerer med 2 så vi får en højde, der ligger lige i midten. Vi ganger selvfølgelige med bredden for at finde arealet. På den måde gør man det i alle intervallerne, så har vi et areal til sidst. T(n)= ½h (f(x0)+f(x1)) + ½h (f(x1)+f(x2)) + ½h (f(x n-2 )+f(x n-1 )) + ½h(f (x n-1 ) + f (x n )). Vi kan se, at arealet af de her trapezer er middeltallet mellem vores to rektanglers arealer, som hører til højre- og venstresummen og derfor kan vi skrive formlen for det således: T n = ½ (H n + V n ) T n A for n F er stamfunktion til f så 10

11 Regneregler for bestemt integral: Vi kan bruge de samme regne regler som vi har brugt ved ubestemt integraler., differens og multiplikation med en konstant. 11

12 Partiel integration Partiel integration er når der ønskes integreret et produkt af f.eks. f(x) og g(x), eller når det er en kvotient til andre funktioner. Hvis G(x)er en stamfunktion til g(x) er følgende gældende: Bevis: For at bevise ovenstående bruges kontrol af ligninger, hvor højre side af lighedstegnet differentieres, dette skulle gerne være lig med venstre siden integral. Regnereglen for differentiation af en differens benyttes Her er brugt formlen for differentiation af et produkt Det er nu bevist at den højre side af lighedstegnet er stamfunktionen resultat på begge sider. f(x)*g(x), da det bliver det samme Eksempel 1 side 260 A: Eksempel med partiel integration. 12

13 Indskudsreglen: Lad f være en funktion og a. Arealebestemelser: Her vil vi vise, at arealet kan bestemmes for vilkårlige funktioner uanset deres grafers placering i forhold til hinanden. Det bestemte integral kan bruges til bestemmelse af arealer. For en funktion f, hvis graf sammen med x- aksen, linien x = a og linien x=b, afgrænser visse punktmængder, er det bestemte integral. Arealet af punktmængderne over x-aksen minus arealet af punktmængderne under x-aksen. = A 1 A 2 + A 3 -A 4 Se figuren på side 288 i A-bogen, da tegningen blev ikke særlig flot ;) 13

14 Hovedsætning om Arealbestemmelse Antag at f(x) g(x) for alle x *a ; b]. Da er arealet af A = {(x, y) a x b ^ g(x) y f(x) } bestemt ved: - g(x)) dx Se beviset på side 290 i A-bogen. Eksempel. Som vi ved at vi bruger integral for at finde arealer, her kan vi se på et eksempel hvor vi ser hvordan vi kan bruge integral i praktisk. Vi bruger integral regning i vores nationale økonomi hvor vi, bestemer udbuds kurve, efterspørgsel kurve, priser, og mængde for produkter. Betragt en efterspørgsels kurve f(x) hvor f er prisen pr. enhed, og x er mængden i antal enheder.f(x) = forbruger overskud. Pris.a P 0 X 0 Mængde 14

15 Eksempel: En virksomheds overskud i tiden x i år kan beskrives ved f(x) Det samlede overskud de først 10 år er da bestemt ved stamfunktionen til. For x >,= 0 til x=o Samlede overskud efter 10 år =207 millioner 15

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b 3 -Integralregning Hayati Balo, AAMS,Århus 3. Stamfunktioner Der er to slags integralregning:. Det ubestemte integrale som betegnes med f (x)dx. Det bestemte integrale som betegnes med b a f (x)dx Det

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Edel-Elise

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier.

Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier. Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister 1. Polynomier. Redegør for andengradspolynomiets graf og udled en formel for koordinatsættet til parablens toppunkt. 2.

Læs mere

Arealer som summer Numerisk integration

Arealer som summer Numerisk integration Arealer som summer Numerisk integration http://www.zweigmedia2.com/realworld/integral/numint.html Her kan ses formlerne, som er implementeret nedenfor med en effektiv kode. Antag, at funktionen er positiv,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2014 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 7Bma1S14

Læs mere

Differentiation. Frank Nasser. 11. juli 2011

Differentiation. Frank Nasser. 11. juli 2011 Differentiation Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Læringsprogram. Numeriske metoder. Matematik A Programmering C Studieområdet. Roskilde Tekniske Gymnasium Klasse 3.4

Læringsprogram. Numeriske metoder. Matematik A Programmering C Studieområdet. Roskilde Tekniske Gymnasium Klasse 3.4 Læringsprogram Numeriske metoder Matematik A Programmering C Studieområdet Roskilde Tekniske Gymnasium Klasse 3.4 Lau Lund Leadbetter Mikkel Karoli Johnsen Tobias Sønderskov Hansen Lineær regression ved

