Projekt 6.1 Rygtespredning - modellering af logistisk vækst

Størrelse: px
Starte visningen fra side:

Download "Projekt 6.1 Rygtespredning - modellering af logistisk vækst"

Transkript

1 Projekt 6.1 Rygtespredning - modellering af logistisk vækst (Projektet anvender værktøjsprogrammet TI Nspire) Alle de tilstedeværende i klassen tildeles et nummer, så med 28 elever i klassen uddeles numrene Derefter trækkes en startperson ved hjælp af kommandoen RandInt(1,29). Lad os sige vi finder tallet 17. Person nr. 17 rejser sig op, og spillet er i gang. Der trækkes et nyt nummer for at se hvem der første gang hører rygtet fra person nr. 17. Det foregår nemmest i grafregner-værkstedet, hvor man kan pile op og hente den forrige kommando ved at taste ENTER. Lad os sige, at vi denne gang finder tallet 13. Person nr. 13 rejser sig op. Nu kender både 17 og 13 rygtet, så i næste runde trækker vi to numre ved at ændre kommandoen til RandInt(1,29,2). De inficerede personer, som har hørt rygtet fra person nr. 17 og person nr.13 rejser sig op. Vi trækker så igen numre svarende til det totale antal inficerede personer osv. indtil alle har hørt rygtet. Antallet af inficerede personer som funktion af antallet af rygtespredninger kan nu undersøges nærmere. I et konkret eksperiment udført på et T 3 -kursus med 32 tilstedeværende udviklede det sig således: Tallene tastes ind i listerne runde og antal og vi er klar til at kigge på et statistisk plot. Logistisk regression: Maskinens tur Det kunne godt ligne en logistisk vækst. For at undersøge det nærmere kan vi nu gå frem på flere forskellige måder. Vi kunne for eksempel starte med at tænke os om, men vi kan også bruge maskinens indbyggede logistiske vækstmodel. Lad os derfor vente lidt med at tænke og først kigge på maskinens indbyggede regressions model Logistisk vækst (d=0). Som alle andre regressionsmodeller ligger den under menuen Statistik > stat beregning. Vi udfører derfor kommandoen i lister og regnearkværkstedet, så vi også kan ligningen for regressionsfunktionen at se. Der er tale om en ikke-lineær regressionsmodel, så maskinen finder parametrene iterativt ved at lave løbende justeringer, hvorved summen af de kvadratiske afvigelser hele tiden søges nedbragt.

2 Læg mærke til, at vi ikke får oplyst en forklaringsgrad. Til gengæld er grafen rimeligt overbevisende. Men selvfølgelig bør vi ikke bare lade os stille tilfredse med en pæn graf. Vi bør i det mindste checke residualerne for at se om vi skulle have overset systematiske variationer, der går udover den logistiske model: Som det ses svinger residualerne tilfældigt op og ned, og da ydermere den største afvigelse er helt nede på ca. ½, må det siges at være et særdeles tilfredsstillende residualplot, i betragtning af at alle de observerede y-værdier er hele tal. Manuel fitning til en logistisk model Så er det vist på tide at vi også prøver at tænke os lidt om! Til at begynde med vil sandsynligheden for at vi rammer en genganger være meget lille, da antallet af inficerede elever er meget lille i forhold til det samlede antal. Den første må derfor forventes at smitte en ny. De to første må så forventes at smitte to nye. Disse fire må så forventes at smitte fire nye osv. Til at begynde med fordobles antallet derfor hver gang, indtil gengangerne begynder at optræde. I den ovenstående serie ser vi da også at antallet vokser som , så først i tredje runde dukker den første genganger op. Den eksponentielle vækst i den indledende fase er derfor simpelthen givet ved den eksponentielle vækstfunktion 2 x. En graf over fordoblingsfunktionen y = 2 x sammen med det statistiske plot for rygtespredningerne bekræfter da også dette:

