standard normalfordelingen på R 2.

Størrelse: px
Starte visningen fra side:

Download "standard normalfordelingen på R 2."

Transkript

1 Standard normalfordelingen på R 2 Lad f (x, y) = 1 x 2 +y 2 2π e 2. Vi har så f (x, y) = 1 2π e x π e y2 2, og ved Tonelli f dm 2 = 1. Ved µ(a) = A f dm 2 defineres et sandsynlighedsmål på R 2 målet µ er kendt som standard normalfordelingen på R 2. Slide 1/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

2 Bundter Bundles (Ω, F, P) X (X, E) Y (X, Y) (Y, K) (X Y, E K) The marginal distributions - the image measures X(P) og Y(P). The joint distribution - the image measure (X, Y)(P). De marginale fordelinger billedmålene X (P) og Y (P).. p.25/40 Den simultane fordeling billedmålet (X, Y )(P). Bemærk at X = ˆX (X, Y ) og Y = Ŷ (X, Y ). Slide 2/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

3 Fra simultan til marginal fordeling Lemma (EH 18.1) Den marginale fordeling af X og Y er givet i termer af den simultane fordeling af X og Y. Bevis: Den simultane fordeling giver os alle sandsynlighederne ( ) P (X, Y ) G for G E K. For A E er den marginale fordeling af X givet ved ( ) P(X A) = P(X A, Y Y) = P (X, Y ) A Y Alternativt formuleret, X (P) = ˆX (X, Y )(P) = ˆX ((X, Y )(P)). Slide 3/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

4 Marginalisering med tætheder Lad (X, E, µ) og (Y, K, ν) være to σ-endelige målrum. Lad X og Y være to stokastiske variable med værdier i hhv. X og Y. Korollar (EH 18.2) Hvis X og Y har simultanfordeling med tæthed f m.h.t. µ ν, dvs. ( ) P (X, Y ) G = f (x, y) dµ ν(x, y) for alle G E K så er hvor G P(X A) = g(x) = A g(x) dµ(x) f (x, y) dν(y) for alle A E for alle x X Slide 4/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

5 Marginaler for standard normalfordelingen Hvis simultanfordelingen af (X, Y ) er standard normalfordelingen på R 2, har den marginale fordeling af X tæthed g(x) = f (x, y) dy = 1 2 +y 2 2π e 2 dy = 1 2π e x2 2 Dvs. X N (0, 1). Ligeledes, Y N (0, 1). I dette tilfælde har vi (X, Y )(P) = f m 2 = (g m) (g m) = X (P) Y (P). Slide 5/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

6 Uafhængighed Lad X og Y være to stokastiske variable defineret på (Ω, F, P) med værdier i hhv. (X, E) og (Y, K). Definition (EH 18.4) Vi siger at X og Y er uafhængige, hvis (X, Y )(P) = X (P) Y (P) Vi skriver ofte X Y, hvis X og Y er uafhængige. Sandsynlighedsteoretisk formulering: P(X A, Y B) = P(X A) P(Y B) for alle A E, B K Slide 6/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

7 En frekventistisk forklaring på uafhængighed For hændelser A og B, et sandsynlighedsmål ν, og n observationer fra ν har vi ν(a B) ε n (A B) = ε n(a B) ε n (B), ε n (B) hvor ε n er den empiriske fordeling. Brøken (vi antager ε n (B) > 0) ε n (A B) ε n (B) er frekvensen af gange hændelsen A B indtræffer ud af de gange B indtræffer. Hvis det at B er indtruffet ikke ændrer på sandsynligheden for at A indtræffer (A er uafhængig er B) giver frekvensfortolkningen, at ε n (A B) ε n (B) ν(a). Slide 7/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

8 En frekventistisk forklaring på uafhængighed Definition For hændelser A og B og et sandsynlighedsmål ν med ν(b) > 0 defineres den betingende sandsynlighed for A givet B som ν(a B) = ν(a B). ν(b) Hændelsen A er uafhængig af B, hvis ν(a B) = ν(a). Den symmetriske definition: A og B er uafhængige hvis ν(a B) = ν(a)ν(b) er i overensstemmelse med ovenstående (asymmetriske) definition, og undgår risikoen for division med 0. Ved at se på hændelser (X A) = X 1 (A) og (Y B) = Y 1 (B) på Ω løftes definitionen af uafhængighed til stokastiske variable. Slide 8/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