Læs mere

Oversigt [S] 5.2, 5.4, 12.1

Oversigt [S] 5.2, 5.4, 12.1 Oversigt [S] 5.2, 5.4, 12.1 Nøgleord og begreber Bestemt integral Areal iemann summer Volumen Dobbelt integral Test dobbelt integral iemann dobbeltsummer Nyttige regneregler for integral Test integral

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

10. Differentialregning

10. Differentialregning 10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold STX Matematik A Jesper

Læs mere

Eksamensspørgsmål net B, vinter 2012-sommer Spørgsmål 1: Lineære funktioner

Eksamensspørgsmål net B, vinter 2012-sommer Spørgsmål 1: Lineære funktioner Eksamensspørgsmål net B, vinter 0-sommer 03 Spørgsmål : Lineære funktioner Gør rede for sætninger vedrørende lineære funktioner. Du skal herunder behandle betydningen af a og b samt formlen til at beregne

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

UNDERVISNINGSBESKRIVELSE

UNDERVISNINGSBESKRIVELSE UNDERVISNINGSBESKRIVELSE Termin Maj-juni 2015-2016 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF2 Matematik B Ineta Sokolowski mab1 Oversigt over gennemførte undervisningsforløb

Læs mere

matx.dk Mikroøkonomi

matx.dk Mikroøkonomi matx.dk Mikroøkonomi Dennis Pipenbring 31. august 2011 Indold 1 Udbuds- og efterspørgselskurver 3 1.1 Lineær.............................. 4 1.2 Eksponentiel........................... 5 1.3 Potens..............................

Læs mere

Contents. Introduktion 2

Contents. Introduktion 2 Contents Introduktion 2 Differentialregning 2 Grænseværdi................................ 2 Tid/distance................................ 2 Regler og eksempler............................ 3 Differentiering

Læs mere

Eksamensspørgsmål mabe, sommer Spørgsmål 1: Funktioner

Eksamensspørgsmål mabe, sommer Spørgsmål 1: Funktioner Eksamensspørgsmål mabe, sommer 014 Spørgsmål 1: Funktioner Gør rede for sætninger vedrørende lineære funktioner. Du skal herunder behandle betydningen af a og b samt formlen til at beregne a ud fra to

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Indhold Carstensen, Frandsen, Studsgaard, MAT B HF, Systime 2006, s , 92.

Indhold Carstensen, Frandsen, Studsgaard, MAT B HF, Systime 2006, s , 92. Undervisningsbeskrivelse Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Vivi Carstensen VICA@kvuc.dk Christine Gråkilde CHGR@kvuc.dk (eksaminator)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 15/16 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Mette

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Hold Vinter 2016/17 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Juli-august 2011 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK-hold Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013/2014 Institution Frederiksberg hf-kursus Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B (hf-enkeltfag)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Termin hvori undervisningen afsluttes: maj-juni 2013 Københavns Tekniske Skole, HTX Vibenhus Uddannelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 15/16 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Bodil

Læs mere

Eksamensspørgsmål. Spørgsmål 1: Funktioner

Eksamensspørgsmål. Spørgsmål 1: Funktioner . Spørgsmål 1: Funktioner Gør rede for udvalgte sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Eksamensspørgsmål: Eksponentiel vækst

Eksamensspørgsmål: Eksponentiel vækst Eksamensspørgsmål: Eksponentiel vækst Indhold Definition:... Eksempel :... Begndelsesværdien b... Fremskrivningsfaktoren a... Eksempel :... Formlerne for a og b... 3 Eksempel 3:... 3 Bevis for formlen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2011 Københavns

Læs mere

Eksamensspørgsmål. Spørgsmål 1: Funktioner

Eksamensspørgsmål. Spørgsmål 1: Funktioner . Spørgsmål 1: Funktioner Gør rede for sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne for en

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Efterår 2014 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Kamran

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik A Rita Ahrenfeldt hh12okoa11

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold e-hf Matematik B Ashuak Jakob France

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution HF & VUC København Syd Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Jens

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2015 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 14MACB11E14

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns Tekniske Skole, HTX Vibenhus Uddannelse

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution HF og VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B John

Læs mere

Eksamensspørgsmål mabe, sommer Spørgsmål 1: Lineære funktioner

Eksamensspørgsmål mabe, sommer Spørgsmål 1: Lineære funktioner Eksamensspørgsmål mabe, sommer 03 Spørgsmål : Lineære funktioner Gør rede for sætninger vedrørende lineære funktioner. Du skal herunder behandle betydningen af a og b samt formlen til at beregne a ud fra

Læs mere

lineær regression er en metode man bruger for at finde den mindste afstand mellem bestemte punkter ved at bruge denne formel: a= n i=1 i=1

lineær regression er en metode man bruger for at finde den mindste afstand mellem bestemte punkter ved at bruge denne formel: a= n i=1 i=1 Linær regression lineær regression er en metode man bruger for at finde den mindste afstand mellem bestemte punkter ved at bruge denne formel: a= (Xi Yi) n * Xi 2 n * x 2 x * y Figur 1. Nu vil vi løse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

BEVISER TIL KAPITEL 3

BEVISER TIL KAPITEL 3 BEVISER TIL KAPITEL 3 Alle beviserne i dette afsnit bruger følgende algoritme fra side 88 i bogen. Algoritme: Fremgangsmåde til udledning af forskellige regneregler for differentiation af forskellige funktionstyper

Læs mere

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex ADGANGSKURSUS AALBORG UNIVERSITET Formelsamling Brush-up Flex 2016 Indholdsfortegnelse 1. Brøkregning... 2 2. Parenteser... 3 3. Kvadratsætningerne:... 3 4. Potensregneregler... 4 5. Andengradsligninger...

