RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2003

Størrelse: px
Starte visningen fra side:

Download "RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2003"

Transkript

1 RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Eferårssemesre 2003 Generelle bemærkninger Opgaven er den redje i en ny ordning, hvorefer eksamen efer førse semeser af makro på 2.år besår af e o-døgns ag-med-hjem projek, hvor besvarelser kan afleveres individuel eller i grupper på op il re personer. For gruppebesvarelser skal individuel differeniere karakergivning ifølge de formelle regler være mulig, hvorfor eksaminanderne skal foreage en opdeling af (de sørse dele af) besvarelsen på delagere. Der er dog ingen vivl om, a gruppebesvarelserne som ofes vil være produker af en fælles indsas, hvor de vil være både svær og urimelig a give forskellige karakerer il delagerne. De er derfor hel naurlig, a den alovervejende hovedregel vil være, a alle delagere i en gruppebesvarelse får samme karaker. Der er speciel give delagerne mulighed for a anføre de i en passus, hvis de finder, a besvarelsen i al væsenlighed er udryk for en fælles indsas. Hvor en sådan passus er anfør, bør der alid gives en fælles karaker. Opgaven er også e udryk for en ny sil, hvor der lægges relaiv mere væg end ilfælde har være i radiionelle skriflige eksamensopgaver på inddragelse af empiri, på virkelighedsnærhed ogspecielpå diskussion af, kommenar il og konklusion om økonomiske forhold ud fra de udføre ekniske øvelser. For den her sillede opgave gælder da også, a de svære elemener ikke så mege ligger i eknikken, dvs. i de krævede beregninger eller beviser af maemaisk karaker eller i de almæssige beregninger og esimaioner. De ekniske færdigheder, dee kræver, er velkende fra pensum og fra hjemme- og lynopgaver. De svære ligger i a diskuere, kommenere og konkludere ud fra de udføre eknikalieer. Da de flese plejer a have de ekniske elemener sor se rigige, bliver karakergivning i høj grad e spørgsmål om a vurdere modenheden i kommenarerne. Karakergivningen i denne eksamen må nok nødvendigvis basere sig mere på e helhedsskøn, og mindre på sammenælling af korreke svar, end ved radiionelle skriflige eksaminer. De vil være en naurlig konsekvens af de beskrevne forhold, a karakerspredningen bliver mindre end vanlig.

2 For overskuelighedens skyld genages her den beragede model: Y = K α Hϕ (A L ) X κ E () K + K = s K Y δk, (2) H + H = s H Y δh, (3) E = s E R, (4) R + = R E, (5) L + =(+n) L, (6) A + =(+g) A,. (7) Pr. capia-produkionsfunkion ec. Med definiionerne y Y /L, k K /L, h H /L, x X/L, e E /L er udledningen af pr. capia-produkionsfunkionen blo e spørgsmål om a dividere på beggesideraf()medl,på højresiden i formen L α+ϕ++κ+ : y = k α hϕ A x κ e. (8) Med g y ln y ln y ec. fås umiddelbar (når man også benyer e = s E R /L ) vedaagelogogids-differencer: g y = αg k + ϕgh + ga κg L + g R g L. Her følger umiddelbar fra modellens (6) og (7), a g L = n og g A = g. Endvidere følger fra (4) og (5), a R + =( s E )R, og dermed er væksraen (den eksake) for R konsan lig med s E,ogdermedg R = se. Når disse værdier indsæes for g L, g A og g R fås neop: g y = αg k + ϕgh + g (κ + ) n s E. (9) 2

3 De fremgår, a poenielle kilder il væks i BNP pr. arbejder er væks i fysisk kapial pr. arbejder, væks i human kapial pr. arbejder sam eknologiske fremskrid, mens såvel befolkningsvæks som udvinding af den udømmelige ressource rækker nedad. De sidse o forhold skyldes, a ved befolkningsvæks opsår gradvis øge knaphed på naurressourcerne i forhold il mængden af arbejdskraf med heraf følgende faldende grænseproduk for arbejdskrafen: Befolkningens sørrelse presser i sigende grad på de begrænsede naurressourcer. For den udømmelige ressources vedkommmende vil knapheden øges hasigere, jo hurigere mængden af ressourcen nedbringes, dvs. jo sørre udvindingsraen s E er, hvilke forklarer de sidse led. 2 Fakoraflønning ec. Man skal førs blo finde grænseprodukerne ved ilsedeværende fakormængder. Dee gøres ved differeniaion på produkionsfunkionen (). Med disse udryk i hånden findes fakorandelene nem. For afkasraen il fysisk kapial, kapiallejesasen, og kapialandelen fås således: r = αk α H ϕ (A L ) X κ E = αy K r K Y = α. Når man kommer il arbejdskrafen skal der ages højde for, e én eksra enhed arbejdskraf kommer med en human kapial på h. Inden man differenierer på (), skal man derfor indsæe H = h L og ved differeniaionen mh. L holde h,ikkeh, fas. Man kan ikke øge L uden også aøgeh, neop fordi hver arbejder indeholder en humankapial på h. Dvs., man skal differeniere på Y = K α h ϕ A L +ϕ X κ E ec.: w =( + ϕ) K α h ϕ A L +ϕ X κ E = ( + ϕ) Y L For jord og olie fås direke ligesom for fysisk kapial: v = κk α H ϕ (A L ) X κ E = κy X v X Y w L Y = κ = + ϕ u = Y E u E Y = u s E R Y Med de angivne præmisser følger da direke, a α =0.2, og + ϕ =0.6. Med den anføre præmis vedrørende opdeling af arbejdsløn i hhv. aflønning il rå arbejdskraf 3 =

4 og afkas il humankapial, skal og ϕ være lige sore, dvs. = ϕ =0.3. Da de ekniske paramere summer il én skal κ + =0.2, og da jordreneandel og energiandelskalværeligesore,skalalså κ = =0.. 3 Væksrae under balancere væks Definiioner: z K /Y = k /y og q H /Y = h /y. I e balancere væksforløb, hvor z og q er konsane, må såvel k som h ændre sigmedsammeraesomy i hver periode (ellers kan brøkerne k /y og h /y ikke være konsane). De følger, a (såvel de eksake som) de approksimaive væksraer for hhv. y, k og h måværedesammeihverperiode,alså g y = g k = g h. I (9) ovenfor kan man så indsæe g y for såvel g k som g h,dvs.: g y = αg y + ϕg y + g (κ + ) n s E g y = α ϕ g κ + α ϕ n α ϕ s E. Højresiden her afhænger ikke af, så den fælles approksimaive væksrae må være en konsan, g y. (Vi har egenlig kun vis, a den fælles approksimaive væksrae i alle perioder ligger æ på højresiden, hvilke ikke nødvendigvis gør den hel konsan, men de her bruge ræsonnemen, som kendes fra pensum, skal berages som ilsrækkelig. For a komme hel hjem kræves e ræsonnemen over de eksake vækraer, som måske vil forekomme i nogle besvarelser). Manskalnublobruge,a α ϕ = + κ +, ide de ekniske paramere summer il én: g y = + κ + g κ + + κ + n + κ + s E. (0) Denne formel er algebraisk se idenisk med den pensumformel, der ønskes sammenligne med, men i pensummodellen var der ikke humankapial, her svarende il ϕ = 0. I pensummodellen var derfor lønandelen. Her er lønandelen jo + ϕ, hvorfor bør gives en mindre værdi, hvilke naurligvis gør en forskel i formlen. Med vores plausible værdier for de ekniske paramere bliver (0): g y = 0.6g 0.4n 0.2sE, () dvs. e procenpoins højere befolkningsvæks giver e væksfradrag i BNP pr. arbejder på0.4procenpoin,mensé procenpoins højere udvindingsrae giver e væksfradrag på 0.2procenpoin. 4

5 Dee beskriver de o growh drags. I pensum var lønandelen jo og plausibel i sig selv sa il 0.6. Med samme værdier for κ og var koefficeinen il n derfor evaluere il 0.2/0.8 =0.25, mens koefficienen il s E var evaluere il 0./0.8 = I nærværende model er de o growh drags alså sørre end i pensummodellen. Dee skyldes den krafigere aflede virkning via kapialakkumulaion. Ligesom i pensum beyder en højere befolkningsvæks en lavere væks i indkoms pr. arbejder fordi befolkningssørrelsen presser på naurressourcerne med faldende grænseproduk ec. Den aflede effek, der besår i, a når y udvikler sig langsommere, så akkumuleres der kapial langsommere, er krafigere i nærværende model, fordi der både akkumuleres fysisk kapial og humankapial. (De er naurligvis vigig i dee ræsonnemen, a vi i de o modeller anager samme α, såheleϕ repræsenerer en yderligere kapialakkumulaion). Med n =0.005 og s E =0.005, som er plausible værdier på årsbasis, bliver (): g y = 0.6g = 0.6g (2) De vil være ineressan og relevan her a vurdere de samlede growh drag udgående fra befolkningsvæks og ressourceudømning, selv om der ikke spørges eksplici om de. Med vesige værder for n og s E og plausible ekniske paramere, er de samlede growh drag alså 0.3 procenpoin. Dee virker ikke alarmerende. Ligesom i pensum bør man overveje, hvordan allene ser ud med befolkningsvæksraer som kend fra faigere lande. En årlig befolkningsvæksrae på 3%, beyder i følge () e væksfradrag på.2 procenpoin. Dee er alvorlig og sandsynligvis mere realisisk end de ilsvarende growh drag funde ud fra pensummodellen på 0.75 procenpoin. Næse delspørgsmål kan bl.a. jene il a afgøre hvilken vurdering af væksfradrage udgående fra befolkningsvæks, som synes mes realisisk. Hvis (2) skal være forenlig med langsige årlig væksrae på 2%,skal0.02 = 0.6g g =0.023/0.6 = Som modellen er formulere her, kan e g på årsbasis på 0.04alså berages som plausibel. 4 Befolkningsvæks og økonomisk væks empirisk se De ønskede plo på værs af de 59 lande i abel il Opgave ser således ud med OLS-linje indegne: 5