9 Uafhængighed af flere variable Lad X 1,..., X n være n stokastiske variable defineret på (Ω, F, P) og med værdier i (X 1, E 1 ),..., (X n, E n ). Definition Vi siger at X 1,..., X n er uafhængige, hvis (X 1,..., X n )(P) = X 1 (P)... X n (P) Vi skriver ofte X 1 X 2... X n, hvis X 1,..., X n er uafhængige. Sandsynlighedsteoretiske formulering: X 1,..., X n er uafhængige, hvis n P(X 1 A 1,..., X n A n ) = P(X i A i ) for alle A i E i, i = 1,..., n. i=1 Slide 9/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

10 Adskilte transformationer Lad X 1 og X 2 være to stokastiske variable defineret på (Ω, F, P) med værdier i hhv. (X 1, E 1 ) og (X 2, E 2 ). Lad h 1 : (X 1, E 1 ) (Y 1, K 1 ) og h 2 : (X 2, E 2 ) (Y 2, K 2 ) være målelige afbildninger. Sætning (18.12) Hvis så er X 1 X 2, h 1 (X 1 ) h 2 (X 2 ). Slide 10/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

11 Uafhængighed og varians Hvis X og Y er uafhængige reelle stokastiske variable med 1. moment, så følger det af Tonellis sætning at XY første moment og EXY = XY dp = xy dx (P) dy (P)(x, y) = x dx (P)(x) y dy (P)(y) = EXEY. Hvis X og Y har 2. moment fås V (X + Y ) = EX 2 + EY 2 + 2E(XY ) (EX ) 2 (EY ) 2 2EXEY = VX + VY. Regnereglen gælder når X og Y er uafhængige. Bemærk også at V (X Y ) = V (X + ( Y )) = VX + V ( Y ) = VX + VY. Slide 11/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

12 Uafhængighed og frembringere Lad (X, E) og (Y, K) være målbare rum, og lad D og G være fællesmængdestabile frembringere for hhv. E og K. Lad X og Y være stokastiske variable defineret på (Ω, F, P) med værdier i hhv. (X, E) og (Y, K). Sætning (EH 18.7) De stokastiske variable X og Y er uafhængige, hvis P(X A, Y B) = P(X A)P(Y B) for alle A D, B G Sætning (Kapitel 9 version) Hvis λ er et sandsynlighedsmål på (X Y, E K) med marginaler µ = ˆX (λ) og ν = Ŷ (λ), så er λ = µ ν hvis λ(a B) = µ(a)ν(b) for A D, B G Slide 12/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

13 Alternativt bevis Bevis: Per definition er E K σ-algebraen frembragt af ˆX og Ŷ. Da λ(a Y) = µ(a) = µ(a)ν(y) og λ(x B) = ν(b) = µ(x )ν(b), kan vi frit tilføje X til D og Y til G, hvis de ikke allerede er med. Brolægningen D G = {A B A D, B G} er indeholdt i E K og eftersom ˆX 1 (A) = A Y D G og Ŷ 1 (B) = X B D G for A D, B G følger det af Lemma 4.7 at begge projektioner er målelige m.h.t. σ(d G). Vi konkluderer, at σ(d G) = E K, og eftersom frembringeren er stabil overfor fællesmængdedannelse følger det af entydighedssætningen for sandsynlighedsmål, sætning 3.7, at λ = µ ν. Slide 13/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

14 Uafhængighed Sætning (EH 18.8, 18.9, 18.10) Hvis I 1,..., I r er r disjunkte delmængder af {1,..., n}, og hvis X 1... X m... X n, så er (X i ) i I1... (X i ) i Ir. Slide 14/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

15 Standard normalfordelingen De reelle stokastiske variable X 1,..., X n er uafhængige med X i N (0, 1) for i = 1,..., n hvis og kun hvis den simultane fordeling har tæthed f (x) = ( ) 1 n/2 ( exp x T ) ( ) x 1 n/2 ( n i=1 = exp x i 2 2π 2 2π 2 for x = (x 1,..., x n ) T R n. Vi skal se hvordan bl.a. standard normalfordelingen transformerer under affine transformationer x Bx + a for B en k n matrix og a R k. ) Slide 15/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