3 Dernæst bemærker vi, at mæthedsniveauet også er givet på forhånd idet der er 32 deltagere i alt, hvorfor M = 32. Vi forventer altså en logistisk vækst af formen: 32 y 1 c 2 Bemærkning: Læg mærke til overensstemmelsen med det resultat vi fandt ved den logistiske regression. Her blev mætningsniveauet M estimeret til 32.13, altså en smule over de forventede 32. Tilsvarende blev vækstraten b estimeret til , altså igen en smule over de forventede ln(2) = Men alt i alt peger det i den rigtige retning. Der er altså reelt kun 1 parameter, der skal estimeres i vores teoretiske model, nemlig konstanten c, som kontrollerer den vandrette forskydning af grafen. Den er til gengæld sværere at forudsige teoretisk. Vi vil derfor estimere den ud fra det konkrete eksperiment. Hvis vi fx insisterer på startværdien 1, ser vi, at vi er nødt til at sætte c = 31. Hvis vi i stedet benytter vendepunktet, ser vi at antallet af smittede elever passerer halvdelen af de tilstedeværende, dvs. 16, et sted mellem 4 og 5 runder henne. Altså er konstanten givet ved c Ingen af estimaterne er særligt præcise, men ved at se på graferne kan vi dog godt se, at de følger observationerne rimeligt, om end de ikke gengiver forskydningen i x-aksens retning helt præcist. x

4 Det ses dog klart ud fra graferne, at estimatet baseret på vendepunktet er væsentligt mere præcist end estimatet baseret på startpunktet! Da der kun er én fri parameter i vores model kan vi imidlertid nemt finde en rimelig værdi for denne. Fx kan vi udnytte at c er en konstant, men c er givet ved udtrykket: x c y Listen givet ved udtrykket ( ) skal derfor med tilnærmelse være konstant. Ved indtastning i lister- og regneark-værkstedet fås da også:

5 Specielt inde i midten giver det rimelige værdier for c, men stadig med en betydelig variation. Vi står os derfor ved at anvende medianen median c_data dvs. i dette tilfælde 24.9:

Rygtespredning: Et logistisk eksperiment

Rygtespredning: Et logistisk eksperiment Rygtespredning: Et logistisk eksperiment For at det nu ikke skal ende i en omgang teoretisk tørsvømning er det vist på tide vi kigger på et konkret logistisk eksperiment. Der er selvfølgelig flere muligheder,

Læs mere

Eksempel på logistisk vækst med TI-Nspire CAS

Eksempel på logistisk vækst med TI-Nspire CAS Eksempel på logistisk vækst med TI-Nspire CAS Tabellen herunder viser udviklingen af USA's befolkning fra 1850-1910 hvor befolkningstallet er angivet i millioner: Vi har tidligere redegjort for at antallet

Læs mere

Modellering af elektroniske komponenter

Modellering af elektroniske komponenter Modellering af elektroniske komponenter Formålet er at give studerende indblik i hvordan matematik som fag kan bruges i forbindelse med at modellere fysiske fænomener. Herunder anvendelse af Grafregner(TI-89)

Læs mere

Vejledning til WordMat på Mac

Vejledning til WordMat på Mac Installation: WordMat på MAC Vejledning til WordMat på Mac Hent WordMat for MAC på www.eduap.com Installationen er først slut når du har gjort følgende 1. Åben Word 2. I menuen vælges: Word > Indstillinger

Læs mere

Kvadratisk regression

Kvadratisk regression Kvadratisk regression Helle Sørensen Institut for Matematiske Fag Københavns Universitet Juli 2011 I kapitlet om lineær regression blev det vist hvordan man kan modellere en lineær sammenhæng mellem to

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Kapitel 3: Modeller i Derive

Kapitel 3: Modeller i Derive 3. Modeller i Derive 3.1 Indledende knæbøjninger For at regne på modeller i Derive skal vi bruge FIT-funktionen som tilpasser et datasæt til et vilkårligt udtryk med lineære parametre ved hjælp af mindste

Læs mere

Vejledning i brug af Gym-pakken til Maple

Vejledning i brug af Gym-pakken til Maple Vejledning i brug af Gym-pakken til Maple Gym-pakken vil automatisk være installeret på din pc eller mac, hvis du benytter cd'en Maple 16 - Til danske Gymnasier eller en af de tilsvarende installere. Det

Læs mere

Københavnske ejerlejlighedspriser en meget begrænset indikator for hele landets boligmarked

Københavnske ejerlejlighedspriser en meget begrænset indikator for hele landets boligmarked N O T A T Københavnske ejerlejlighedspriser en meget begrænset indikator for hele landets boligmarked Baggrund og resume Efter i årevis at have rapporteret om et fastfrosset boligmarked, har de danske

Læs mere

Bilag 7. SFA-modellen

Bilag 7. SFA-modellen Bilag 7 SFA-modellen November 2016 Bilag 7 Konkurrence- og Forbrugerstyrelsen Forsyningssekretariatet Carl Jacobsens Vej 35 2500 Valby Tlf.: +45 41 71 50 00 E-mail: kfst@kfst.dk Online ISBN 978-87-7029-650-2

Læs mere

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse.