6 Average annual growh rae of real GDP per worker, Average annual growh rae of populaion, Esimaion af re linje med sandardafvigelse i paranes under parameeren (lande angive ved i): g yi = (sd=0.8) ni, adj. R 2 =0.. (Regressionsoupu kan vises på mange andre måder, ev i form af abel som den kommer ud af SAS eller Excel). Den esimerede koefficien på 0.46liggermege æ på den modelforudsage værdi basere på plausible parameersørrelser, 0.4. Afvigelsen er mindre end én sandardafvigelse. Denne overensemmelse er klar bedre end ilsvarende opnåe i pensum. Dee kan ages som udryk for, a væksfradrage udgående fra befolkningsvæks, er mere realisisk som de fremkommer af modellen med humankaial and af modellen uden. Den ænksomme besvarelse bør nævne probleme med omvend kausalie, som også ernævnipensumpå dee punk. Er de virkelig befolkningsvæksen, der påvirker den økonomiske væks, eller er de omvend? Dee kan der ikke gives empirisk svar på på de foreliggende grundlag. Men, den ænksomme bør anføre a dee ikke rokker ved, a overenssemelsen mellem model og empiri er bleve bedre ved a inddrage humankapial. 6

7 5 Dynamisk sysem De, der bedes om her, er algebraisk en smule indvikle, men fra pensum kendes parallelle operaioner hele vejen igennem. Hvis nogle skulle gå død i de, er de rigige svar anfør, så eferfølgende spørgsmål alligevel kan laves. Fra (8): z = k = k α y h ϕ A x κ e (3) q = h = k α h ϕ A x κ e (4) y Vi kører løs på den førse af disse. Ved a fremdaere én periode fås: z + = k α + h ϕ +A +x κ +e + = K+ L + α ϕ κ H+ X A se R + +. L + L + L + Heri indsæes for K + og H + fra (2) og (3), og der benyes, a R + =( s E )R fra (4) og (5): α ϕ sk Y +( δ)k sh Y +( δ)h z + = ( + n)l ( + n)l κ ( + g) A X se ( s E )R. ( + n)l ( + n)l Nu flyes konsaner foran, og definiionerne af y, k ec. bruges: z + = ( s E ) (s K y +( δ)k ) α (s H y +( δ)h ) ϕ ( + n)( + g) A x κ e. Ved a sæe hhv. k og h udenfor i de o sidse pareneser fås: z + = ( s E ) y α ϕ y s K +( δ) s H +( δ) ( + n)( + g) k h 7

8 k α h ϕ A x κ e, hvordesmareer,anuerdeneopz de sår il sids. Når dee indsæes sammen med y /k = z ec. fås: α ϕ z + = ( s E ) sk sh +( δ) +( δ) z ( + n)( + g) z q = ( + n)( + g) ϕ ( s E ) (s K +( δ)z ) α sh +( δ) z α q. Dee er neop den førse differensligning. Med ilsvarende operaioner ud fra (4) ovenfor fås de samlede dynamiske dynamisk sysem: z + = q + = ( + n)(+g) ( + n)(+g) som neop skulle udledes. ϕ ( s E ) [s K +( δ) z ] α sh +( δ) z α q, α ( s E ) sk +( δ) [s H +( δ) q ] ϕ q ϕ, z 6 Kombinaioner (z,q ),dergiverhhv. konsan z og konsan q Dee er e decidere hjælpespørgsmål. Resulae har ikke selvsændig ineresse, men jener il a gøre konsrukion af fasediagram og beregning af seady sae nemmere. Med z + = z og q + = q bliver de o dynamiske ligninger ovenfor: z = ( + n)(+g) ϕ ( s E ) [s K +( δ) z ] α sh +( δ) z α q, (5) (6) q = ( + n)(+g) α ( s E ) sk +( δ) [s H +( δ) q ] ϕ q ϕ. z 8

9 Med J [( + n)(+g)] ( s E ),kandisseskrives: Jz α ϕ =[(s K +( δ) z )] α sh +( δ), q α Jq ϕ sk = +( δ) [s H +( δ) q ] ϕ, z ϕ J sh α α z =[(s K +( δ) z )] +( δ), q z à α J sk ϕ ϕ q = +( δ) [sh +( δ) q ], z ϕ! J sh α α ( δ) +( δ) q ϕ sh α = s K +( δ), q q à α! J sk ϕ ϕ ( δ) +( δ) z α sk ϕ = s H +( δ), z à ϕ! z J sh α α +( δ) ( δ) = s K, q à α! v J sk ϕ ϕ +( δ) ( δ) = s H,. z z = s K h J α s H q +( δ) i ϕ α, (7) ( δ) q = s H h J ϕ s K z +( δ) i α ϕ, (8) ( δ) som neop skulle vises. 9

10 7 Seady sae-værdierne, z og v Seady sae-værdierne, z og q, er neop løsninger mh. z og q af syseme besående af (7) og (8). Ved fx a indsæe udrykke i (8) for q på pladsen for q i (7) fås en enkel ligning i z: " z J α h J sk i α ϕ # ϕ z +( δ) α ϕ ( δ)+( δ) ( δ) = s K z J ϕ α J ( α)( ϕ) h sk z +( δ) i αϕ ( α)( ϕ) ( δ) = s K z J ( α)( ϕ) h sk z +( δ) i αϕ ( α)( ϕ) ( δ) = s K J ( α)( ϕ) h sk z +( δ) i αϕ ( α)( ϕ) = s K z +( δ) (de er naurligvis smar her, a der er komme s K /z +( δ) påbeggesider,og måske kan ikke alle finde på dee...) ³ sk J ( α)( ϕ) = z +( δ) αϕ ( α)( ϕ) J ( α)( ϕ) = ³ sk z +( δ) α ϕ ( α)( ϕ) J α ϕ = s K z +( δ) J α ϕ ( δ) = s K z z = s K. [( + n)(+g)] α ϕ ( se ) α ϕ ( δ) Ligesådan for q (man behøver ikke køre dee igennem, de følger ved parallelie): q = s H. [( + n)(+g)] α ϕ ( se ) α ϕ ( δ) 0

11 Når nu igen bruges α ϕ = + κ + og seady sae-værdierne kaldes hhv. z og q fås: z = s K, (9) [( + n)(+g)] +κ+ ( se ) +κ+ ( δ) q = s H, (20) [( + n)(+g)] +κ+ ( se ) +κ+ ( δ) som skulle vises. 8 Fasediagram og konvergens il seady sae Der skal i al anages: α =0.2, = ϕ =0.3, κ = =0., s K =0.2, s H =0.5, n =0.005, g =0.04, δ =0.05, s E = Seady sae-værdierne, der følger af (9) og (20), for disse parameerværdier beregnes il: z =2.637 og q =.978. (2) Punker på kurverne for hhv. (7) og (8) ved de anagne parameerværdier kan beregnes (fx i Excel), og herudfra kan kurverne egnes i e z q diagram. De skal se ud som vis nedenfor, hvor de o kurver er mærke hhv. z + = z og q + = q. (De er OK bare egningen ser ud som vis, men naurligvis relevan som bilag a vedlægge udskrif af regneark). Kurvernes posiive skæringspunk ses af figuren a passe med (2) ovenfor (beds her også a henvise il regneark med kurvernes beregning). Pilereningerne skal hels udledes analyisk ved a berage syseme (5), (6). Af (5) fremgår umiddelbar, a e højere q giverehøjerez +, al ande lige. Dvs., hvis man allerede ligger på kurven,hvorz + = z, og bevæger sig opad i diagramme, kommer man op i e område, hvor z vokser, som angive ved pile. Lignende ræsonnemener giver alle de andre pilereninger.