16 Den flerdimensionale normalfordeling Den regulære normalfordeling på R n har tæthed f (x) = ( ) 1 n/2 ( ) 1 1/2 ( exp 1 ) 2π detσ 2 (x ξ)t Σ 1 (x ξ) for x R n w.r.t. m n. Her er ξ R n en vektor og Σ en n n symmetrisk, positiv definit matrix. Vi skriver X N (ξ, Σ) hvis fordelingen af X er den regulære normalfordeling som defineret ovenfor. Slide 16/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

17 Den flerdimensionale normalfordeling Slide 17/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

18 Den flerdimensional normalfordeling Sætning (EH 18.23) Den regulære normalfordeling på R n er et sandsynlighedsmål, dvs. ( exp 1 ) 2 (x ξ)t Σ 1 (x ξ) dm n (x) = (2π) n/2 (det Σ) 1/2. Bevis: Baseret på: EH E.6: Da Σ er positiv definit, kan matricen diagonaliseres. Q T ΣQ = diag(λ 1,..., λ n ) with λ 1,..., λ n > 0, Q er en ortogonal matrix, og det Σ = λ 1... λ n. m n er invariant under ortogonale transformationer. Slide 18/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

19 Den flerdimensionale normalfordeling Lad X = (X 1, X 2 ) T være en stokastisk variable med en n-dimensional regulær normalfordeling med ξ = (ξ 1, ξ 2 ) T og { } Σ11 Σ Σ = 12. Σ 21 Σ 22 Her er n = n 1 + n 2 og X 1 og X 2 er hhv. n 1 - og n 2 -dimensionale. Sætning (EH 18.26, 18.27, 18.28, 18.29) X i N (ξ i, Σ ii ) for i = 1, 2. Hvis Σ 12 = Σ T 21 = 0, så er X 1 og X 2 uafhængige. Hvis B er k n med rang k, og a R k, så er a + BX N (a + Bξ, BΣB T ). Slide 19/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

20 Foldning Hvis X 1,..., X n er uafhængige N (0, σ 2 ), så gælder at n X i N (0, nσ 2 ). i=1 Følger af sætning Sæt X = (X 1,..., X n ) T N (0, σ 2 I ), så er n X i = BX i=1 med B = (1,..., 1) og Bσ 2 IB T = nσ 2. Det interessante er, at fordelingen igen er en normalfordeling. Middelværdi og varians følger af generelle formler. Slide 20/20 Niels Richard Hansen MI forelæsninger 17. December, 2014

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål Hvad vi mangler fra onsdag Momenter som deskriptive størrelser Sandsynlighedsmål er komplicerede objekter de tildeler numeriske værdier til alle hændelser i en σ-algebra. Vi har behov for simplere, deskriptive

Læs mere

Hvad vi mangler fra onsdag. Vi starter med at gennemgå slides fra onsdag.

Hvad vi mangler fra onsdag. Vi starter med at gennemgå slides fra onsdag. Hvad vi mangler fra onsdag Vi starter med at gennemgå slides 34-38 fra onsdag. Slide 1/17 Niels Richard Hansen MI forelæsninger 6. December, 2013 Momenter som deskriptive størrelser Sandsynlighedsmål er

Læs mere

Et eksperiment beskrives af et udfaldsrum udstyret med et. alle mulige resultater af eksperimentet

Et eksperiment beskrives af et udfaldsrum udstyret med et. alle mulige resultater af eksperimentet Sandsynlighedsteori Et eksperiment beskrives af et udfaldsrum udstyret med et sandsynlighedsmål, (X, E, ν). Udfaldsrummet X indeholder alle mulige resultater af eksperimentet men ofte også yderligere elementer

Læs mere

Fortolkning. Foldning af sandsynlighedsmål. Foldning af tætheder. Foldning af Γ-fordelinger Eksempel: Hvis X og Y er uafhængige og. Sætning (EH 20.