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse. Opdateret 28. maj 2014. MD Ofte brugte kommandoer i Geogebra. Generelle Punktet navngives A Geogebra navngiver punktet Funktionen navngives f Funktionen navngives af Geogebra Punktet på grafen for f med

Læs mere

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Baggrund: I de senere år har en del gymnasieskoler eksperimenteret med HOT-programmet i matematik og fysik, hvor HOT står for Higher

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Projektopgave Matematik A Tema: Eksponentielle modeller Vejleder: Jørn Bendtsen Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Dato: 01-01-2008 Indholdsfortegnelse Indledning... 3 1.

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks:

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Til hvert af de gennemgåede værktøjer findes der 5 afsnit. De enkelte afsnit kan læses uafhængigt af hinanden. Der forudsættes et elementært kendskab

Læs mere

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014 Vejledning til udvalgte opgave fra Matematik B, sommer 2014 Opgave 7 Størrelsen og udbudsprisen på 100 fritidshuse på Rømø er indsamlet via boligsiden.dk. a) Grafisk præsentation, der beskriver fordelingen

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj Juni 2014 Roskilde

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Test for strukturelle ændringer i investeringsadfærden

Test for strukturelle ændringer i investeringsadfærden d. 6.10.2016 De Økonomiske Råds Sekretariat Test for strukturelle ændringer i investeringsadfærden Dette notat redegør for de stabilitetstest af forskellige tidsserier vedrørende investeringsadfærden i

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj, 2015 Institution VID Gymnasier, Handelsgymnasium Rønde Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Efterår 2014 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK hold t14gymaau1o2 Oversigt over gennemførte undervisningsforløb

Læs mere

Vejledning til Gym18-pakken

Vejledning til Gym18-pakken Vejledning til Gym18-pakken Copyright Maplesoft 2014 Vejledning til Gym18-pakken Contents 1 Vejledning i brug af Gym18-pakken... 1 1.1 Installation... 1 2 Deskriptiv statistik... 2 2.1 Ikke-grupperede

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

Matematik A studentereksamen

Matematik A studentereksamen Xxxx Side 1 af 11 Opgave 7 Jeg aflæser af boksplottet for personbeskatningen i 2007 medianen til. Første og anden kvartil aflæser jeg til hhv. og. Den mindst observerede personbeskatning i år 2007 var

Læs mere

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave]

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave] Statistik med TI-Nspire CAS version 3.2 Bjørn Felsager September 2012 [Fjerde udgave] Indholdsfortegnelse Forord Beskrivende statistik 1 Grundlæggende TI-Nspire CAS-teknikker... 4 1.2 Lister og regneark...

Læs mere

Studieretningsprojekter i machine learning

Studieretningsprojekter i machine learning i machine learning 1 Introduktion Machine learning (ml) er et område indenfor kunstig intelligens, der beskæftiger sig med at konstruere programmer, der kan kan lære fra data. Tanken er at give en computer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2014 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jørn Ole Spedtsberg

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Statistik med Boxplot

Statistik med Boxplot 11 Statistik med Boxplot Til dette afsnit skal du benytte Stats-List Editoren (SL-editoren). Har du ikke denne applikation installeret, så hent den på TI's hjemmeside. Nøgletal Boxplot bygger på en undersøgelse

Læs mere

Projekt 9.4 t-test som lineær regressionstest: Box s helikoptereksperiment

Projekt 9.4 t-test som lineær regressionstest: Box s helikoptereksperiment Projekt 9.4 t-test som lineær regressionstest: Box s helikoptereksperiment Indhold 1. Modellering af fald med papirhelikopter: Et eksempel på lineær regression... 2 Empiri... 2 Helikoptereksperimentet...