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2014-2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold HF-E Matematik B Kenneth

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Line Dorthe

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2015-2016 Institution Vestegnen HF & VUC Uddannelse Fag og niveau Lærer Hold HF: E-learning Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Louise Jakobsen,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Københavns

Læs mere

Oversigt [S] 5.2, 5.4, 12.1

Oversigt [S] 5.2, 5.4, 12.1 Oversigt [S] 5.2, 5.4, 12.1 Nøgleord og begreber Bestemt integral Areal iemann summer Volumen Dobbelt integral Test dobbelt integral iemann dobbeltsummer Nyttige regneregler for integral Test integral

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2013 IBC-Kolding

Læs mere

Arealer under grafer

Arealer under grafer HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens

Læs mere

Matematik B. Anders Jørgensen

Matematik B. Anders Jørgensen Matematik B Anders Jørgensen Løste opgaver: Juni 2015 Dette opgavesæt er givet til FriViden Dette opgavesæt blev lavet til en terminsprøve d. 7. april af Anders Jørgensen, VUC Vestsjælland Syd Karakteren

Læs mere

Stamfunktionsproblemet

Stamfunktionsproblemet Stamfunktionsproblemet Frank Villa 19. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar 2011-maj 2013 Institution Uddannelse Fag og niveau Lærer(e) HTX Skjern Htx Matematik A Ole Egelund

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2010-juni 2013 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

UNDERVISNINGSBESKRIVELSE

UNDERVISNINGSBESKRIVELSE UNDERVISNINGSBESKRIVELSE Termin Maj-juni 2014-2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF2 Matematik B Ineta Sokolowski mab2 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin august 2015 maj 2016 Institution Rybners Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik A Steffen Podlech 3F Oversigt over gennemførte undervisningsforløb Titel 1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2011 Institution Uddannelsescenter Herning, afd. HHX-Ikast Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 15/16 Institution HF og VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B John

Læs mere

Differentiation af Logaritmer

Differentiation af Logaritmer Differentiation af Logaritmer Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2014/15, eksamen maj-juni 2015 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2014 Institution VUC Vest, Esbjerg afdeling Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 13/14 Institution Vestegnen HF og VUC Uddannelse Fag og niveau Lærer(e) Hold stx Matematik A Kirsten

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Selvstuderende Lærer Maj-juni 2014 Skoleår 2013/2014

Læs mere

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion ISBN 978877664974 Projekter: Kapitel. Projekt. Omvendt funktion og differentiation af omvendt funktion Projekt. Omvendt funktion og differentiation af omvendt funktion Vi har i Bbogens kapitel 4 afsnit

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold STX Matematik A Jesper

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold Hf Matematik C-B Pia Hald ph@kvuc.dk

Læs mere

1 Differentialkvotient

1 Differentialkvotient gudmandsen.net Ophavsret Kopiering, distribution og fremvisning af dette dokument eller dele deraf er tilladt i ikke-kommercielle sammenhænge, sålænge dette foregår med tydelig kildeangivelse. Al anden

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 2014 Studenterkurset

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar 2014-maj 2017 Institution Uddannelse Fag og niveau Lærer(e) HTX Skjern Htx Matematik A Ole Egelund

Læs mere

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Oversigt [S] 5., 5.3, 5.4,.,. Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Calculus - 6 Uge 39.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Vestegnen HF & Vuc Uddannelse Fag og niveau Lærer Hf-enkeltfag Matematik B Gert

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Undervisningsbeskrivelse & Oversigt over rapporter

Undervisningsbeskrivelse & Oversigt over rapporter Undervisningsbeskrivelse & Oversigt over rapporter Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Analyse 1, Prøve 2 Besvarelse

Analyse 1, Prøve 2 Besvarelse Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet maj Analyse, Prøve Besvarelse Opgave (3%) (a) (%) Bestem mængden af x R for hvilke rækken ( + (x) n ) er konvergent og angiv sumfunktionen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj-juni 2015 HTX Vibenhus

Læs mere

Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne

Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne 21 Matematik B Kurset svarer til det gymnasiale niveau B 21.2.2 Kernestof Kernestoffet er: regningsarternes hierarki, det udvidede

Læs mere