Fortolkning. Foldning af sandsynlighedsmål. Foldning af tætheder. Foldning af Γ-fordelinger Eksempel: Hvis X og Y er uafhængige og. Sætning (EH 20. Foldning af sandsnlighedsmål Lad µ og ν være to sandsnlighedsmål på (R, B). Fortolkning Lad φ : R R være φ(, ) = + for (, ) R. Lad X og Y være to reelle stokastiske variable defineret på (Ω, F, P). Definition

Læs mere

Sandsynlighedsteori. Sandsynlighedsteori. Sandsynlighedsteori Et eksperiment beskrives af et udfaldsrum udstyret med et. Et Bayesiansk argument

Sandsynlighedsteori. Sandsynlighedsteori. Sandsynlighedsteori Et eksperiment beskrives af et udfaldsrum udstyret med et. Et Bayesiansk argument Sandsynlighedsteori Sandsynlighedsteori Et eksperiment beskrives af et udfaldsrum udstyret med et sandsynlighedsmål, (, E, ν). Et eksperiment beskrives af et udfaldsrum udstyret med et sandsynlighedsmål,

Læs mere

Eksamen 2014/2015 Mål- og integralteori

Eksamen 2014/2015 Mål- og integralteori Eksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål Ved bedømmelsen indgår de spørgsmål med samme vægt

Læs mere

Histogrammetoden For (x i, y i ) R 2, i = 1,..., n, ser vi på den gennemsnitlige

Histogrammetoden For (x i, y i ) R 2, i = 1,..., n, ser vi på den gennemsnitlige Histogrammetoden For (x i, y i ) R 2, i = 1,..., n, ser vi på den gennemsnitlige længde: z = 1 n hvor z i = xi 2 + yi 2. n z i = 1 n i=1 n i=1 x 2 i + y 2 i Indfør tabellen samt vægtene Da er a k = #{i

Læs mere

Integration m.h.t. mål med tæthed

Integration m.h.t. mål med tæthed Integration m.h.t. mål med tæthed Sætning (EH 11.7) Lad ν = f µ på (X, E). For alle g M + (X, E) gælder at gdν = g f dµ. Bevis: Standardbeviset: 1) indikatorfunktioner 2) simple funktioner 3) M + -funktioner.

Læs mere

Tonelli light. Eksistensbeviset for µ ν gav målet. for G E K ved succesiv integration. Alternativ definition:

Tonelli light. Eksistensbeviset for µ ν gav målet. for G E K ved succesiv integration. Alternativ definition: Tonelli light Eksistensbeviset for µ ν gav målet ( ) λ(g) = G (x, y)dν(y) dµ(x) for G E K ved succesiv integration. Alternativ definition: ( ) λ(g) = G (x, y)dµ(x) dν(y). Som λ(a B) = µ(a)ν(b) gælder λ(a

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte

Læs mere

Histogrammetoden For (x i, y i ) R 2, i = 1,..., n, ser vi på den gennemsnitlige. Histogrammetoden. Histogrammetoden.

Histogrammetoden For (x i, y i ) R 2, i = 1,..., n, ser vi på den gennemsnitlige. Histogrammetoden. Histogrammetoden. For ( i, y i ) R 2, i =,, n, ser vi på den gennemsnitlige længde: z = n hvor z i = i 2 + yi 2 Indfør tabellen samt vægtene Da er z i = n 2 i + y 2 i a k = #{i 00z i = k}, k N 0 z ned := ν k = a k n 00kν

Læs mere

Reeksamen 2014/2015 Mål- og integralteori

Reeksamen 2014/2015 Mål- og integralteori Reeksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål. Ved bedømmelsen indgår de spørgsmål med samme vægt.

Læs mere

Betingning med en uafhængig variabel

Betingning med en uafhængig variabel Betingning med en uafhængig variabel Sætning Hvis X er en reel stokastisk variabel med første moment og Y er en stokastisk variabel uafhængig af X, så er E(X Y ) = EX. Bevis: Observer at D σ(y ) har formen

Læs mere

Integration m.h.t. mål med tæthed

Integration m.h.t. mål med tæthed Integration m.h.t. mål med tæthed Sætning (EH 11.7) Lad ν = f µ på (X, E). For alle g M + (X, E) gælder at gdν = g f dµ. Bevis: Standardbeviset: 1) indikatorfunktioner 2) simple funktioner 3) M + -funktioner.