12 q z + = z 3.0 q + = q z Der skal herefer gennemføres simulaionsøvelser med syseme (5), (6) fra selvvalge sarpunker. Resulae skal se ud i rening af figuren ovenfor. Al de fremlage yder på konvergens mod seady sae, men der er naurligvis kun ale om e numerisk eksempel og på ingenmåde en analyisk efervisning. 9 Balancere væks i seady sae I seady sae ligger såvel z = k /y som q = h /y fas. Som redegjor for i Spørgsmål 3 indebærer dee den konsane fælles væksrae g y give ved (0). Lønandelen kan skrives om som: w L /Y = w /y. Da lønandelen er konsan (lig med + ϕ), må reallønnenw vokse med samme rae som y. I seady sae vokser y approksimaiv med raen g y,ogdemå w så også gøre, alså g w = g y. Kapialandelen kan skrives som: r K /Y = r z. Da kapialandelen er konsan (lig med α), og z er konsan (lig med z ) i seady sae, må også r være konsan, alså g r = 0. Dermed er også realrenen r δ konsan. Disse egenskaber er vigige for modellens empiriske relevans, da balancere væks normal berages som e empirisk grundjek. Jordreneandelen er også konsan, v X/Y = v X/(y L )=κ, hvoraf følger, a i seady sae er g v = g y + n = g w + n. Jordrenesasen vokser hurigere end 2

13 lønsasen. Speciel gælder, a hvis n>0ogg er æ på nul,så falder w over id, mens v vokser. Dee formaliserer klassikernes ankegang. Også energiandelen er konsan, u s E R /Y =, hvoraf følger a i seady sae er g u = g y + n + s E. Olieprisen vokser alså endnu hurigere end jordrenesasen. 0 Væksbane i seady sae I pr. capia-produkionsfunkionen (8) divideres på beggesidermedy α+ϕ,hvorved kapial-oupu-forholdene dukker op på højresiden: Heraf følger: y = z α α ϕ q y α ϕ = z α qϕ A x κ e. ϕ α ϕ A α ϕ α ϕ x κ e α ϕ = z α +κ+ q ϕ +κ+ A +κ+ X L κ +κ+ s E R L +κ+. Heri indsæes, a langs den balancerede seady sae væksbane er z q = q : = z og y =(z ) +κ+ (q ) α ϕ +κ+ s +κ+ Når der ages log på begge sider fås: α + κ + ln z + som skulle vises. ln y = E A +κ+ X L κ +κ+ R L + κ + ln A + + κ + ln s E + ϕ + κ + ln q + κ + κ + ln X + L +κ+. + κ + ln R Omskrivning af seady sae-væksbane il empirisk es I (22) skal man indsæe udrykkene for z og q fra(9)og(20)forafåen rigig væksbane før ilbage il paramere ec. Dee er også nødvendig for empirisk es. 3 L, (22)

14 For z haves: s K ln z = ln [( + n)(+g)] +κ+ ( se ) +κ+ ( δ) ³ = lns K ln [( + n)(+g)] +κ+ ( se ) +κ+ ( δ). Denne er ikke videre hånderlig, hvorfor der omskrives vha. approximaioner: Da s E er lille (0.005), er s E æ på én,ogdaydermere er re lille (med +κ+ rimelige paramere, 0.2), vil ( s E ) +κ+ =. (Med beskrevne rimelige paramere er ( s E ) +κ+ lig med 0.999). Endvidere gælder generel, a (+b) a = +ab, når b er re lille (og a er re lille). Dee bruges il a omskrive: [( + n)(+g)] +κ+ =(+n + g + ng) +κ+ = + (n + g), hvor også erbrugng +κ+ = 0. (Med plausible parameerværdier er +κ+ = 0.6 ogn + g + ng = n + g er af sørrelsesorden max 0.05: ( ) 0.6 =.0297 mens =.03). Hermed er redegjor for approksimaionen: ln z = ln sk ln (n + g)+δ. + κ + Med dee: +κ+ =0.6, som følger af vores plausible ekniske parameerværdier, giver ln z = ln sk ln (0.6n +[0.6g + δ]). Hel ilsvarende og fra samme approksimaioner fås for ln q : ln q = ln sh ln (0.6n +[0.6g + δ]). Indsa i seady sae-ligningen (22) giver dee: ln y = + κ + ln A + + κ + ln s E + α + κ + [ln s ϕ K ln (0.6n +[0.6g + δ])] + + κ + [ln s H ln (0.6n +[0.6g + δ])] + κ X + κ + ln + L + κ + ln R L. (23) Der skulle neop redegøres for, a denne kunne være rimelig som approksimaion. 4

15 2 Empirisk es Ud fra (23) skal opsilles en regressionsligning il esimaion. Dee kræver en række anagelser, som den gode besvarelse redegør eksplici for. Med anagelser om, a: ) alle beragede lande i er i seady sae i 2000, 2)allelandeharsammeekniskekoefficiener α,,..., 3) alle lande har samme eknologiske niveau A 00 i 2000, 4) alle lande har samme udvindingsrae s E, 5) sørrelsen 0.6g + δ kan for alle lande med rimelighed approksimeres ved (med g =0.04 og δ =0.05, som er anfør som rimelige enen direke eller ved idligere resulaer, er 0.6g + δ =0.075), 6) for alle lande kan hhv. X/L 00 og R 00 /L 00 approksimeres ved X/L 94 og R 94 /L 94,somfindes i Tabel il Opgave (relaiv il USA) peger den approksimaive seady sae-ligning i (23) på følgende regressionsligning på værs af lande i: ln y i 00 = K + γ ln s i K ln 0.6n i γ 2 ln s i H ln 0.6n i γ 3 ln à X L 94! i + γ 4 ln à R94 L 94! i. (24) Meningen er, a koefficienerne (K og) γ,..., γ 4 esimeres ud fra daa i Tabel il Opgave. De undersøges derefer, om esimaerne passer med modellen, dvs. om de har signifikan rigig foregn og passer med plausible parameerværdier (som disse allerede er grave ind i fakoren 0.6, som opræder i regressionsligningen). De forhold, a X/L 94 og R 94 /L 94 i Tabel il Opgave (kun) foreligger relaiv il samme sørrelser for USA, har ved esimaion kun beydning for sørrelsen af konsanen K, ikke for esimaer af koefficienerne γ,..., γ 4, og i de følgende lægges ingen beyfning i esimae af K. Esimaion giver (med sandardafvigelser i parenes): ln y00 i = ln s i K ln 0.6n i (sd=0.7) ln (sd=0.09) à X ln s i H ln 0.6n i (sd=0.4) L 94! i (sd=0.03) ln à R94 L 94! i, adj. R 2 =

16 Esimaerne af alle fire koefficiener γ,..., γ 4 har de rigige foregn, men esimae af γ 4 er ikke signifikan forskellig fra nul eller negaive værdier på noge rimelig niveau. (De suderende har, som minimum, lær ommelfingerreglen, a signifikanområde er sådan ca. fra o sandardafvigelser under il o over esimae, nogenlunde svarende il 95% konfidensinervalle). I denne slags vækseori vil man (ambiiøs) gerne have esimaerne il ikke blo a have rigig foregn, men også passe med a priori.forvenninger basere på plausible parameerværdier hidrørende fra empirisk funderede beragninger som i Spørgsmål 2. Med vores plausible parameerværdier skulle værdierne af γ,...,γ 4 være. γ = γ 2 = γ 3 = α + κ + =0.4 ϕ + κ + =0.6 κ + κ + =0.2 γ 4 = + κ + =0.2 Her er simaionen overordenlig pæn mh. γ, γ 2 og γ 3, som alle ligger højs lige omkring o sandardafvigelser fra a priori-forvenningerne il dem. Da γ 4 ikke en gang kan afvisees a være nul eller negaiv på rimelig signifikansniveau, har vi naurligvis ikke en lignende pæn konklusion for den. Ved vurderingen af konklusionen mh. γ, γ 2 og γ 3,skalmanhuske,ader naurligvis også erusikkerhedpå de plausible værdier for α, ec. Fakisk oeger empirien på en lønandel lid sørre end 0.6, fx 0.65, og på alidmereendhalvdelen af en løn er afkas il humankapial. Hvis man i lyse heraf fx sæer ϕ op il 0.35 og ned il 0.05, ville a priori-forvenningerne være: γ = γ 2 = γ 3 = α + κ + =0.44 ϕ + κ + =0.78 κ + κ + =0.22 6