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2016 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jørn Ole Spedtsberg

Læs mere

Dansk Erhvervs gymnasieeffekt - sådan gjorde vi

Dansk Erhvervs gymnasieeffekt - sådan gjorde vi Dansk Erhvervs gymnasieeffekt - sådan gjorde vi INDHOLD Formålet har været at undersøge, hvor dygtige de enkelte gymnasier er til at løfte elevernes faglige niveau. Dette kan man ikke undersøge blot ved

Læs mere

Vejledning til GYM17 Copyright Adept Nordic 2013

Vejledning til GYM17 Copyright Adept Nordic 2013 Vejledning til GYM17 Copyright Adept Nordic 2013 Vejledning i brug af Gym17-pakken... iv 1 Deskriptiv statistik... 1 1.1 Ikke-grupperede observationssæt... 1 1.2 Grupperede observationssæt... 4 2 Regressioner...

Læs mere

sammenhänge for C-niveau i stx 2013 Karsten Juul

sammenhänge for C-niveau i stx 2013 Karsten Juul LineÄre sammenhänge for C-niveau i stx y 0,5x 2,5 203 Karsten Juul : OplÄg om lineäre sammenhänge 2 Ligning for lineär sammenhäng 2 3 Graf for lineär sammenhäng 2 4 Bestem y når vi kender x 3 5 Bestem

Læs mere

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da:

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da: 7. marts 0 FVU AVU HF X FAG : Matematik B ark nr. antal ark 8 Opgave 0 a b 5 a b 5 = b 3 er en løsning til ligningen, da: = 9 = 3 Opgave Andengradsligningen løses, idet a = b = 3 c = 4 d (diskriminanten)

Læs mere

De danske huspriser. homes husprisindeks. 180 Realkreditrådet. Home s Danske Husprisindeks. Danmarks Statistik. 80 www.danskebank.

De danske huspriser. homes husprisindeks. 180 Realkreditrådet. Home s Danske Husprisindeks. Danmarks Statistik. 80 www.danskebank. De danske huspriser homes husprisindeks København den 1. sept. 7 For yderligere information: Steen Bocian, Danske Bank +5 5 1 5 31, stbo@danskebank.dk Niels H. Carstensen, home +5 15 3 nica@home.dk Den

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2012 (denne beskrivelse dækker efterår 2011 og forår 2012) Institution Roskilde Handelsskole Uddannelse

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

Brug af TI-83. Løsning af uligheder: Andre ikke simple uligheder løses ved følgende metode - skitseret ved et eksempel : Løs uligheden

Brug af TI-83. Løsning af uligheder: Andre ikke simple uligheder løses ved følgende metode - skitseret ved et eksempel : Løs uligheden Brug af TI-83 Løsning af andengradsligninger med TI-83 Indtast formlerne for d, og rødderne og gem dem i formellagrene u,v eller w. Gem værdierne for a, b og c i lagrene A, B og C Nedenstående display

Læs mere

Potens regression med TI-Nspire

Potens regression med TI-Nspire Potensvækst og modellering - Mt-B/A 2.b 2007-08 Potens regression med TI-Nspire Vi tger her udgngspunkt i et eksempel med tovværk, hvor mn får oplyst en tbel over smmenhængen mellem dimeteren (xdt) i millimeter

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

1 Start og afslutning. Help.

1 Start og afslutning. Help. Afdeling for Teoretisk Statistik STATISTIK 2 Institut for Matematiske Fag Jørgen Granfeldt Aarhus Universitet 24. september 2003 Hermed en udvidet udgave af Jens Ledet Jensens introduktion til R. 1 Start

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Det Teknisk-Naturvidenskabelige Basisår Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik E-OPG 3

Det Teknisk-Naturvidenskabelige Basisår Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik E-OPG 3 Det Teknisk-Naturvidenskabelige Basisår 2003-2004 Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik 1 Introduktion E-OPG 3 Dette er den tredje store opgave, som skal danne grundlag

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 13/14 Institution Vestegnen HF og VUC Uddannelse Fag og niveau Lærer(e) Hold stx Matematik A Kirsten

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2015 Institution Roskilde Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik C Mads Jørgensen