Læs mere

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable E6 efterår 999 Notat 8 Jørgen Larsen 22. november 999 Lineære normale modeller ) udkast Ved hjælp af lineær algebra kan man formulere og analysere de såkaldte lineære normale modeller meget overskueligt

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Lineære transformationer, middelværdi og varians Helle Sørensen Uge 8, onsdag SaSt2 (Uge 8, onsdag) Lineære transf. og middelværdi 1 / 15 Program I formiddag: Fordeling

Læs mere

Sandsynlighedsregning Oversigt over begreber og fordelinger

Sandsynlighedsregning Oversigt over begreber og fordelinger Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Deskriptiv teori i flere dimensioner

Deskriptiv teori i flere dimensioner Kapitel 17 Deskriptiv teori i flere dimensioner I kapitel 13 og 14 udviklede vi en række deskriptive værktøjer til at beskrive sandsynlighedsmål på (R, B) Vi vil i dette kapitel forsøge at udvikle varianter

Læs mere

INSTITUT FOR MATEMATISKE FAG c

INSTITUT FOR MATEMATISKE FAG c INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske

Læs mere

Deskriptiv teori i flere dimensioner

Deskriptiv teori i flere dimensioner Kapitel 17 Deskriptiv teori i flere dimensioner I kapitel 13 og 14 udviklede vi en række deskriptive værktøjer til at beskrive sandsynlighedsmål på (R, B). Vi vil i dette kapitel forsøge at udvikle varianter

Læs mere

Borel-σ-algebraen. Definition (EH 1.23)

Borel-σ-algebraen. Definition (EH 1.23) Borel-σ-algebraen Definition (EH 1.23) Borel-σ-algebraen B k på R k er σ-algebraen frembragt af de åbne mængder O k. Andre frembringersystemer for B k : De afsluttede mængder. De åbne kasser I k (k = 1,

Læs mere

Transformation: tætheder pår k

Transformation: tætheder pår k Kapitel 19 Transformation: tætheder pår k I dette kapitel vil vi angribe følgende version af transformationsproblemet: Lad X 1,, X k være reelle stokastiske variable, defineret på (Ω,F, P), sådan at den

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Del II. Den lineære normale model

Del II. Den lineære normale model Del II Den lineære normale model 301 302 Kapitel 9 Normalfordelinger på vektorrum Vi vil i dette kapitel give en fremstilling af teorien for normalfordelinger (også kaldet Gaussiske fordelinger) på endeligdimensionale

Læs mere

hvor a og b er konstanter. Ved middelværdidannelse fås videre

hvor a og b er konstanter. Ved middelværdidannelse fås videre Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den

Læs mere

Wigner s semi-cirkel lov

Wigner s semi-cirkel lov Wigner s semi-cirkel lov 12. december 2009 Eulers Venner Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Diagonalisering af selvadjungeret matrix Lad H være en n n matrix med komplekse

Læs mere

Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@imm.dtu.dk Dagens nye emner afsnit 6.3 (og 6.4 Betingede

Læs mere

Den Brownske Bevægelse

Den Brownske Bevægelse Den Brownske Bevægelse N.J. Nielsen 1 Notation I dette notesæt vil vi generelt benytte samme notation som i det øvrige undervisningsmateriale i MM23. For ethvert n N betegner B n Borelalgebraen på R, og

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag     susanne Statistik og Sandsynlighedsregning 1 Repetition MS kapitel 1 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Hvad er sandsynlighed? - beskriver systemer

Læs mere

Taylors formel. Kapitel Klassiske sætninger i en dimension

Taylors formel. Kapitel Klassiske sætninger i en dimension Kapitel 3 Taylors formel 3.1 Klassiske sætninger i en dimension Sætning 3.1 (Rolles sætning) Lad f : [a, b] R være kontinuert, og antag at f er differentiabel i det åbne interval (a, b). Hvis f (a) = f

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner Stokastiske variable:

Læs mere

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner Stokastiske variable: udfald

Læs mere

Flerdimensionale transformationer

Flerdimensionale transformationer Kapitel 18 Flerdimensionale transformationer Når man i praksis skal opstille en sandsynlighedsmodel for et eksperiment, vil man altid tage udgangspunkt i uafhængighed. Ofte kan man tænke på det udførte

Læs mere

Den todimensionale normalfordeling

Den todimensionale normalfordeling Den todimensionale normalfordeling Definition En todimensional stokastisk variabel X Y siges at være todimensional normalfordelt med parametrene µ µ og når den simultane tæthedsfunktion for X Y kan skrives

Læs mere

13 Markovprocesser med transitionssemigruppe

13 Markovprocesser med transitionssemigruppe 13 Markovprocesser med transitionssemigruppe I nærværende kapitel vil vi antage at tilstandsrummet er polsk, hvilket sikrer, at der findes regulære betingede fordelinger. Vi skal se på eksistensen af Markovprocesser.

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag SaSt2 (Uge 6, onsdag) Middelværdi og varians 1 / 18 Program I formiddag: Tætheder og fordelingsfunktioner kort resume

Læs mere

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3 Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

3 Stokastiske variable 3.1 Diskrete variable

3 Stokastiske variable 3.1 Diskrete variable 3 Stokastiske variable 3.1 Diskrete variable Punktsandsnligheden benævnes P(x) = P(X = x). {x, P(x)} er en sandsnlighedsfordeling for den stokastiske variabel, X, hvis 1) P(x) $ 0 for alle værdier af x.

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Integration og desintegration af mål

Integration og desintegration af mål Kapitel 20 Integration og desintegration af mål Lad som i kapitel 8 (X,E) og (Y,K) være to målbare rum. Vi vil i dette kapitel gå i detaljer med forholdet mellem mål på (X Y, E K) og mål på de to faktorrum

Læs mere

Differentialregning i R k

Differentialregning i R k Differentialregning i R k Lad U R k være åben, og lad h : U R m være differentiabel. Den afledte i et punkt x U er Dh(x) = h 1 (x) x 1 h 2 (x) x 1. h m (x) x 1 h 1 (x) x 2... h 2 (x) x 2.... h m (x) x

Læs mere

Antag at. 1) f : R k R m er differentiabel i x, 2) g : R m R p er differentiabel i y = f(x), . p.1/18

Antag at. 1) f : R k R m er differentiabel i x, 2) g : R m R p er differentiabel i y = f(x), . p.1/18 Differentialregning i R k Kæderegel Lad U R k være åben, og lad h : U R m være differentiabel Antag at Den afledte i et punkt x U er Dh(x) = 1) f : R k R m er differentiabel i x, 2) g : R m R p er differentiabel

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m.

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m. 1 Uge 11 Teoretisk Statistik 8. marts 2004 Kapitel 3: Fordeling af en stokastisk variabel, X Kapitel 4: Fordeling af flere stokastiske variable, X 1,,X m (på en gang). NB: X 1,,X m kan være gentagne observationer

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Simultane fordelinger Kovarians og korrelation Uafhængighed Betingede fordelinger - Middelværdi og varians - Sammenhæng med uafhængighed 1 Figur 1: En tæthedsfunktion

Læs mere

5.3 Konvergens i sandsynlighed Konvergens i sandsynlighed 55. Hvis vi regner den karakteristiske funktion for X, v ud i argumentet 1, fås

5.3 Konvergens i sandsynlighed Konvergens i sandsynlighed 55. Hvis vi regner den karakteristiske funktion for X, v ud i argumentet 1, fås 5.3. Konvergens i sandsynlighed 55 BEVIS: Lad φ 1, φ 2,... og φ være de karakteristiske funktioner for X 1, X 2,... og X. Hvis vi regner den karakteristiske funktion for X, v ud i argumentet 1, fås φ X,v

Læs mere

Betingede fordelinger

Betingede fordelinger Kapitel 21 Betingede fordelinger Hvis man i et eksperiment observerer to stokastiske variable, X og Y, er det ofte hensigtsmæssigt at skrue sin sandsynlighedsteoretiske model sammen på en sådan måde at

Læs mere

Betingede sandsynligheder Aase D. Madsen

Betingede sandsynligheder Aase D. Madsen 1 Uge 12 Teoretisk Statistik 15. marts 2004 1. Betingede sandsynligheder Definition Loven om den totale sandsynlighed Bayes formel 2. Betinget middelværdi og varians 3. Kovarians og korrelationskoefficient

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4 NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4 Sættet består af 3 opgaver med ialt 15 delopgaver. Besvarelsen vil blive forkastet, medmindre der er gjort et

Læs mere

Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 3.5 og 4.1 Poissonfordelingen

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

StatDataN: Middelværdi og varians

StatDataN: Middelværdi og varians StatDataN: Middelværdi og varians JLJ StatDataN: Middelværdi og varians p. 1/33 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle egetræer,

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Lidt om fordelinger, afledt af normalfordelingen

Lidt om fordelinger, afledt af normalfordelingen IMM, 2002-10-10 Poul Thyregod Lidt om fordelinger, afledt af normalfordelingen 1 Introduktion I forbindelse med inferens i normalfordelinger optræder forskellige fordelinger, der er afledt af normalfordelingen,

Læs mere

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning Fejlforplantning Landmålingens fejlteori Lektion 5 Fejlforplantning - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Landmåling involverer ofte bestemmelse af størrelser som ikke kan

Læs mere

Oversigt nr. 1. n+2. n(n + 2) n=1. konvergerer ikke uniformt på [0, 1], så teknikkerne fra

Oversigt nr. 1. n+2. n(n + 2) n=1. konvergerer ikke uniformt på [0, 1], så teknikkerne fra INTEGRATIONSTEORI 1. februar 2019 Oversigt nr. 1 Lærebog. I dette kursus følger vi i store træk mine noter, som I kan finde på moodle-siden. Det vil løbende blive opdateret, så nøjes venligst med at printe

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 28. maj 2014 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 28. maj 2014 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 6 sider Skriftlig prøve, den: 8. maj 04 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Ventetider i en Poissonproces Beskrivelse af kontinuerte fordelinger: - Median og kvartiler - Middelværdi - Varians Simultane fordelinger 1 Ventetider i en Poissonproces

Læs mere

af om en given kombination af binomialkoefficienter svarer til en stor eller en lille sandsynlighed.

af om en given kombination af binomialkoefficienter svarer til en stor eller en lille sandsynlighed. Kapitel 22 Svag konvergens I første halvdel af 1700-tallet var stort set al sandsynlighedsregning af kombinatorisk natur. Hovedværker fra perioden er Abraham de Moivres The octrine of Chances; or, a Method

Læs mere

Sandsynlighed og Statistik

Sandsynlighed og Statistik 36 Sandsynlighed og Statistik 6.1 Indledning Denne note beskriver de statistiske begreber og formler som man med rimelig sandsynlighed kan komme ud for i eksperimentelle øvelser. Alt er yderst korfattet,

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 3.1-3.2 Middelværdi -Definition - Regneregler Betinget middelværdi Middelværdier af funktioner af stokastiske variable Loven om den itererede middelværdi Eksempler 1 Beskrivelse af

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 3.1-3.2 Middelværdi -Definition - Regneregler Betinget middelværdi Middelværdier af funktioner af stokastiske variabler Loven om den itererede middelværdi Eksempler 1 Beskrivelse

Læs mere

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner 5.1 og 5.2 Ligefordeling med to

Læs mere

Klassisk Taylors formel

Klassisk Taylors formel p. 1/17 Klassisk Taylors formel Sætning Lad f : (a, b) R være n gange differentiabel. For x 0, x (a, b) findes et ξ mellem x 0 og x der opfylder at f(x) = f(x 0 )+ f (x 0 ) 1! (x x 0 )+...+ f(n 1) (x 0

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,

Læs mere

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner 5.1 og 5.2 Ligefordeling med to

Læs mere

Teoretisk Statistik, 16. februar Generel teori,repetition

Teoretisk Statistik, 16. februar Generel teori,repetition 1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske

Læs mere

Løsning til eksamen 16/

Løsning til eksamen 16/ 1 IMM - DTU 245 Probability 24-5-11 BFN/bfn Løsning til eksamen 16/12 23 Spørgsmål 1) 2 44% Man benytter formlen for skalering og positionsskift i forbindelse med varians og standardafvigelse, samt formlen

Læs mere

4 Oversigt over kapitel 4

4 Oversigt over kapitel 4 IMM, 2002-09-14 Poul Thyregod 4 Oversigt over kapitel 4 Introduktion Hidtil har vi beskæftiget os med data. Når data repræsenterer gentagne observationer (i bred forstand) af et fænomen, kan det være bekvemt

Læs mere

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@imm.dtu.dk Dagens nye emner afsnit 6.5 Den bivariate

Læs mere

Fejlstrata. Vi forestiller os at V har. 1) Et underrum L. 2) Et indre produkt, 3) En ortogonal dekomposition V = W W m

Fejlstrata. Vi forestiller os at V har. 1) Et underrum L. 2) Et indre produkt, 3) En ortogonal dekomposition V = W W m Fejlstrata Vi forestiller os at V har 1) Et underrum L 2) Et indre produkt, 3) En ortogonal dekomposition V = W 1 +... + W m Underrummene W i kaldes fejlstrata. Typisk eksempel på en fejlstratumdekomposition:

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Landmålingens fejlteori - Lektion 3. Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering

Landmålingens fejlteori - Lektion 3. Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering Landmålingens fejlteori Lektion 3 Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition: Middelværdi og

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte Helle Sørensen Uge 9, onsdag SaSt2 (Uge 9, onsdag) Normalfordelingens venner 1 / 20 Program Resultaterne fra denne uge skal bruges

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 28. September, 2007 Stokastiske variable Betragt 3 kast med en mønt. Så er udfaldsrummet Ω = {(p, p, p), (p, p, k), (p, k, p), (p, k, k), (k, p, p), (k, p, k),

Læs mere

Indledning. 1 Martingalerepræsentationssætningen

Indledning. 1 Martingalerepræsentationssætningen Indledning I disse noter vil uddybe nogle af Øksendals resultater i afsnittene 4 og 7 samt give andre beviser for dem. Disse resultater er gennemgået til forelæsningerne. 1 Martingalerepræsentationssætningen

Læs mere

Landmålingens fejlteori - Lektion 5 - Fejlforplantning

Landmålingens fejlteori - Lektion 5 - Fejlforplantning Landmålingens fejlteori Lektion 5 Fejlforplantning - kkb@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/30 Fejlforplantning Landmåling involverer ofte bestemmelse af størrelser som ikke

Læs mere

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2018 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2018 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 08 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

EKSAMEN Flerdimensional Analyse Sommer sider

EKSAMEN Flerdimensional Analyse Sommer sider EKSAMEN Flerdimensional Analyse Sommer 2008 5 sider Formaliteter Eksamen er en 24-timers eksamen, der udleveres mandag den 23/6-2008 klokken 0.00 og afleveres tirsdag den 24/6-2008 inden klokken 0.00.

Læs mere

Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0

Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0 Middelværdi og varians Middelværdien af en diskret skalarfunktion f(x), for x = 0, N er: µ = N f(x) N x=0 For vektorfuktioner er middelværdivektoren tilsvarende: µ = N f(x) N x=0 Middelværdien er en af

Læs mere

Statistisk model. Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål

Statistisk model. Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål Statistisk model Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål på (X, E). Modellen er parametriseret hvis der findes en parametermængde Θ og

Læs mere

Antag X 1, X 2,..., X n er n uafhængige stokastiske variable, hvor Var(X 1 )=σ 2 1,..., Var(X n )=σ 2 n.

Antag X 1, X 2,..., X n er n uafhængige stokastiske variable, hvor Var(X 1 )=σ 2 1,..., Var(X n )=σ 2 n. Simple fejlforplantningslov Landmålingens fejlteori Lektion 6 Den generelle fejlforplantningslov Antag X, X,, X n er n uafhængige stokastiske variable, hvor Var(X )σ,, Var(X n )σ n Lad Y g(x, X,, X n ),

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 40, 2010 Produceret af Hans J. Munkholm bearbejdet af JC 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen s.445-8 dx Eksempler

Læs mere

Statistisk hypotese. Lad P være en statistisk model på (X, E). (P er altså en familie af sandsynlighedsmål på (X, E).)

Statistisk hypotese. Lad P være en statistisk model på (X, E). (P er altså en familie af sandsynlighedsmål på (X, E).) Statistisk hypotese Lad P være en statistisk model på (X, E). (P er altså en familie af sandsynlighedsmål på (X, E).) En statistisk hypotese er en delmængde P 0 P.. p.1/23 Statistisk hypotese PSfrag replacements

Læs mere