17 γ 4 = + κ + =0. (Men man skulle naurligvis huske også i regressionsligningen a ændre de 0.6, som jo kommer fraa, il 0.67 osv., hvilke dog ikke ville få sor beydning for +κ+ esimaionen). A priori-forvenningerne ville nu passe bemærkelsesværdig god med esimaerne - igen naurligvis borse fra γ 4. Borse fra indflydelsen fra de udømmelige naurressourcer opsamle i γ 4 passer modellen alså god med empirien. Mh. de indledningsvis opsillede spørgsmål, er vi komme ca. halv hjem, ide vi har fåe overenssemmelse mellem esimaer og a priori-forvenninger, undagen mh. indflydelsen fra udømmelige naurressourcer. Relevane beragninger mh. de mindre gode resula for de udømmmelige ressourcer kan være: Daa er sikker mindre gode end for de andre fakorer, da subsoil asses dækker over en blanding af mealler, kulbriner og mineraler af alle mulige slags, og der endvidere er sor usikkerhed om ilbageværende mængder. Endvidere bygger modelforudsigelsen på en anagelse om samme udvindingsrae overal, hvilke måske er særlig problemaisk, da udvindingsraen kan afhænge af, hvilke ressourcer man har, fx grus konra kobber. Med dee age il eferrening synes modellen a have klare sig overodenlig god. De er naurligvis særlig bemærkelsesværdig, a dee sker på baggrund af de resirikive anagelser ) il 6) ovenfor. E rigig kreaiv iniiaiv i lyse af ovensående er a prøve a esimere modellen uden udømmelige naurresssourcer. Hele analysen er lave. De er bare om a sæe = 0. Plausible værdier for de andre paramere kunne så, igen i lyse af ovensående, fx være α = 0.2, = 0.3, ϕ = 0.35, κ = 0.5. Den relevane regressionsligning kunne være: ln y00 i = K + γ ln s i K ln 0.6n i γ 2 ln s i H ln 0.6n i γ 3 ln à X L 94! i, (25) (hvor de er glem a ændre 0.6 il 0.67 m.m., men de beyder ikke de sore for esimaionen) med a priori-forvenninger: γ = γ 2 = α + κ =0.44 ϕ + κ =0.78 7

18 γ 3 = κ + κ =0.33 Esimaion på samme lande giver: ln y00 i = ln s i K ln 0.6n i (26) (sd=0.7) ln s i H ln 0.6n i (sd=0.3) (sd=0.09) ln à X L 94! i, adj. R 2 =0.77. Overenssemmelsen er nu særdeles, overordenlig, dobbel-plus god. Vores model klarer sig alså empirisk beds, hvis vi bland naurressourcerne kun indrager jord og udelader de udømmelige. Dee kan igen skyldes a daa for sidsnævne er problemaiske. Med den reducerede model uden de udømmelige naurressourcer har vi opnåe rigig mege i forhold il de, der indledningsvis spurges efer. Sådan se chokerende, a den simple model, der er berrage her, kan forklare så mege af forskellen mellem rig og mindre rig, som ilfælde synes a være, og de under en anagelse om, a alle landene har samme eknologiske niveau. 8

MAKRO 2 ENDOGEN VÆKST

MAKRO 2 ENDOGEN VÆKST ENDOGEN VÆKST MAKRO 2 2. årsprøve Forelæsning 7 Kapiel 8 Hans Jørgen Whia-Jacobsen econ.ku.dk/okojacob/makro-2-f09/makro I modeller med endogen væks er den langsigede væksrae i oupu pr. mand endogen besem.

Læs mere

MAKRO 2 KAPITEL 7: GRÆNSER FOR VÆKST? SOLOW-MODELLEN MED NATURRESSOURCER. - uundværlig i frembringelsen af aggregeret output og. 2.

MAKRO 2 KAPITEL 7: GRÆNSER FOR VÆKST? SOLOW-MODELLEN MED NATURRESSOURCER. - uundværlig i frembringelsen af aggregeret output og. 2. KAPITEL 7: GRÆNSER FOR VÆKST? SOLOW-MODELLEN MED NATURRESSOURCER MAKRO 2 2. årsprøve Klassisk syn: JORDEN/NATUREN er en produkionsfakor, som er - uundværlig i frembringelsen af aggregere oupu og Forelæsning

Læs mere

Slides til Makro 2, Forelæsning oktober 2005 Chapter 7

Slides til Makro 2, Forelæsning oktober 2005 Chapter 7 GRÆNSER FOR VÆKST? SOLOW-MODELLEN MED NATURRESSOURCER Slides il Makro 2, Forelæsning 9 31. okober 2005 Chaper 7 Hans Jørgen Whia-Jacobsen Ocober 26, 2005 De klassiske økonomer, Smih, Ricardo, Malhus m.fl.

Læs mere

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og EPDEMER DYAMK AF Kasper Larsen, Bjarke Vilser Hansen Henriee Elgaard issen, Louise Legaard og Charloe Plesher-Frankild 1. Miniprojek idefagssupplering, RUC Deember 2007 DLEDG Maemaisk modellering kan anvendes

Læs mere

Bankernes renter forklares af andet end Nationalbankens udlånsrente

Bankernes renter forklares af andet end Nationalbankens udlånsrente N O T A T Bankernes rener forklares af ande end Naionalbankens udlånsrene 20. maj 2009 Kor resumé I forbindelse med de senese renesænkninger fra Naionalbanken er bankerne bleve beskyld for ikke a sænke

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014 Maemaik A Sudenereksamen Forberedelsesmaeriale il de digiale eksamensopgaver med adgang il inernee sx141-matn/a-0505014 Mandag den 5. maj 014 Forberedelsesmaeriale il sx A ne MATEMATIK Der skal afsæes

Læs mere

Estimation af markup i det danske erhvervsliv

Estimation af markup i det danske erhvervsliv d. 16.11.2005 JH Esimaion af markup i de danske erhvervsliv Baggrundsnoa vedrørende Dansk Økonomi, eferår 2005, kapiel II Noae præsenerer esimaioner af markup i forskellige danske erhverv. I esimaionerne

Læs mere

Funktionel form for effektivitetsindeks i det nye forbrugssystem

Funktionel form for effektivitetsindeks i det nye forbrugssystem Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh. augus 007 Funkionel form for effekiviesindeks i de nye forbrugssysem Resumé: Der findes o måder a opskrive effekiviesudvidede CES-funkioner med o

Læs mere

DiploMat Løsninger til 4-timersprøven 4/6 2004

DiploMat Løsninger til 4-timersprøven 4/6 2004 DiploMa Løsninger il -imersprøven / Preben Alsholm / Opgave Polynomie p er give ved p (z) = z 8 z + z + z 8z + De oplyses, a polynomie også kan skrives således p (z) = z + z z + Vi skal nde polynomies

Læs mere

Eksponentielle sammenhänge

Eksponentielle sammenhänge Eksponenielle sammenhänge y 800,95 1 0 1 y 80 76 7, 5 5% % 1 009 Karsen Juul Dee häfe er en forsäelse af häfe "LineÄre sammenhänge, 008" Indhold 14 Hvad er en eksponeniel sammenhäng? 53 15 Signing og fald

Læs mere

Logaritme-, eksponential- og potensfunktioner

Logaritme-, eksponential- og potensfunktioner Logarime-, eksponenial- og poensfunkioner John Napier (550-67. Peer Haremoës Niels Brock April 7, 200 Indledning Eksponenial- og logarimefunkioner blev indfør på Ma C niveau, men dengang havde vi ikke

Læs mere

Logaritme-, eksponential- og potensfunktioner

Logaritme-, eksponential- og potensfunktioner Logarime-, eksponenial- og poensfunkioner John Napier (550-67. Peer Haremoës Niels Brock July 27, 200 Indledning Eksponenial- og logarimefunkioner blev indfør på Ma C nivea uden en præcis definiion. Funkionerne

Læs mere

2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk

2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk Oversig Mes repeiion med fokus på de sværese emner Modul 3: Differenialligninger af. orden Maemaik og modeller 29 Thomas Vils Pedersen Insiu for Grundvidenskab og Miljø vils@life.ku.dk 3 simple yper differenialligninger

Læs mere

Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen

Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen Fysikrappor: Vejr og klima Maila Walmod, 13 HTX, Rosklide I gruppe med Ann-Sofie N Schou og Camilla Jensen Afleveringsdao: 30 november 2007 1 I dagens deba høres orde global opvarmning ofe Men hvad vil

Læs mere

Ny ligning for usercost

Ny ligning for usercost Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh 8. okober 2008 Ny ligning for usercos Resumé: Usercos er bleve ændre frem og ilbage i srukur og vil i den nye modelversion have noge der minder om

Læs mere

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72.

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72. Bioeknologi 2, Tema 4 5 Kineik Kineik er sudier af reakionshasigheden hvor man eksperimenel undersøger de fakorer, der påvirker reakionshasigheden, og hvor resulaerne afslører reakionens mekanisme og ransiion

Læs mere

Produktionspotentialet i dansk økonomi

Produktionspotentialet i dansk økonomi 51 Produkionspoeniale i dansk økonomi Af Asger Lau Andersen og Moren Hedegaard Rasmussen, Økonomisk Afdeling 1 1. INDLEDNING OG SAMMENFATNING Den økonomiske udvikling er i Danmark såvel som i alle andre

Læs mere

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE?

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? Af Torben A. Knudsen, Sud. Poly. & Claus Rehfeld, Forskningsadjunk Cener for Trafik og Transporforskning (CTT) Danmarks Tekniske Uniersie Bygning 115, 800

Læs mere

Efterspørgslen efter læger 2012-2035

Efterspørgslen efter læger 2012-2035 2013 5746 PS/HM Eferspørgslen efer læger 2012-2035 50000 45000 40000 35000 30000 25000 20000 15000 10000 5000 Anal eferspurge læger i sundhedsudgifalernaive Anal eferspurge læger i finanskrisealernaive

Læs mere

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 4

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 4 Insiu for Maemaiske Fag Maemaisk Modellering 1 Aarhus Universie Eva B. Vedel Jensen 12. februar 2008 UGESEDDEL 4 OBS! Øvelseslokale for hold MM4 (Jonas Bæklunds hold) er ændre il Koll. G3 på IMF. Ændringen

Læs mere

Modellering af benzin- og bilforbruget med bilstocken bestemt på baggrund af samlet forbrug

Modellering af benzin- og bilforbruget med bilstocken bestemt på baggrund af samlet forbrug Danmarks Saisik MODELGRUPPEN Arbejdspapir* 13. maj 2005 Modellering af benzin- og bilforbruge med bilsocken besem på baggrund af samle forbrug Resumé: Dee redje papir om en ny model for biler og benzin

Læs mere

MAKRO 2 DEN FULDSTÆNDIGE SOLOW-MODEL. Y t = K α t (A t L t ) 1 α, (A t L t ) 1 α = α. r t = αk α 1. A t L t. w t =(1 α) Kt α L α. A t, 2.

MAKRO 2 DEN FULDSTÆNDIGE SOLOW-MODEL. Y t = K α t (A t L t ) 1 α, (A t L t ) 1 α = α. r t = αk α 1. A t L t. w t =(1 α) Kt α L α. A t, 2. DEN FULDSÆNDIGE SOLOW-MODEL Y t = K α t ( ) 1 α, MAKRO 2 2. årsprøve r t = αk α 1 t ( ) 1 α = α Ã Kt! α 1, Ã! α w t =(1 α) Kt α L α t A 1 α Kt t =(1 α) A t, S t = sy t, Forelæsning 4 Kapitel 5 og 6 K t+1

Læs mere

Pensionsformodel - DMP

Pensionsformodel - DMP Danmarks Saisik MODELGRUPPEN Arbejdspapir Marin Junge og Tony Krisensen 19. sepember 2003 Pensionsformodel - DMP Resumé: Vi konsruerer ind- og udbealings profiler for pensionsformuerne. I dee ilfælde kigger

Læs mere

MAKRO 2 DEN GENERELLE SOLOWMODEL = SOLOW-MODELLEN. Tilbage til lukket økonomi. 2. årsprøve. Forelæsning 3. Kapitel 5

MAKRO 2 DEN GENERELLE SOLOWMODEL = SOLOW-MODELLEN. Tilbage til lukket økonomi. 2. årsprøve. Forelæsning 3. Kapitel 5 DEN GENERELLE SOLOWMODEL = SOLOW-MODELLEN ilbage til lukket økonomi MAKRO 2 2 årsprøve Forelæsning 3 Kapitel 5 Hans Jørgen Whitta-Jacobsen econkudk/okojacob/makro-2-f09/makro Basal Solowmodel: Ingen vækst

Læs mere

Dynamik i effektivitetsudvidede CES-nyttefunktioner

Dynamik i effektivitetsudvidede CES-nyttefunktioner Danmarks Saisik MODELGRUPPEN Arbejdspapir Grane Høegh. augus 006 Dynamik i effekiviesudvidede CES-nyefunkioner Resumé: I dee papir benyes effekiviesudvidede CES-nyefunkioner il a finde de relaive forbrug

Læs mere

Vækst på kort og langt sigt

Vækst på kort og langt sigt 12 SAMFUNDSØKONOMEN NR. 1 MARTS 2014 VÆKST PÅ KORT OG LANG SIGT Væks på kor og lang sig Efer re års silsand i dansk økonomi er de naurlig, a ineressen for a skabe økonomisk væks er beydelig. Ariklen gennemgår

Læs mere

Slides til Makro 2, Forelæsning 8 24. oktober 2005 Chapter 6

Slides til Makro 2, Forelæsning 8 24. oktober 2005 Chapter 6 SOLOW-MODELLEN MED HUMAN KAPITAL Slides til Makro 2 Forelæsning 8 24 oktober 2005 Chapter 6 Y t = K α t H ϕ t (A tl t ) r t = α w t =(1 α)! α 1! ϕ Kt Ht A t L t A t L t! α Kt Ht A t L t A t L t! ϕ A t

Læs mere

Undervisningsmaterialie

Undervisningsmaterialie The ScienceMah-projec: Idea: Claus Michelsen & Jan Alexis ielsen, Syddansk Universie Odense, Denmark Undervisningsmaerialie Ark il suderende og opgaver The ScienceMah-projec: Idea: Claus Michelsen & Jan

Læs mere

Udlånsvækst drives af efterspørgslen

Udlånsvækst drives af efterspørgslen N O T A T Udlånsvæks drives af eferspørgslen 12. januar 211 Kor resumé Der har den senese id være megen fokus på bankers og realkrediinsiuers udlån il virksomheder og husholdninger. Især er bankerne fra

Læs mere

Bilbeholdningen i ADAM på NR-tal

Bilbeholdningen i ADAM på NR-tal Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh 4. april 2008 Bilbeholdningen i ADAM på NR-al Resumé: Dee papir foreslår a lade bilbeholdningen i ADAM være lig den officielle bilbeholdning fra Naionalregnskabe.

Læs mere

1 α K = A t, (SS1) n + g + δ eller: ln yt =lna t +

1 α K = A t, (SS1) n + g + δ eller: ln yt =lna t + Tag Med-Hjem-Eksamen Makroøkonomi,. Årsprøve Efterårssemestret 5 Udleveres mandag den. januar, 6, kl. 10. Afleveres onsdag den 4. januar, 6, senest kl. 10. på: Eksamenskontoret, Center for Sundhed og Samfund

Læs mere

Sammenhæng mellem prisindeks for månedstal, kvartalstal og årstal i ejendomssalgsstatistikken

Sammenhæng mellem prisindeks for månedstal, kvartalstal og årstal i ejendomssalgsstatistikken 6. sepember 2013 JHO Priser og Forbrug Sammenhæng mellem prisindeks for månedsal, kvaralsal og årsal i ejendomssalgssaisikken Dee noa gennemgår sammenhængen mellem prisindeks for månedsal, kvaralsal og

Læs mere

Tjekkiet Štěpán Vimr, lærerstuderende Rapport om undervisningsbesøg Sucy-en-Brie, Frankrig 15.12.-19.12.2008

Tjekkiet Štěpán Vimr, lærerstuderende Rapport om undervisningsbesøg Sucy-en-Brie, Frankrig 15.12.-19.12.2008 Tjekkie Šěpán Vimr lærersuderende Rappor om undervisningsbesøg Sucy-en-Brie Frankrig 15.12.-19.12.2008 Konak med besøgslæreren De indledende konaker (e-mail) blev foreage med de samme undervisere hvilke

Læs mere

Baggrundsnotat: Estimation af elasticitet af skattepligtig arbejdsindkomst

Baggrundsnotat: Estimation af elasticitet af skattepligtig arbejdsindkomst d. 02.11.2011 Esben Anon Schulz Baggrundsnoa: Esimaion af elasicie af skaepligig arbejdsindkoms Dee baggrundsnoa beskriver kor meode og resulaer vedrørende esimaionen af elasicieen af skaepligig arbejdsindkoms.

Læs mere

FitzHugh Nagumo modellen

FitzHugh Nagumo modellen FizHugh Nagumo modellen maemaisk modellering af signaler i nerve- og muskelceller Torsen Tranum Rømer, Frederikserg Gymnasium Fagene maemaik og idræ supplerer hinanden god inden for en lang række emner.

Læs mere

Bilag 1E: Totalvægte og akseltryk

Bilag 1E: Totalvægte og akseltryk Vejdirekorae Side 1 Forsøg med modulvognog Slurappor Bilag 1E: Toalvæge og ryk Bilag 1E: Toalvæge og ryk Dee bilag er opdel i følgende dele: 1. En inrodukion il bilage 2. Resulaer fra de forskellige målesaioner,

Læs mere

Afrapportering om danske undertekster på nabolandskanalerne

Afrapportering om danske undertekster på nabolandskanalerne 1 Noa Afrapporering om danske underekser på nabolandskanalerne Sepember 2011 2 Dee noa indeholder: 1. Indledning 2. Baggrund 3. Rammer 4. Berening 2010 5. Økonomi Bilag 1. Saisik over anal eksede programmer

Læs mere

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Torsdag den 2. januar 1997, kl.

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Torsdag den 2. januar 1997, kl. Skriflig Eksamen Daasrukurer og lgorimer (DM0) Insiu for Maemaik og Daalogi Odense Universie Torsdag den. januar 199, kl. 9{1 lle sdvanlige hjlpemidler (lrebger, noaer, ec.) sam brug af lommeregner er

Læs mere

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Nulkuponobligationer

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Nulkuponobligationer Dagens forelæsning Ingen-Arbirage princippe Claus Munk kap. 4 Nulkuponobligaioner Simpel og generel boosrapping Nulkuponrenesrukuren Forwardrener 2 Obligaionsprisfassæelse Arbirage Værdien af en obligaion

Læs mere

tegnsprog Kursuskatalog 2015

tegnsprog Kursuskatalog 2015 egnsprog Kursuskaalog 2015 Hvordan finder du di niveau? Hvor holdes kurserne? Hvordan ilmelder du dig? 5 Hvad koser e kursus? 6 Tegnsprog for begyndere 8 Tegnsprog på mellemniveau 10 Tegnsprog for øvede

Læs mere

Newtons afkølingslov løst ved hjælp af linjeelementer og integralkurver

Newtons afkølingslov løst ved hjælp af linjeelementer og integralkurver Newons afkølingslov løs ved hjælp af linjeelemener og inegralkurver Vi så idligere på e eksempel, hvor en kop kakao med emperauren sar afkøles i e lokale med emperauren slu. Vi fik, a emperaurfalde var

Læs mere

Badevandet 2010 Teknik & Miljø - -Maj 2011

Badevandet 2010 Teknik & Miljø - -Maj 2011 Badevande 2010 Teknik & Miljø - Maj 2011 Udgiver: Bornholms Regionskommune, Teknik & Miljø, Naur Skovløkken 4, Tejn 3770 Allinge Udgivelsesår: 2011 Tiel: Badevande, 2010 Teks og layou: Forside: Journalnummer:

Læs mere

Danmarks fremtidige befolkning Befolkningsfremskrivning 2009. Marianne Frank Hansen og Mathilde Louise Barington

Danmarks fremtidige befolkning Befolkningsfremskrivning 2009. Marianne Frank Hansen og Mathilde Louise Barington Danmarks fremidige befolkning Befolkningsfremskrivning 29 Marianne Frank Hansen og Mahilde Louise Baringon Augus 29 Indholdsforegnelse Danmarks fremidige befolkning... 1 Befolkningsfremskrivning 29...

Læs mere

Finansministeriets beregning af gab og strukturelle niveauer

Finansministeriets beregning af gab og strukturelle niveauer Noa. november (revidere. maj ) Finansminiseries beregning af gab og srukurelle niveauer Vurdering af oupugabe (forskellen mellem fakisk og poeniel produkion) og de srukurelle niveauer for ledighed og arbejdssyrke

Læs mere

Hvor bliver pick-up et af på realkreditobligationer?

Hvor bliver pick-up et af på realkreditobligationer? Hvor bliver pick-up e af på realkrediobligaioner? Kvanmøde 2, Finansanalyikerforeningen 20. April 2004 Jesper Lund Quaniaive Research Plan for dee indlæg Realkredi OAS som mål for relaiv værdi Herunder:

Læs mere

Hvad er en diskret tidsmodel? Diskrete Tidsmodeller. Den generelle formel for eksponentiel vækst. Populationsfordobling

Hvad er en diskret tidsmodel? Diskrete Tidsmodeller. Den generelle formel for eksponentiel vækst. Populationsfordobling Hvad er en diskre idsmodel? Diskree Tidsmodeller Jeppe Revall Frisvad En funkion fra mængden af naurlige al il mængden af reelle al: f : R f (n) = 1 n + 1 n Okober 29 1 8 f(n) = 1/(n + 1) f(n) 6 4 2 1

Læs mere

Øresund en region på vej

Øresund en region på vej OKTOBER 2008 BAG OM NYHEDERNE Øresund en region på vej af chefkonsulen Ole Schmid Sore forvenninger il Øresundsregionen Der var ingen ende på, hvor god de hele ville blive når broen blev åbne, og Øresundsregionen

Læs mere

1. Raketligningen. 1.1 Kinematiske forhold ved raketopsendelse fra jorden. Raketfysik

1. Raketligningen. 1.1 Kinematiske forhold ved raketopsendelse fra jorden. Raketfysik Rakefysik. Rakeligningen Rakeligningen kan udlede ud fra iulssæningen. Vi anager a vi har en rake ed asse (), Rakeen drives fre ved a der udslynges en konsan asse µ r. idsenhed µ -d/d ed hasigheden u i

Læs mere

Lektion 10 Reaktionshastigheder Epidemimodeller

Lektion 10 Reaktionshastigheder Epidemimodeller Lekion 1 Reakionshasigheder Epidemimodeller Simpel epidemimodel Kermack-McKendric epidemimodel Kemiske reakionshasigheder 1 Simpel epidemimodel I en populaion af N individer er I() inficerede og resen

Læs mere

8.14 Teknisk grundlag for PFA Plus: Bilag 9-15 Indholdsforegnelse 9 Bilag: Indbealingssikring... 3 1 Bilag: Udbealingssikring... 4 1.1 Gradvis ilknyning af udbealingssikring... 4 11 Bilag: Omkosninger...

Læs mere

En model til fremskrivning af det danske uddannelsessystem

En model til fremskrivning af det danske uddannelsessystem En model il fremskrivning af de danske uddannelsessysem Peer Sephensen og Jonas Zangenberg Hansen December 27 Side 2 af 22 1. Indledning De er regeringens mål a øge befolkningens uddannelsesniveau. Befolkningens

Læs mere

Øger Transparens Konkurrencen? - Teoretisk modellering og anvendelse på markedet for mobiltelefoni

Øger Transparens Konkurrencen? - Teoretisk modellering og anvendelse på markedet for mobiltelefoni DET SAMFUNDSVIDENSKABELIGE FAKULTET KØBENHAVNS UNIVERSITET Øger Transarens Konkurrencen? - Teoreisk modellering og anvendelse å markede for mobilelefoni Bjørn Kyed Olsen Nr. 97/004 Projek- & Karrierevejledningen

Læs mere

Lidt om trigonometriske funktioner

Lidt om trigonometriske funktioner DEN TEKNISK-NATURVIDENSKABELIGE BASISUDDANNELSE MATEMATIK TRIGNMETRISKE FUNKTINER EFTERÅRET 000 Lid m rignmeriske funkiner Funkinerne cs g sin De rignmeriske funkiner defines i den elemenære maemaik ved

Læs mere

MOGENS ODDERSHEDE LARSEN. Sædvanlige Differentialligninger

MOGENS ODDERSHEDE LARSEN. Sædvanlige Differentialligninger MOGENS ODDERSHEDE LARSEN Sædvanlige Differenialligninger a b. udgave 004 FORORD Dee noa giver en indføring i eorien for sædvanlige differenialligninger. Der lægges især væg på løsningen af lineære differenialligninger

Læs mere

Den erhvervspolitiske værdi af støtten til den danske vindmølleindustri

Den erhvervspolitiske værdi af støtten til den danske vindmølleindustri N N N '(7.2120,6.( 5c' 6 (. 5 ( 7 $ 5, $ 7 ( 7 Den erhvervspoliiske værdi af søen il den danske vindmølleindusri Svend Jespersen Arbejdspapir 2002:3 Sekreariae udgiver arbejdspapirer, hvori der redegøres

Læs mere

Udkast pr. 27/11-2003 til: Equity Premium Puzzle - den danske brik

Udkast pr. 27/11-2003 til: Equity Premium Puzzle - den danske brik Danmarks Saisik MODELGRUPPEN Arbejdspapir Jakob Nielsen 27. november 2003 Claus Færch-Jensen Udkas pr. 27/11-2003 il: Equiy Premium Puzzle - den danske brik Resumé: Papire beskriver udviklingen på de danske

Læs mere

En-dimensionel model af Spruce Budworm udbrud

En-dimensionel model af Spruce Budworm udbrud En-dimensionel model af Sprce dworm dbrd Kenneh Hagde Mandr p Niel sen o g K asper j er ing Søby Jensen, ph.d-sderende ved oskilde Universie i hhv. maemaisk modellering og maemaikkens didakik. Maemaisk

Læs mere

1 Stofskifte og kropsvægt hos pattedyr. 2 Vægtforhold mellem kerne og strå. 3 Priselasticitet. 4 Nedbrydning af organisk materiale. 5 Populationsvækst

1 Stofskifte og kropsvægt hos pattedyr. 2 Vægtforhold mellem kerne og strå. 3 Priselasticitet. 4 Nedbrydning af organisk materiale. 5 Populationsvækst Oversig Eksempler på hvordan maemaik indgår i undervisningen på LIFE Gymnasielærerdag Thomas Vils Pedersen Insiu for Grundvidenskab og Miljø vils@life.ku.dk Sofskife og kropsvæg hos paedyr Vægforhold mellem

Læs mere

Danmarks fremtidige befolkning Befolkningsfremskrivning 2006. Marianne Frank Hansen, Lars Haagen Pedersen og Peter Stephensen

Danmarks fremtidige befolkning Befolkningsfremskrivning 2006. Marianne Frank Hansen, Lars Haagen Pedersen og Peter Stephensen Danmarks fremidige befolkning Befolkningsfremskrivning 26 Marianne Frank Hansen, Lars Haagen Pedersen og Peer Sephensen Juni 26 Indholdsforegnelse Forord...4 1. Indledning...6 2. Befolkningsfremskrivningsmodellen...8

Læs mere

Appendisk 1. Formel beskrivelse af modellen

Appendisk 1. Formel beskrivelse af modellen Appendisk. Formel beskrivelse af modellen I dee appendiks foreages en mere formel opsilning af den model, der er beskreve i ariklen. Generel: Renen og alle produenpriser - eksklusiv lønnen - er give fra

Læs mere

FARVEAVL myter og facts Eller: Sådan får man en blomstret collie!

FARVEAVL myter og facts Eller: Sådan får man en blomstret collie! FARVEAVL myer og facs Eller: Sådan får man en blomsre collie! Da en opdræer for nylig parrede en blue merle æve med en zobel han, blev der en del snak bland colliefolk. De gør man bare ikke man ved aldrig

Læs mere

Data og metode til bytteforholdsberegninger

Data og metode til bytteforholdsberegninger d. 3. maj 203 Daa og meode il byeforholdsberegninger Dee noa redegør for daagrundlage og beregningsmeoden bag byeforholdsberegningerne i Dansk Økonomi, forår 203.. Daagrundlag Daagrundlage for analysen

Læs mere

Computer- og El-teknik Formelsamling

Computer- og El-teknik Formelsamling ompuer- og El-eknik ormelsamling E E E + + E + Holsebro HTX ompuer- og El-eknik 5. og 6. semeser HJA/BA Version. ndholdsforegnelse.. orkorelser inden for srøm..... Modsande ved D..... Ohms ov..... Effek

Læs mere

Dommedag nu? T. Døssing, A. D. Jackson og B. Lautrup Niels Bohr Institutet. 23. oktober 1998

Dommedag nu? T. Døssing, A. D. Jackson og B. Lautrup Niels Bohr Institutet. 23. oktober 1998 Dommedag nu? T. Døssing, A. D. Jackson og B. Laurup Niels Bohr Insiue 3. okober 1998 Der har alid være fanaikere, som har men, a dommedag var nær, og for en del år siden kom nogle naurvidenskabelige forskere

Læs mere

Kan den danske forbrugsudvikling benyttes til at bestemme inflationsforventninger?

Kan den danske forbrugsudvikling benyttes til at bestemme inflationsforventninger? 59 Kan den danske forbrugsudvikling benyes il a besemme inflaionsforvenninger? Michael Pedersen, Økonomisk Afdeling INFLATIONSFORVENTNINGER Realrenen angiver låneomkosningerne (eller afkase af en placering

Læs mere

Kædning og sæsonkorrektion af det kvartalsvise nationalregnskab

Kædning og sæsonkorrektion af det kvartalsvise nationalregnskab Danmarks Sask Naonalregnskab 9. november 00 ædnng og sæsonkorrekon af de kvaralsvse naonalregnskab Med den revderede opgørelse af de kvaralsvse naonalregnskab 3. kvaral 007 6. januar 008 blev meoden l

Læs mere

Prisfastsættelse af fastforrentede konverterbare realkreditobligationer

Prisfastsættelse af fastforrentede konverterbare realkreditobligationer Copenhagen Business School 2010 Kandidaspeciale Cand.merc.ma Prisfassæelse af fasforrenede konvererbare realkrediobligaioner Vejleder: Niels Rom Aflevering: 28. juli 2010 Forfaere: Mille Lykke Helverskov

Læs mere

Danmarks Nationalbank

Danmarks Nationalbank Danmarks Naionalbank Kvar al so ver sig 3. kvaral Del 2 202 D A N M A R K S N A T I O N A L B A N K 2 0 2 3 KVARTALSOVERSIGT, 3. KVARTAL 202, Del 2 De lille billede på forsiden viser Arne Jacobsens ur,

Læs mere

Dokumentation for regelgrundskyldspromillen

Dokumentation for regelgrundskyldspromillen Danmarks Saisik MODELGRUPPEN Arbejdspapir Marcus Mølbak Inghol 17. okober 2012 Dokumenaion for regelgrundskyldspromillen Resumé: I dee modelgruppepapir dokumeneres konsrukionen af en idsrække for regelgrundskyldspromillen

Læs mere

Porteføljeteori: Investeringsejendomme i investeringsporteføljen. - Med særligt fokus på investering gennem et kommanditselskab

Porteføljeteori: Investeringsejendomme i investeringsporteføljen. - Med særligt fokus på investering gennem et kommanditselskab Poreføljeeori: Inveseringsejendomme i inveseringsporeføljen - Med særlig fokus på invesering gennem e kommandiselskab Jonas Frøslev (300041) MSc in Finance Aarhus Universie, Business and Social Sciences

Læs mere

Dansk pengeefterspørgsel

Dansk pengeefterspørgsel 45 Dansk pengeeferspørgsel 98 Allan Bødskov Andersen, Økonomisk Afdeling INDLEDNING OG SAMMENFATNING I den økonomiske lieraur har pengeeferspørgselsfunkioner ilrukke sig beydelig opmærksomhed. De skyldes

Læs mere

Prisdannelsen i det danske boligmarked diagnosticering af bobleelement

Prisdannelsen i det danske boligmarked diagnosticering af bobleelement Hovedopgave i finansiering, Insiu for Regnskab, Finansiering og Logisik Forfaer: Troels Lorenzen Vejleder: Tom Engsed Prisdannelsen i de danske boligmarked diagnosicering af bobleelemen Esimering af dynamisk

Læs mere

Bilag 7 - Industriel overfladebehandling Bilag til Arbejdstilsynets bekendtgørelse nr. 302 af 13. maj 1993 om arbejde med kodenummererede produkter

Bilag 7 - Industriel overfladebehandling Bilag til Arbejdstilsynets bekendtgørelse nr. 302 af 13. maj 1993 om arbejde med kodenummererede produkter Bilag 7 - Indusriel ovfladebehandling Bilag il Arbejdsilsynes bekendgørelse nr. 302 af 13. maj 1993 om arbejde kodenume produk 7.1. Bilages område a. Påføring af maling og lak på emn på fase arbejdsplads

Læs mere

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage Dages forelæsig Ige-Arbirage pricippe Claus Muk kap. 4 Nulkupoobligaioer Simpel og geerel boosrappig Forwardreer Obligaiosprisfassæelse Arbirage Værdie af e obligaio Nuidsværdie af obligaioes fremidige

Læs mere

Pensions- og hensættelsesgrundlag for ATP gældende pr. 30. juni 2014

Pensions- og hensættelsesgrundlag for ATP gældende pr. 30. juni 2014 Pensions- og hensæelsesgrundlag for ATP gældende pr. 30. juni 2014 Indhold 1 Indledning 6 1.1 Lovgrundlag.............................. 6 1.2 Ordningerne.............................. 6 2 Risikofakorer

Læs mere

Finanspolitik i makroøkonomiske modeller

Finanspolitik i makroøkonomiske modeller 33 Finanspoliik i makroøkonomiske modeller Jesper Pedersen, Økonomisk Afdeling 1 1. INDLEDNING OG SAMMENFATNING Finanspoliik og pengepoliik er radiionel se de o vigigse økonomiske insrumener il sabilisering

Læs mere

Rustfrit stål i husholdningen

Rustfrit stål i husholdningen Rus f r i s åli hus hol dni ngen Hv i l k es ål y perbr ugerv iikøkk ene oghv or f or?oghv ader f l y v er us? Rusfri sål i husholdningen Hvilke sålyper bruger vi i køkkene og hvorfor? Og hvad er flyverus?

Læs mere

Multivariate kointegrationsanalyser - En analyse af risikopræmien på det danske aktiemarked

Multivariate kointegrationsanalyser - En analyse af risikopræmien på det danske aktiemarked Cand.merc.(ma)-sudie Økonomisk nsiu Kandidaafhandling Mulivariae koinegraionsanalyser - En analyse af risikopræmien på de danske akiemarked Suderende: Louise Wellner Bech flevere: 9. april 9 Vejleder:

Læs mere

ktion MTC 12 Varenr. 572178 MTC12/1101-1

ktion MTC 12 Varenr. 572178 MTC12/1101-1 Brugervejledning kion & insrukion MTC 12 Varenr. 572178 MTC12/1101-1 INDHOLD Indeks. 1: Beskrivelse 2: Insallaion 3: Programmering 4: Hvordan fungerer syringen 4.1 Toggle ermosa 4.2 1 rins ermosa 4.3 Neuralzone

Læs mere

Eksamen på Økonomistudiet 2006-II. Tag-Med-Hjem-Eksamen. Makroøkonomi, 2. årsprøve, Økonomien på langt sigt. Efterårssemestret 2006

Eksamen på Økonomistudiet 2006-II. Tag-Med-Hjem-Eksamen. Makroøkonomi, 2. årsprøve, Økonomien på langt sigt. Efterårssemestret 2006 Eksamen på Økonomistudiet 2006-II ag-med-hjem-eksamen Makroøkonomi, 2. årsprøve, Økonomien på langt sigt Efterårssemestret 2006 Udleveres tirsdag den 2. januar 2007, kl. 10.00 Afleveres torsdag den 4.

Læs mere

Hvordan ville en rendyrket dual indkomstskattemodel. Arbejdspapir II

Hvordan ville en rendyrket dual indkomstskattemodel. Arbejdspapir II Hvordan ville en rendyrke dual indkomsskaemodel virke i Danmark? Simulering af en ensare ska på al kapialindkoms Arbejdspapir II Ændre opsparingsadfærd Skaeminiserie 2007 2007.II Arbejdspapir II - Ændre

Læs mere

BLIV KLOG PÅ NATURSTEN

BLIV KLOG PÅ NATURSTEN BLIV KLOG PÅ NATURSTEN - OG UNDGÅ MISFARVNINGER ARDEX NATURSTENS- SYSTEM E hurig og komple sysem, der sikrer farveæge naursensbelægninger www.ardex.dk Produkoversig Fugfølsomme naursen Fugbesandige naursen

Læs mere

Slides til Makro 2, Forelæsning 5 24. september 2004 Chapter 5

Slides til Makro 2, Forelæsning 5 24. september 2004 Chapter 5 DEN GENERELLE SOLOWMODEL (SOLOW-MODELLEN) Slides til Makro 2, Forelæsning 5 24 september 2004 Chapter 5 Hans Jørgen Whitta-Jacobsen September 20, 2004 Tilbage til lukket økonomi Basal Solowmodel: Ingen

Læs mere

ktion MTC 4 Varenr MTC4/1101-1

ktion MTC 4 Varenr MTC4/1101-1 Brugervejledning kion & insrukion MTC 4 Varenr. 572185 MTC4/1101-1 INDHOLD Indeks. 1: Beskrivelse 2: Insallaion 3: Programmering 4: Hvordan fungerer syringen 4.1 Toggle ermosa 4.2 1 rins ermosa 4.3 Neuralzone

Læs mere

Hvor meget er det værd at kunne udskyde sine afdrag, som man vil?

Hvor meget er det værd at kunne udskyde sine afdrag, som man vil? Hvor mege er de værd a kunne udskyde sine afdrag, som man vil? Bjarke Jensen Rolf Poulsen 1 Indledning For den almindelig fordrukne og forgældede danske boligejer var 1. okober 2003 en god dag: Billigere

Læs mere

Slides til Makro 2 Forelæsning 10 24. november 2003. Hans Jørgen Whitta-Jacobsen

Slides til Makro 2 Forelæsning 10 24. november 2003. Hans Jørgen Whitta-Jacobsen Slides til Makro 2 Forelæsning 10 24. november 2003 Hans Jørgen Whitta-Jacobsen 0 ENDOGEN VÆKST BASERET PÅ R&D (F&U) I alle vores vækstmodeller - dem vi har set, og den vi skal se - er roden til langsigtet

Læs mere

Lindab Comdif. Fleksibilitet ved fortrængning. fortrængningsarmaturer. Comdif er en serie af luftfordelingsarmaturer til fortrængningsventilation.

Lindab Comdif. Fleksibilitet ved fortrængning. fortrængningsarmaturer. Comdif er en serie af luftfordelingsarmaturer til fortrængningsventilation. comfor forrængningsarmaurer Lindab Comdif 0 Lindab Comdif Ved forrængningsvenilaion ilføres lufen direke i opholds-zonen ved gulvniveau - med lav hasighed og underemperaur. Lufen udbreder sig over hele

Læs mere

Optimalt porteføljevalg i en model med intern habit nyttefunktion og stokastiske investeringsmuligheder

Optimalt porteføljevalg i en model med intern habit nyttefunktion og stokastiske investeringsmuligheder Opimal poreføljevalg i en model med inern habi nyefunkion og sokasiske inveseringsmuligheder Thomas Hemming Larsen cand.merc.(ma.) sudie Insiu for Finansiering Copenhagen Business School Vejleder: Carsen

Læs mere

Hvorfor en pjece til lønmodtagere gift med landmænd?

Hvorfor en pjece til lønmodtagere gift med landmænd? Hvorfor en pjece il lønmodagere gif med landmænd? Fordi 60 pc. af alle landbokvinder er lønmodagere og mange yngre landbokvinder ikke er opvokse på e landbrug, og mange heller ikke på lande. Fordi de kan

Læs mere

c. Godkendelse af dagsordenen ( ) d. Godkendelse af referat fra UDDU møde februar 2015 Ingen indsigelser

c. Godkendelse af dagsordenen ( ) d. Godkendelse af referat fra UDDU møde februar 2015 Ingen indsigelser : Dao for møde: Side Dagsorden il møde i UDDU maj 2015 07.05.15 1/7 Referen: Udfærdige dao : Mødesed Tilsedeværende: Søren Kold, Susanne Malle, Marie Fridberg,, Jakob Kli,, 1.0 Formalia a. Valg af dirigen

Læs mere

Eksamen på Økonomistudiet 2009-I. Makro 2. Udleveres d. 14. januar kl. 10.00 A everes d. 16. januar kl.10.00

Eksamen på Økonomistudiet 2009-I. Makro 2. Udleveres d. 14. januar kl. 10.00 A everes d. 16. januar kl.10.00 Eksamen på Økonomistudiet 2009-I Makro 2 2. årsprøve Udleveres d. 14. januar kl. 10.00 A everes d. 16. januar kl.10.00 Der er fokus på at undgå tilfælde af eksamenssnyd I tilfælde af formodet eksamenssnyd,

Læs mere

Matematikkens mysterier - på et højt niveau. 4. Rumgeometri

Matematikkens mysterier - på et højt niveau. 4. Rumgeometri Maemaikkens mserier - på e høj niveau af Kenneh Hansen 4. Rumgeomeri Hvordan kan o forskellige planer ligge i forhold il hinanden? 4. Rumgeomeri Indhold 4. Vekorer i rumme 4. Krdsproduke 7 4. Planer og

Læs mere

Arbejdspapir nr. 17/2005. Titel: Beregning af den strukturelle offentlige saldo 1. Forfatter: Michael Skaarup (msk@fm.dk)

Arbejdspapir nr. 17/2005. Titel: Beregning af den strukturelle offentlige saldo 1. Forfatter: Michael Skaarup (msk@fm.dk) Arbejdspapir nr. 17/5 Tiel: Beregning af den srukurelle offenlige saldo 1 Forfaer: Michael Skaarup (msk@fm.dk) Henvendelse: Michael Lund Nielsen (mln@fm.dk) Resumé: I arbejdspapire redegøres for den meode

Læs mere

N O T A T Lønninger i banksektoren en ny analyse af lønpræmier. Kort resumé

N O T A T Lønninger i banksektoren en ny analyse af lønpræmier. Kort resumé N O T A T Lønninger i banksekoren en ny analyse af lønpræmier Kor resumé Konkurrencesyrelsen offenliggør i forbindelse med den årlige konkurrenceredegørelse beregninger på såkalde lønpræmier i danske brancher.

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

BAT Nr. 3 maj 2006. Den 4. april fremsatte EU kommissionen et revideret forslag til et Servicedirektiv.

BAT Nr. 3 maj 2006. Den 4. april fremsatte EU kommissionen et revideret forslag til et Servicedirektiv. B A T k a r e l l e Nr. 3 maj 2006 Den 4. april fremsae EU kommissionen e revidere forslag il e Servicedirekiv. Side 3 De økonomiske miniserier er i skarp konkurrence om, hvem der kan fremmane sørs flaskehalspanik

Læs mere

FJERNVARME 2011. Muffer og fittings af plast

FJERNVARME 2011. Muffer og fittings af plast FJERNVARME 2 Muffer og fiings af plas INDHOLDSFORTEGNELSE Muffer Lige muffer Side 4 Krympemuffer Side 5 Svejsemuffer Side 6 Skydemuffer Side 7 Redukionsmuffer Side 9 Ballonmuffer Side 4 Slumuffer Side

Læs mere

OPLÆG TIL STUDIERETNINGSPROJEKTER I MATEMATIK-KEMI OM REAKTIONSKINETIK OG DIFFERENTIALLIGNINGER. Indledning

OPLÆG TIL STUDIERETNINGSPROJEKTER I MATEMATIK-KEMI OM REAKTIONSKINETIK OG DIFFERENTIALLIGNINGER. Indledning KONSTELLATIONER (TVÆRMAT) REAKTIONSKINETIK OG DIFFERENTIALLIGNINGER DEN 4. MARTS 7 OPLÆG TIL STUDIERETNINGSPROJEKTER I MATEMATIK-KEMI OM REAKTIONSKINETIK OG DIFFERENTIALLIGNINGER Inlening Reakionskineik

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

Lad totalinddækning mindske nedslidningen

Lad totalinddækning mindske nedslidningen B A T k a r e l l e Nr. 5 sepember 2006 3 mia. il ny forebyggelsesfond og eksra midler il Arbejdsilsyne, var de glade budskab, da forlige om fremidens velfærd var i hus lige før sommerferien. Side 2 Arbejdsilsyne

Læs mere