Læs mere

Vejledende løsning. Ib Michelsen. hfmac123

Vejledende løsning. Ib Michelsen. hfmac123 Vejledende løsning hfmac123 Side 1 Opgave 1 På en bankkonto indsættes 30.000 kr. til en rentesats på 2,125 % i 7 år. Beregning af indestående Jeg benytter formlen for kapitalfremskrivning: K n=k 0 (1+r

Læs mere

Stx matematik B december 2007. Delprøven med hjælpemidler

Stx matematik B december 2007. Delprøven med hjælpemidler Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj Juni 2015 Roskilde

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013 Institution Roskilde Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik B Henrik Laursen

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj - juni 2015 Institution Uddannelse Fag og niveau Lærer Hold 414 Københavns VUC Hfe Matematik B Tom Juul

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Campus Vejle HHX Matematik B Ejner Husum

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Forår 2016 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold Hhx (2-årig) Matematik - Niveau C Rasmus Olsen Svensson j15hsx17su81 Oversigt over gennemførte undervisningsforløb

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Velkommen til TI-Nspire CAS 2.0 (Lærerversion)

Velkommen til TI-Nspire CAS 2.0 (Lærerversion) Velkommen til TI-Nspire CAS 2.0 (Lærerversion) Når du åbner for TI-Nspire CAS i en standardopsætning ser brugerfladen således ud (hvis ikke, så vælg Dialogboks > Indlæs standardområdet): I midterpanelet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Campus Vejle HHX Matematik A Ejner Husum

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2014 Institution Roskilde Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik C Mads Jørgensen

Læs mere

Et psykisk belastende arbejde har store konsekvenser for helbredet

Et psykisk belastende arbejde har store konsekvenser for helbredet Flere gode år på arbejdsmarkedet 5. maj 2017 Et psykisk belastende arbejde har store konsekvenser for helbredet Risikoen for at have et dårligt psykisk helbred mere end fordobles for personer med et belastende

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj Juni 2015 Roskilde

Læs mere

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2 Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2011 Institution Roskilde Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Trine Rasmussen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til de gymnasiale uddannelser Termin Maj-juni 2016 Institution Erhvervsgymnasiet Grindsted Uddannelse HHx Fag og niveau Matematik B Lærer(e)

Læs mere

Peter Harremoës Mat A eksamen med hjælpemidler 21. april 2014

Peter Harremoës Mat A eksamen med hjælpemidler 21. april 2014 Opgave 6 Ved hjælp af GeoGebra CAS ses at udtrykkes reduceres til noget som er forskelligt fra b 3 ab 2. Dette kan også ses ved f.eks. at indsætte a = 0 og b = 1. Se bilag 2! Opgave 7 Data er indlæst i

Læs mere

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1 Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering

Læs mere

Simpel Lineær Regression: Model

Simpel Lineær Regression: Model Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x]

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Eksponentielle modeller

Eksponentielle modeller Eksponentielle modeller Fag: Matematik A og Informationsteknologi B Vejledere: Jørn Christian Bendtsen og Karl G Bjarnason Side 1 af 20 Indholdsfortegnelse Introduktion 1.Indledning... 3 2. Formål... 3

Læs mere

Maple 11 - Chi-i-anden test

Maple 11 - Chi-i-anden test Maple 11 - Chi-i-anden test Erik Vestergaard 2014 Indledning I dette dokument skal vi se hvordan Maple kan bruges til at løse opgaver indenfor χ 2 tests: χ 2 - Goodness of fit test samt χ 2 -uafhængighedstest.

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 08/09 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Sanne Schyum

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Oktober-december 2014 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau B Peter Harremoës GSK hold: k12gymabu1n2 Oversigt over gennemførte

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Grafværktøjer til GeoMeter Grafværktøjer Hjælp Grafværktøjer.gsp Grafværktøjer

Grafværktøjer til GeoMeter Grafværktøjer Hjælp Grafværktøjer.gsp Grafværktøjer Grafværktøjer til GeoMeter Bjørn Felsager, Haslev Gymnasium & HF, 2003 Når man installerer GeoMeter på sin maskine følger der en lang række specialværktøjer med. Men det er også muligt at skræddersy sine

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2014 Institution Uddannelse Fag og niveau Lærer(e) Hold Campus Vejle HHX Matematik C Ejner Husum

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere