Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18"

Transkript

1 ermodyamik. Første og ade hovedsætig /8 ermodyamik Idhold. Isoterme og adiabatiske tilstadsædriger for gasser ermodyamikkes. hovedsætig Reversibilitet Reversibel maskie og maksimalt arbejde Carot processe. aksimal effektivitet armepumpe Etropi Etropie er e tilstadsfuktio lig med et totalt differetial...7

2 ermodyamik. Første og ade hovedsætig /8. ermodyamikkes første hovedsætig Der gælder som bekedt termodyamikkes. hovedsætig, som vi afører ude begrudelse. Første hovedsætig (Eergisætige): For et vilkårligt system, der ka udveksle eergi med omgivelsere, gælder det ude idskrækig, at summe af det udførte arbejde A på systemet, plus de tilførte varme til systemet er lig med systemets tilvækst i eergi (.) A + ΔE hvor E Eki + E pot + Eidre il ligige (.) skal bemærkes, at alle størrelsere A, og ΔE skal reges med forteg. Hvis A er egativ, betyder at systemet udfører arbejde på omgivelsere. Er egativ, betyder det at systemet afgiver varme til omgivelsere. Hvis ΔE er egativ, betyder det som sædvalig et eergitab. Hvis arbejdet er et stempelarbejdet, der udføres ved at formidske rumfaget mod et ydre tryk P, er arbejdet givet ved. (.) A - P Δ (Δ ) iusteget, fordi Δ er egativ, år stempelet trykkes id, og A skal reges positiv i. hovedsætig. Bevæges stemplet udad, er Δ derimod positiv. Det arbejde som gasse herved udfører, er da givet ved udtrykket: A gas P Δ. Når gasse udfører et arbejde på omgivelsere, skal dette imidlertid reges egativt i varmeteories. hovedsætig. For det udførte arbejde på gasse, gælder derfor: A - A gas -P Δ. Da dette er det samme udtryk, som i (.), gælder dette udtryk, hvad ete stemplet går id eller ud. Hvis det udførte arbejde er et stempelarbejde, altså rumfagsædrig mod et givet ydre kostat tryk, får varmeteories. hovedsætig udseedet: (.3) A + ΔE og A -P Δ giver ΔE + P Δ Når de idgåede størrelser ikke er kostate i hele processe, må ma dele processe op i så små skridt, at de ka atages kostate i det (ifiitesimale) iterval, hvilket er det samme, som at skrive. hovedsætig på differetiel form. (.4) d de + Pd For e ideal gas, afhæger de idre eergi ku af temperature. Det er e kosekves af forudsætigere for de kietiske molekylteori. e det ville ikke være tilfældet, hvis molekylere påvirkede hiade med lagtrækkede elektriske kræfter. Hovedresultatet fra de kietiske molekylteori, er at de idre eergi af e ideal gas ka udtrykkes: (.5) E R

3 ermodyamik. Første og ade hovedsætig 3/8 c, er de molære varmefylde ved kostat rumfag.( 3/ for e é-atomig gas). er atallet af mol i gasse, R8,3 J/mol K er gaskostate, og er de absolutte temperatur. Idføres E R i (.3) får ma: (.6) d Rd + Pd Isoterm tilstadsædrig i betragter først e isoterm tilstadsædrig, som betyder at kost, altså at d 0, hvilket for e ideal gas ige betyder, at eergie er kostat. E kost. a får derfor: (.7) d Pd (Isoterm tilstadsædrtig) Heraf ser vi, at e isoterm tilstadsædrig, altid er ledsaget af e varmeudvekslig med omgivelsere a ka herefter berege de varmeafgivelse (modtagelse), der sker ved e isoterm tilstadsædrig. Dette sker ud fra (.7) ved itegratio. d Pd P R R d (.8) R d R l Adiabatisk tilstadsædrig Adiabatisk betyder varmeisoleret, så e adiabatisk tilstadsædrig betyder at d 0. Idsættes d 0 i. hovedsætig fås: de + Pd 0, som for ideale gasser bliver (.9) Rd + Pd 0 Af hvilket vi ser, at e adiabatisk tilstadsædrig, altid er ledsaget af e ædrig af gasses temperatur.. Isoterme og adiabatiske tilstadsædriger for gasser Isoterm tilstadsædrig Adiabatisk tilstadsædrig

4 ermodyamik. Første og ade hovedsætig 4/8 kost : Der gælder Boyle-ariottes lov 0: Der gælder de adiabatiske ligiger: (.) P P κ κ P P κ + i vil u udlede de to aførte sammehæge mellem temperatur, tryk P og rumfag ved adiabatiske tilstadsædriger. Første hovedsætig: d de + Pd og de Rd og d 0 > Rd + Pd 0 Edvidere gælder tilstadsligige: P Rd. Dividere ma tilstadsligige op i første hovedsætig, får ma: Rd R Pd P d + d 0 Itegreres de sidste ligig fås: d + d 0 l + l 0 l + l 0 l 0 (.) De sidste relatio er så de første af de adiabatiske ligiger. P De ade af de adiabatike ligiger, får ma ved at idsætte fra tilstadsligige i R P + + kost, som giver: kost P kost P kost R (.3) P κ kost κ + Eksempel emperatur og trykstigig ved e adiabatisk kompressio. a) Bereg temperaturstigige af e gas, år rumfaget adiabatisk komprimeres til /5. t C 93 K. Gasse er to-atomig, så 5/.

5 ermodyamik. Første og ade hovedsætig 5/8 Løsig: 5 5 så 5 5 5, K Det er ikke rige temperaturstigiger, der opstår ved hurtig komprimerig af e gas. Dette udyttes som bekedt i dieselmotore. Deræst bereger vi trykforøgelse ved de samme adiabatiske kompressio. Her avedes de ade af de adiabatisk ligiger. κ 7 κ κ P P 5 5 så P P ,5 P P P κ ed e isoterm kompressio vil sluttrykket være 5 atm, ifølge Boyle-ariottes lov. Edelig ka vi berege det udførte arbejde ved e adiabatisk proces ud fra. hovedsætig. d 0 Rd + Pd 0 9,5 atm A Pd R d R( ) ( P P ) 3. ermodyamikkes. hovedsætig. Ade hovedsætig har to formuleriger, der imidlertid ka vises at være ækvivalete. De første er de mest umiddelbart tilgægelige: (a) arme ka ikke af sig selv overføres fra et koldere legeme til et varmere. (Clausius) Briger ma et koldere legeme i kotakt med et varmere legeme, er det umuligt at det varme legeme bliver varmere og det kolde koldere. (Som det godt kue ifølge eergisætige) (b) Det er umuligt at kostruere e periodisk virkede maskie, som optager e varme og omdaer de til mekaisk eergi, ude at der sker adet. (Kelvi Plack) (arme ka ikke ude idskrækig omdaes til mekaisk eergi, mes det omvedte godt ka lade sig gøre). At de to formuleriger er ækvivalete, ka ses af følgede ræsoemet: arme-kraft maskier opererer oftest på de måde, at e gas udvider sig og udfører et arbejde A, idet de optager varme fra et reservoir ved e høj temperatur. For at å tilbage til begydelsestilstade må gasse komprimeres, og derved afgive varme - A til et reservoir ved e lavere temperatur. Kompressioe må kræve midre arbejde ed gasse udførte ved ekspasioe). Ifølge (a) er det umuligt at få varme tilbage til det reservoir med de høje temperatur af sig selv, derfor er (b) gyldig. Omvedt, fordi (b) er gyldig, ka ma ikke hete varme fra et reservoir, omdae det til arbejde, og ige omdae det til varme (ved friktio) ved de høje temperatur, så (a) gælder.

6 ermodyamik. Første og ade hovedsætig 6/8 E maskie, der ikke er uderkastet. hovedsætig, kaldes et perpetuum mobile (evighedsmaskie) af. art, idet f.eks. verdeshavee er et uedelig reservoir af varme, som ma kue hete, omdae det til arbejde, som ige ved friktio kue omdaes til varme ved samme temperatur. Bemærk, at et perpetuum mobile af. art ikke er i strid med. hovedsætig (eergisætige) Et perpetuum mobile af. art, er derimod e maskie, der bryder med eergisætige, idet de udfører arbejde ude, at de får tilført eergi. ermodyamikkes. hovedsætig får e matematisk iklædig, år ma idfører e y tilstadsfuktio, som kaldes etropi. ed hjælp af etropie, ka ma derefter udvide. hovedsætig til også at omfatte. hovedsætig. 4. Reversibilitet At e proces er reversibel, betyder blot, at de ude ydre påvirkig ka forløbe begge veje. Hvis ma filmer e reversibel proces, vil det ikke se uderligt ud, hvis ma kører filme baglæs. Faktisk er alle de processer (bevægelser) vi keder fra mekaikke reversible, hvis de forløber ude friktio. De formelle årsag til dette er, at Newtos. lov: d x (4.) F res m dt er af. orde i tide, så de er uforadret, hvis vi erstatter dt med dt (altså så tide går baglæs). æk f.eks. på e kugle, om ruller gidigsfrit ed af et skråpla med voksede hastighed og som slutter med at have hastighede v. Figur (3.) Kører ma filme baglæs, vil kugle begyde med at have hastighede v, og (på grud af eergibevarelse) vil de ede på toppe med hastighede 0. Begge bevægelser er mulige bevægelser, ud fra Newtos love. Hvis vi derimod ser på e bevægelse med friktio, så er de klart irreversibel. Betragter ma blot e klods, der er sat i bevægelse på et vadret bord, og som stadser, som følge af friktioe med uderlaget. De kietiske eergi er omdaet til termisk eergi i klodse. Det er umuligt, at dee bevægelse ka forløbe baglæs (af sig selv). Det vil sige, hvor klodse forøger si hastighed, samtidig med, at klodses temperatur falder! Processe er irreversibel.

7 ermodyamik. Første og ade hovedsætig 7/8 i bemærker også, at ved e irreversibel proces, mister ma mekaisk eergi, (der kue være avedt til at udføre et arbejde), idet ma ikke ka forestille sig, hvorda de termiske eergi i klodse skulle kue omsættes til et arbejde. (Det ka det heller ikke ifølge. hovedsætig) i skal herefter formelt idføre begrebere reversibilitet og yttigt arbejde i termodyamikke, idet termodyamikkes. hovedsætig, etop formuleres med disse begreber. I ekaikke er e bevægelse karakteriseret ved positio, hastighed, og acceleratio. I termodyamikke, derimod er et system fastlagt ved ogle tilstadsvariable: temperatur, tryk P, rumfag og eergi E, og som fuldstædig beskriver systemets tilstad. ilstadsvariablee er de samme for hele systemet. Hvis der er e temperaturforskel eller trykforskel på to dele af systemet vil det hurtigt blive udliget, ved varmeudvekslig eller stofudvekslig, he imod termodyamisk ligevægt. E spota udligig he imod termodyamisk ligevægt, vil altid være irreversibel. Et aturligt spørgsmål er da, hvorvidt det overhovedet er muligt at have e reversibel tilstadsædrig? I det følgede skal vi vise, at det er muligt, me at det er e idealisatio, som imidlertid har fudametal teoretisk betydig ligesom beskrivelse af bevægelse ude friktio. i vil derfor betragte e reversibel og e irreversibel tilstadsædrig af e ideal gas. Fig. (3.4) Gasse er idespærret i e cylider med tryk P og temperatur. Cylidere er i forbidelse med et varmereservoir med temperatur. Irreversibel Reversibel Irreversibelt tilstadsædrig: Gasse ekspaderer frit, uder kostat temperatur, fra et rumfag mod et kostat ydre tryk P ydre, hvorefter stemplet kommer til hvile i positioe. ed de irreversible tilstadsædrig, ka vi blot kostatere, at der er udført et arbejde: A irr P ydre ( ) i vil u søge at geemføre tilstadsædrige fra samme begydelsestilstad til samme sluttilstad, me reversibelt. Dette ka (teoretisk) lade sig gøre, ved at opretholde termodyamisk ligevægt uder hele processe.

8 ermodyamik. Første og ade hovedsætig 8/8 ermodyamisk ligevægt ka opås, hvis vi lader modtrykket P ydre mod stempelet, være lig med gastrykket P, og udføre ekspasioe så lagsomt (uedelig lagsomt), at gastemperature uder hele ekspasioe er. i har i (.8) bereget de tilførte varme, som er lig med det af gasse udførte arbejde ved e isoterm ekspasio: A l rev R d R Dette arbejde er reversibelt, da det jo præcis er lig med det det arbejde, der skal udføres ved at brige gasse tilbage til begydelsestilstade uder afgivelse af varme til reservoiret. (A rev kue f.eks. være oplagret som potetiel eergi i e fjeder). Det er emt at idse, at A irr < A rev. For lader vi det ydre tryk P ydre være midre ed gastrykket P, så bliver arbejdet midre. Hvis P ydre 0, er også arbejdet lig med 0. Det bedste vi ka gøre er, at lade det gastrykket være lig med det ydre tryk. ed de irreversible tilstadsædrig, ka systemet ikke føres tilbage til de opridelige tilstad, ude at der tilføres arbejde. Dette eksempel (stempelarbejde af e gas) tyder på, at det er mere geerelt, at det maksimale arbejde, ma ka få ud af e maskie opås, år tilstadsædrige udføres reversibelt. i vil herefter geemføre et teoretisk argumet for at dette faktisk er tilfældet, hvilket fører til termodyamikkes. hovedsætig. i skal derfor diskutere, hvor meget arbejde, ma ka udvide af e (teoretisk) maskie, der arbejder mellem to reservoirer med temperaturer og, hvor >, og således, at der geemføres e kredsproces, hvor der optages e varme ved temperature, og afgives e varme ved temperature. Hvis maskie arbejder reversibelt, så udføres der, ifølge. hovedsætig et arbejde, som er A - Figur (4.3)

9 ermodyamik. Første og ade hovedsætig 9/8 De mest simple kredsproces er de såkaldte Carot proces (Sidi Carot 84), som består af følgede processer. (ist på figure ovefor) ) Isoterm ekspasio ved temperature. ) Adiabatisk ekspasio, hvor falder til. 3) Isoterm kompressio ved temperature 4) Adiabatisk kompressio hvor stiger til Hvis alle processere () -> (4) udføres reversibelt (dvs. så lagsomt, at systemet til ethvert tidspukt er i termodyamisk ligevægt). Ifølge (3.3) er det af gasse udførte arbejde uder disse omstædigheder: A - ed maskies effektivitet ε, forstår ma det udvude arbejde A, divideret med de tilførte varme ved de høje temperatur. (4.4) ε A Ifølge armeteories. hovedsætig (Kelvi Plack formulerig) er >0, så ε <. i vil u fortsætte med at vise, at det er umuligt, at udvide mere arbejde fra e maskie, ed fra e reversibel maskie Lad os begyde med at uderstrege at, år maskie er reversibel, så ka processe vedes om, så maskie optager varme ved temperature og aflevere e varme ved temperature. Samtidig med at der tilføres arbejdet A -. Det er, hvad sker i e varmepumpe - som er det samme som sker i et køleskab - blot er der byttet om på de to varmereservoirer. 5. Reversibel maskie og maksimalt arbejde Lad os atage, at vi har e ikke ødvedigvis reversibel maskie, der arbejder mellem temperaturere og, hvor der udveksles, e varme og. askie udfører et arbejde A, og vi atager forsøgsvis at A > A rev. Figur (5.) På figure er vist maskie, som udfører arbejdet A. askie optager varme ved temperature, og afgiver varme ved temperature og udfører et arbejde A. i atager u at A > A rev og vi vil vise, at det fører til et brud med termodyamikkes. hovedsætig i Kelvi Placks formulerig.

10 ermodyamik. Første og ade hovedsætig 0/8 askie kobles u til e reversibel maskie rev, der arbejder baglæs mellem de samme to temperaturer, og derfor afleverer varme ved de høje temperatur. Ifølge atagelse A >A rev er effektivitete ( A/ ) ε > ε rev (for samme ), me det betyder at maskie ud over at drive maskie rev ka udføre et yttigt arbejde A -A rev. Netto resultatet er derfor at der optages e varme rev fra reservoiret ved temperatur, som fuldstædig omdaes til arbejde: A -A rev. Ifølge. hovedsætig (Kelvi Plack) er dette imidlertid umuligt, så A - A rev må være egativ. A -A rev < 0 <> A < A rev. Det er således e kosekves af. hovedsætig, at det maksimale arbejde ma ka få fra e maskie er, år de arbejder reversibelt. Bemærk at dette ræsoemet, hviler på de atagelse at rev er e (teoretisk) reversibel maskie, altså at de ka operere begge veje med det samme omsætigsforhold mellem varme og arbejde (5.) ε rev A rev ε rev er åbebart e fudametal teoretisk størrelse, der agiver de teoretisk største effektivitet af e maskie, der arbejder mellem temperaturere og. Af det geemførte ræsoemet ses, at ε rev hverke afhæger af maskies kostruktio (blot de er reversibel) eller af det stof (arbejdsvæske, gas, kølemiddel), som geemgår kredsprocesse. ε rev ka faktisk ku afhæge af temperaturere og, og hvis vi blot ka berege ε rev for é type af reversibel maskie, så vil de være de samme fuktio af og for alle adre reversible maskier. De teoretisk set mest ekle maskie er de, som er skitseret på side 8, hvor stoffet, der geemfører kredsprocesse er e ideal gas. 6. Carot processe. aksimal effektivitet Hvis stoffet er e ideal gas, ka kredsprocesse (kaldet Carot processe) illustreres, som vist edefor i et P diagram. Figur 6. () Isoterm ekspasio. ilført varme () Adiabatisk ekspasio 0 (3) Isoterm komperssio - (4) Adiabatisk kompressio 0 I de isoterme proces (3) afgives varme. I de isoterme ekspasio (), tilføres varme. I de to adiabatiske processer () og (4) tilføres/afgives ige varme.

11 ermodyamik. Første og ade hovedsætig /8 (6.) rev ε Da de reversible effektivitet er de samme for alle reversible maskier, ka vi berege de for e cylider, hvor der er idespærret e ideal gas, som vist på side 3 og 8. (Isoterm ekspasio) l R d R A rev () -> () isoterm: -> og > l R d R (3) -> (4) isoterm: 3 -> 4 og 4 3 > 3 4 l 4 3 R d R For sammehæge mellem 3 4 og gælder de adiabatiske ligiger (side 3). som i de to tilfælde () og (4) giver (6.3) 3 3 og 4 4 a ser da, at 4 3 og vi fider da: l l l R R R rev ε (6.4) rev ε Relatioe (6.4) hører til et af de vigtigste resultater i de teoretiske termodyamik, idet de sætter e øvre græse for det arbejde, som e maskie, der arbejder mellem temperaturere og ka udføre. De teoretiske øvre græse leveres af e reversibel maskie (som er e idealisatio) Som eksempel vil vi udrege effektivitete af e dampmaskie (ideelt kostrueret), og som arbejder mellem temperaturere t 00 0 C og t 0 0 C.

12 ermodyamik. Første og ade hovedsætig /8 ε rev ,38 eoretisk ka ma altså maksimalt om sætte 38% af de tilførte varme til yttigt arbejde i e såda maskie, me i praksis er effektivitete lagt rigere, da dampmaskie lagt fra er reversibel. Effektivitete for e god dampmaskie er vel 0,5. 7. armepumpe E varmepumpe er e (ideelt reversibel) maskie, der geemløber e Carot proces, me i omvedt rækkefølge, idet de optager e varme ved de lave temperatur og afleverer varme ved de høje temperatur. Dette er ifølge. hovedsætig ku muligt, hvis der tilføres et arbejde A. Hvis varmepumpe arbejder reversibelt, gælder der emlig: A eller + A. armepumpes udbytte (effektfaktor η) defieres som de afleverede varme divideret med det ivesterede arbejde A. (Det omvedte af effektivitete i e reversibel maskie). (7.) η A For e reversibel pumpe gælder der ifølge (6.4) (7.) η A Hvis varmepumpe avedes i et jordvarmealæg med 83 K ( t jord 0 0 C ), og som avedes til opvarmig af vad til 60 0 C ( 333 K), vil ma få e teoretisk effektfaktor på. 333 (7.3) η jord var me 6, Hvilket betyder, at hvis vi ivesterer Joule i arbejde, (f.eks. i form af elektrisk eergi), til at drive e varmepumpe, så får vi 6,7 J i form af varme ud af alægget. Hvilket altså er 6,7 gage så meget, som, hvis ma blot omsatte Joule elektrisk eergi direkte til varme. Der er flere grude til, at ma ikke ka opå e så høj effektfaktor. ed de kølemidler, der avedes, ka ma opå e teoretisk effektfaktor på 4-5. De reelle effektfaktor ligger for e god varmepumpe sarere på,5. 8. Etropi Ide vi går videre med at diskutere reversible maskier, vil vi drage ogle kosekveser af de teoretiske overvejelser vedrørede sådae maskier. I overvejelsere har vi flere gage gjort brug af. hovedsætig, idet dee sætig jo fastslår, at visse processer er irreversible.

13 ermodyamik. Første og ade hovedsætig 3/8 i er derfor klar til at give e matematisk formulerig af reversibilitet, og dette idebærer idførelse af e y termodyamisk tilstadsvariabel, kaldes for etropi, og beteges S. Etropi ka imidlertid ikke kyttes direkte til hverdagsforestilliger, som det er tilfældet for, tryk, rumfag, temperatur og eergi. ed hjælp af etropibegrebet, ka. hovedsætig formuleres derhe, at etropie aldrig aftager, og at reversibilitet, betyder at etropie er kostat. i betragter u et system, der geemløber e (ikke ødvedigvis reversibel) kredsproces. Kredsprocesse vil fremstille e lukket kurve i et P- diagram, som skitseret på figure edefor. (Det er ikke e Carot proces). es systemet geemløber kredsprocesse, udveksles der varme med omgivelsere. De ekelte varmemægder ka i almidelighed udveksles ved forskellige temperaturer. i atager derfor, at vi har e række varmereservoirer, med de på figure agive temperaturer, således at der udveksles varme i med reservoiret med temperature i.

14 ermodyamik. Første og ade hovedsætig 4/8 i vil u avede. hovedsætig til at opstille e ulighed, der gælder for de udvekslede varmemægder ved de agive temperaturer. Systemet tækes at udføre et arbejde A, ved at geemløbe kredsprocesse. For aalyses skyld tækes hvert af de aførte varmereservoirer, at være koblet til edu et stort varmereservoir med temperatur 0, via reversible maskier:,, 3,...,, der geemfører Carot-processer. De reversible maskier er idrettet, så de afleverer de samme varmemægder,,... til de reservoirer, så disse reservoirer er uforadrede efter e kredsproces. askiere selv får tilført varmemægdere: 0, 0,... 0 fra reservoiret med temperature 0. For hver af de reversible maskier gælder: i 0 i 0 i i i i i i (8.) ε rev i 0 0 i0 0 i0 Betragter vi u det samlede system, er etto resultatet af kredsprocesse, at der optages e varme 0 0 i fra reservoiret med temperatur 0 og der udføres et arbejde A i det arbejde, som skal tilføres de i te reversible maskie. 0 i0 0 i A i ) rev i (, hvor A ( i ) rev er i Ifølge. hovedsætig (Kelvi Plack), der dette ku muligt, hvis arbejdet A A ( ) 0 ikke er positivt. i ser altså, at der må gælde: i i (8.) 0 0 0i i i i i i i rev De sidste ulighed er meget vigtig: De udtrykker, at hvis e maskie geemfører e kredsproces, hvor de udveksler varmemægder i ved temperaturee i, så gælder Clausius ulighed. i (8.4) 0 Og, hvor lighedsteget ku gælder, år processe er reversibel. i i Deler ma kredsprocesse op i ifiitesimale dele, må summatioe erstattes af et kurveitegral udreget lags hele kredsprocesse i P- diagrammet. armemægdere i bliver da også ifiitesimale og erstattes af differetialer d. Clausius ulighed må fortsat være gyldig. d (8.5) 0 Hvor lighedsteget ku gælder, år kredsprocesse er reversibel. Etropie S er defieret ved ligige:

15 ermodyamik. Første og ade hovedsætig 5/8 (8.6) d ds rev Hvor d rev betyder de reversibelt tilførte varme ved temperature. Hvis et system reversibelt får tilført e varme d rev ved temperature, har systemet fået tilført e drev etropitilvækst på: ds. drev For e reversibel proces fider ma da: ds 0. Da vi ikke har gjort oge atagelser i de retig, så er e tilvækst i etropi ΔS fra e tilstad () til e tilstad (), uafhægig af, hvorledes disse tilstade er ået. Etropie afhæger ku af et systems tilstad, me ikke hvorda dee tilstad er ået. e det betyder, at etropie S er e tilstadsvariabel ligesom tryk P, rumfag, eergi E og temperatur. Forskelle på etropi og de øvrige tilstadsvariable P,, er, at betydige af sidstævte er baseret på hverdagsforestilliger, mes dette i særdeleshed ikke er tilfældet for etropie, der jo er kyttet til det mere teoretisk kryptiske begreb reversibel proces. i vil herefter f.eks. skrive, år vi skal berege etropitilvækste fra e tilstad () til e tilstad () drev (8.7) ds S() S() Lad os atage, at vi har e kredsproces, hvor processe () -> () er e spota (irreversibel), mes () -> () er reversibel. i fider da, jvf. Clausius ulighed. d d d (8.8) d 0 S() S() 0 S() S() + rev < + < < Specielt me meget fudametalt hvis systemet er varmeisoleret, hvor processe () -> () er adiabatisk så er d 0, og de sidste ligig ovefor lyder da: 0 < S() S() (8.9) S() > S() I et lukket (varmeisoleret) system, vil e spota (ikke reversibel) proces altid bevirke at etropie vokser. De korte formulerig af dette er, at etropie vokser ed hjælp af begrebet etropi, ka ma reformulere termodyamikkes to hovedsætiger. Første hovedsætig: I et lukket system er eergie kostat. Ade hovedsætig: I et lukket system ka etropie ikke aftage.

16 ermodyamik. Første og ade hovedsætig 6/8 Etropie viser sig at være et begreb af vidtrækkede betydig. Etropie afhæger ku af systemets tilstad. ed at måle etropie i to tilstade af et lukket system, ka ma i pricippet afgøre, hvilke af de to tilstade, der kom først og hvilke, der fulgte (oget ma aturligvis er klar over, hvis ma har målt på de to tilstade). Etropie itroducerer e asymmetri i ature (som ikke fides i mekaikke) og ma ka spekulativt formode, at det er dee asymmetri, der er grudlaget for vores foremmelse af tid af fortid og fremtid. i har avedt. hovedsætig til at formulere etropibegrebet. Formelt magler vi blot at vise, at år etropie vokser i et lukket system, har det som kosekves Clausius formulerig af. hovedsætig: arme bevæger sig spotat altid fra et varmere legeme til e koldere. Atag derfor at ma har to klodser med temperaturer og, som briges i varme ledede kotakt med hiade, me i øvrigt er isolerede. I løbet af tidsrummet dt udveksler de to legemer e varmemægde d ved temperaturere og. Da processe er spota, vil etropie vokse. d d ds ds + ds > 0 > + > 0 Hvis vi atager, at d > 0, så varmetrasporte er fra () til (). (() afgiver varme d), så er: d + d > 0 + > 0 > Det at etropie vokser i et lukket system, har de formelle kosekves, at varme bevæger sig spotat fra højere temperatur mod lavere. i vil deræst se på e typisk situatio, hvor et system er i kotakt med ogle omgivelser, der har temperature ydre og trykket P ydre. Hvis systemet absorberer varmemægde Δ, fra omgivelsere, vil det få e etropitilvækst ΔS og omgivelsere vil få e etropitilvækst ΔS ydre - Δ/ ydre. I alle tilfælde, vil der gælde: ΔS + ΔS ydre > 0 > S 0 ydre S Ifølge. hovedsætig gælder: Δ ΔE+ P ydre Δ. Heraf følger der e ulighed, som kaldes for Clausius ulighed (8.8) ydre ΔS ΔE + P ydre Δ Lighedsteget gælder ku, hvis der opretholdes termodyamisk ligevægt uder hele processe, hvis ydre system og P ydre P system, altså kort sagt, hvis processe er reversibel. E proces, der geemføres uedelig lagsomt vil være e reversibel proces, og der vil gælde: (8.9) ds de + Pd Dee ligig sammefatter på elegat måde idholdet af såvel. som. hovedsætig. ydre

17 ermodyamik. Første og ade hovedsætig 7/8 Ud fra ligige (8.9), ka ma f.eks. berege etropie af e ideal gas. For em såda gas er E R og tilstadsligige er: P R. Her af fås ved idsættelse i ligige (8.9) og divisio med. d ds R + (ved omskrivig af det sidste led er avedt tilstadsligige) P d Etropitilvækste, ka da bestemmes ved itegratio. (8.0) d ds d R + R S() S() Rl + Rl 9. Etropie er e tilstadsfuktio lig med et totalt differetial I matematikke defieres differetialet af e fuktio f x, x ) (og vi øjes med to variable) f f (9.) df dx + dx x x ( Hvis f er to gage differetiabel, gælder der, at rækkefølge af differetiatio er uder ordet: (9.) f x x f x x Omvedt ka ma vise at, hvis der for e differetialform df f ( + dx gælder: x, x ) dx f ( x, x ) (9.3) f x f x, så er f et totalt differetial, hvilket så ige betyder at f er e differetiabel fuktio: f x, x ). ( I matematikke viser ma, at hvis ma itegrerer et totalt differetial fra et pukt (a, a ) til (b, b ), så er resultatet uafhægig af de vej, ma vælger mellem de to pukter. e det svarer til det ma i fysikke kalder e tilstadsfuktio. E give tilstad, afhæger ikke af, hvorda dee tilstad er ået. E tilstadsfuktio er et totalt differetial. Dette ka ma avede til at udlede ogle relatioer mellem etropi og de øvrige tilatadsvariable. i tager udgagspukt i (8.) ds de + Pd, og dividrer med.

18 ermodyamik. Første og ade hovedsætig 8/8 ds de + P d Heraf følger af (9.) S E og S P og af (9.3) E P Disse relatioer er ok mere et kuriosum ed egetligt praktisk avedeligt, me det kytter begrebet tilstadsfuktio til begrebet totalt differetial. Ole Witt-Hase 980 (ja 05)

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

Analyse 1, Prøve maj 2009

Analyse 1, Prøve maj 2009 Aalyse, Prøve 5. maj 009 Alle hevisiger til TL er hevisiger til Kalkulus (006, Tom Lidstrøm). Direkte opgavehevisiger til Kalkulus er agivet med TLO, ellers er alle hevisiger til steder i de overordede

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

A14 4 Optiske egenskaber

A14 4 Optiske egenskaber A4 4 Optiske egeskaber Brydigsideks Når lys træffer e græseflade mellem to materialer, kastes oget af lyset tilbage (refleksio), mes oget går igeem græseflade med foradret retig (brydig eller refraktio).

Læs mere

Små og store varmepumper. n Bjarke Paaske n Teknologisk Institut n Telefon: +45 7220 2037 n E-mail: bjarke.paaske@teknologisk.dk

Små og store varmepumper. n Bjarke Paaske n Teknologisk Institut n Telefon: +45 7220 2037 n E-mail: bjarke.paaske@teknologisk.dk Små og store varmepumper Bjarke Paaske Tekologisk Istitut Telefo: +45 7220 2037 E-mail: bjarke.paaske@tekologisk.dk Ree stoffers tre tilstadsformer (faser) Fast stof (solid) Eksempel: is ved H 2 0 Væske

Læs mere

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

Supplerende noter II til MM04

Supplerende noter II til MM04 Supplerede oter II til MM4 N.J. Nielse 1 Uiform koverges af følger af fuktioer Vi starter med følgede defiitio: Defiitio 1.1 Lad S være e vilkårlig mægde og (X, d et metrisk rum. E følge (f af fuktioer

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Undersøgelse af numeriske modeller

Undersøgelse af numeriske modeller Udersøgelse af umeriske modeller Formål E del af målsætige med dette delprojekt er at give kedskab til de begræsiger, fejl og usikkerheder, som optræder ved modellerig. I de forbidelse er følgede udersøgelse

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

Talfølger og -rækker

Talfølger og -rækker Da Beltoft og Klaus Thomse Aarhus Uiversitet 2009 Talfølger og -rækker Itroduktio til Matematisk Aalyse Zeos paradoks om Achilleus og skildpadde Achilleus løber om kap med e skildpadde. Achilleus løber

Læs mere

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen Rettevejledig til HJEMMEOPGAVE Makro, 2. årsprøve, foråret 2007 Peter Birch Sørese Opgave... Udsaget er forkert. De omtalte skatteomlægig må atages at øge beskæftigelse p.gr.a. e positiv substitutioseffekt

Læs mere

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

cos(t), v(t) = , w(t) = e t, z(t) = e t.

cos(t), v(t) = , w(t) = e t, z(t) = e t. Aalyse Øvelser Rasmus Sylvester Bryder. og. oktober 3 Bevis for Cotiuity lemma Theorem. Geemgås af Michael Staal-Olse. Bevis for Lemma.8 Dee har vi faktisk allerede vist; se Opgave 9.5 fra Uge. Det er

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Begreber og definitioner

Begreber og definitioner Begreber og defiitioer Daske husstades forbrug på de medierelaterede udgiftsposter stiger og udgør i 2012*) 11,3 % af husstadees samlede forbrug mod 5,5 % i 1994. For husstade med de laveste idkomster

Læs mere

Kvantemekanik 4 Side 1 af 11 Energi og tid. Hamiltonoperatoren

Kvantemekanik 4 Side 1 af 11 Energi og tid. Hamiltonoperatoren Kvateekaik 4 Side 1 af 11 ergi og tid Hailtooperatore Af KM3 fregik det, at ehver observabel er repræseteret ved e operator, f.eks. jf. udtryk (3.1) og (3.). Ispireret af det klassiske udtryk for kietisk

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

Sandsynlighedsteori 1.2 og 2 Uge 5.

Sandsynlighedsteori 1.2 og 2 Uge 5. Istitut for Matematiske Fag Aarhus Uiversitet De 27. jauar 25. Sadsylighedsteori.2 og 2 Uge 5. Forelæsiger: Geemgage af emere karakteristiske fuktioer og Mometproblemet afsluttes, og vi starter på afsittet

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

StudyGuide til Matematik B.

StudyGuide til Matematik B. StudyGuide til Matematik B. OVERSIGT. Dee study guide ideholder følgede afsit Geerel itroduktio. Emeliste. Eksame. Bilag 1: Udervisigsmiisteriets bekedtgørelse for matematik B. Bilag 2: Bilag 3: Uddrag

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Teoretisk Statistik, 9. februar Beskrivende statistik

Teoretisk Statistik, 9. februar Beskrivende statistik Uge 7 I Teoretisk Statistik, 9 februar 004 Beskrivede statistik Kategoriserede variable 3 Kvatitative variable 4 Fraktiler for ugrupperede observatioer 5 Fraktiler for grupperede observatioer 6 Beliggeheds-

Læs mere

Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem

Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem Itroduktio til optimerig og operatiosaalyse Asymmetric Travelig Salesma Problem David Pisiger, Efterår 2003 Dette er de ade obligatoriske projektopgave på kurset Itroduktio til optimerig og operatiosaalyse.

Læs mere

De Platoniske legemer De fem regulære polyeder

De Platoniske legemer De fem regulære polyeder De Platoiske legemer De fem regulære polyeder Ole Witt-Hase jauar 7 Idhold. Polygoer.... Nogle topologiske betragtiger.... Eulers polyedersætig.... Typer af et på e kugleflade.... Toplasvikle i e regulær

Læs mere

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor godschauffør området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer Statistik Lektio 7 Hpotesetest og kritiske værdier Tpe I og Tpe II fejl Strke af e test Sammeligig af to populatioer 1 Tri I e Hpotesetest E hpotesetest består af 5 elemeter: I. Atagelser Primært hvilke

Læs mere

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith Georg Mohr Kokurrece Noter om uligheder Søre Galatius Smith. juli 2000 Resumé Kapitel geemgår visse metoder fra gymasiepesum, som ka bruges til at løse ulighedsopgaver, og ideholder ikke egetligt yt stof.

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til

Læs mere

Lidt Om Fibonacci tal

Lidt Om Fibonacci tal Lidt om Fioi tl Lidt Om Fioi tl Idhold. Defiitio f Fioi tllee.... Kivl... 3. Telefokæder....3 4. E formel for Fioi tllee...4 Ole Witt-Hse 008 Lidt om Fioi tl. Defiitio f Fioi tllee Fioi tllee er opkldt

Læs mere

Estimation og test i normalfordelingen

Estimation og test i normalfordelingen af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:

Læs mere

MOGENS ODDERSHEDE LARSEN. Komplekse tal

MOGENS ODDERSHEDE LARSEN. Komplekse tal MOGENS ODDERSHEDE LARSEN Komplekse tal a b. udgave 004 FORORD Dette otat giver e kort idførig i teorie for komplekse tal, regeregler, røddere i polyomier bl.a. med heblik på avedelser ved løsig af lieære

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - rw@math.aau.dk Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi

Læs mere

6 Populære fordelinger

6 Populære fordelinger 6 Populære fordeliger I apitel 4 itroducerede vi stoastise variabler so e åde at repræsetere udfald af et esperiet på. De stoastise variabler ue være både disrete (fx terigslag) og otiuerte (fx vareægder).

Læs mere

Kompendie Komplekse tal

Kompendie Komplekse tal Kompedie Komplekse tal Prebe Holm 08-06-003 "!#!%$'&($)+*-,. cos(s + t) )0/ si(s + t) Trigoometri er måske ikke så relevat, år ma såda umiddelbart sakker om komplekse tal. Me faktisk avedes de trigoometriske

Læs mere

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ.

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ. χ test matematkudervsge χ - test gymasets matematkudervsg I jauar ummeret 8 af LMFK bladet havde jeg e artkel, hvor jeg harcelerede ldt over, at regresso og sær χ fordelg havde fudet dpas matematkudervsge

Læs mere

Modul 14: Goodness-of-fit test og krydstabelanalyse

Modul 14: Goodness-of-fit test og krydstabelanalyse Forskigsehede for Statistik ST01: Elemetær Statistik Bet Jørgese Modul 14: Goodess-of-fit test og krydstabelaalyse 14.1 Idledig....................................... 1 14.2 χ 2 -test i e r c krydstabel.............................

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasium Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 SANDSYNLIGHEDSFELT... 3 DE STORE TALS LOV... 4 Sadsyligheder og frekveser:... 4 STOKASTISK

Læs mere

Prisfastsættelse af digitale goder - Microsoft

Prisfastsættelse af digitale goder - Microsoft Iteretøkoomi: risfastsættelse af digitale goder Afleveret d. 9 maj 003 Af Julie ech og Malee Aja org risfastsættelse af digitale goder - Microsoft Af Julie ech og Malee Aja org.0.0 DIGITALE GODER....0.0

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

Facilitering ITU 15. maj 2012

Facilitering ITU 15. maj 2012 Faciliterig ITU 15. maj 2012 Facilitatio is like movig with the elemets ad sailig the sea Vejvisere Velkomst de gode idflyvig Hvad er faciliterig? Kedeteg ved rolle som facilitator Facilitatores drejebog

Læs mere

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen Bilag 5: DEA-odelle Bilaget ideholder e teis besrivelse af DEA-odelle FRSYNINGSSERETARIATET FEBRUAR 2013 INDLEDNING... 3 INPUTSTYRET DEA-MDEL... 3 UTPUTSTYRET DEA-MDEL... 7 SALAAFAST... 12 2 Idledig Data

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

STATISTIKNOTER Simple normalfordelingsmodeller

STATISTIKNOTER Simple normalfordelingsmodeller STATISTIKNOTER Simple ormalfordeligsmodeller Jørge Larse IMFUFA Roskilde Uiversitetsceter Februar 1999 IMFUFA, Roskilde Uiversitetsceter, Postboks 260, DK-4000 Roskilde. Jørge Larse: STATISTIKNOTER: Simple

Læs mere

Hvordan hjælper trøster vi hinanden, når livet er svært?

Hvordan hjælper trøster vi hinanden, når livet er svært? Hvorda hjælper trøster vi hiade, år livet er svært? - at være magtesløs med de magtesløse Dask Myelomatoseforeig Temadag, Hotel Scadic, Aalborg Lørdag de 2. april 2016 kl. 14.00-15.30 Ole Raakjær, præst

Læs mere

Projekt 2.3 Det gyldne snit og Fibonaccitallene

Projekt 2.3 Det gyldne snit og Fibonaccitallene Projekter: Kapitel Projekt.3 Det glde sit og Fiboaccitallee Forslag til hvorda klasses arbejde med projektet ka tilrettelægges: Forløbet:. Præsetatio af emet med vægt på det glde sit.. Grppere arbejder

Læs mere

Psyken på overarbejde hva ka du gøre?

Psyken på overarbejde hva ka du gøre? Psyke på overarbejde hva ka du gøre? Idhold Hvorår kommer ma uder psykisk pres? 3 Hvad ka øge det psykiske pres på dit arbejde? 4 Typiske reaktioer 6 Hvorda forløber e krise? 7 Hvad ka du selv gøre? 9

Læs mere

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n.

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n. IMFUFA Carste Lude Peterse Om Følger og Ræer Nyttige Græseværdier lim = 1 lim! = x = 0! lim lim (1 + x ) = e x! lim = e 1 Nyttige Ræer 1 p < p > 1 1 log p ( + 1) < p > 1 x = = x 1 x for x < 1 og Z, diverget

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation.

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation. De reelle tal Morte Grud Rasmusse 5. ovember 2015 Ordede mægder Defiitio 3.1 (Ordet mægde). pm, ăq kaldes e ordet mægde såfremt: For alle x, y P M gælder etop ét af følgede: x ă y, x y, y ă x @x, y, z

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium KOMPLEKSE TAL x-klassere Gammel Hellerup Gymasium Idholdsfortegelse E kort historie om imagiært og virkeligt... Tallegemet De Komplekse Tal... Idførelse af realdel og imagiærdel samt i... 8 Subtraktio,

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Den grådige metode 2

Den grådige metode 2 Algoritmedesig 1 De grådige metode De grådige metode Et problem løses ved at foretage e række beslutiger Beslutigere træffes e ad gage i e eller ade rækkefølge Hver beslutig er baseret på et grådighedskriterium

Læs mere

ESBILAC. - modermælkserstatning til hvalpe VEJLEDNING. www.kruuse.com

ESBILAC. - modermælkserstatning til hvalpe VEJLEDNING. www.kruuse.com ESBILAC - modermælkserstatig til hvalpe VEJLEDNING De bedste start på livet, e yfødt hvalp ka få, er aturligvis at stille si sult med si mors mælk. Modermælk ideholder alt, hvad de små har brug for af

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

Generelle lineære modeller

Generelle lineære modeller Geerelle lieære modeller Regressiosmodeller med é uafhægig itervalskala variabel: Y e eller flere uafhægige variable: X,..,X k De betigede fordelig af Y givet X,..,X k atages at være ormal med e middelværdi,

Læs mere

Elementær termodynamik og kalorimetri

Elementær termodynamik og kalorimetri Elementær termodynamik og kalorimetri 1/14 Elementær termodynamik og kalorimetri Indhold 1. Indre og ydre energi...2 2. Varmeteoriens (termodynamikkens) 1. hovedsætning...2 3. Stempelarbejde...4 4. Isoterm

Læs mere

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL Kapitel 0 KALIBRERING AF STRØMNINGSMODEL Torbe Obel Soeborg Hydrologisk afdelig, GEUS Nøglebegreber: Kalibrerigsprotokol, observatiosdata, kalibrerigskriterier, idetificerbarhed, etydighed, parameterestimatio,

Læs mere

EGA Vejledning om EGA og monotont arbejde

EGA Vejledning om EGA og monotont arbejde EGA og mootot arbejde 04/09/02 14:27 Side 1 Orgaisatioer repræseteret i Idustries Brachearbejdsmiljøråd: Arbejdstagerside: Arbejdsgiverside: Dask Metal Specialarbejderforbudet Kvideligt Arbejderforbud

Læs mere

Bølgefunktioner Alle partikler, som har en hvilemasse, er kendetegnet ved en kompleks bølgefunktion

Bølgefunktioner Alle partikler, som har en hvilemasse, er kendetegnet ved en kompleks bølgefunktion Modere Fysik 4 Side af 7 Schrödigerligige Forrige to gage: Idførelse af kvatiserigsbegrebet (for lyseergi og for elektroers eergi) samt partikel-bølge-dualitete, hvilket førte til e helt y teori, kvatemekaikke

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 13 udgave 013 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske

Læs mere

TIMEGLASSETS FASER: Introen er et foto og nogle spørgsmål til hele kapitlet. Meningen med introen er, at du og

TIMEGLASSETS FASER: Introen er et foto og nogle spørgsmål til hele kapitlet. Meningen med introen er, at du og TIMEGLASSETS FASER: INTRO Itroe er et foto og ogle spørgsmål til hele kapitlet. Meige med itroe er, at du og di klasse skal få e ide om, hvad kapitlet hadler om, og hvad I skal lære. Prøv at svare på spørgsmålee

Læs mere

Trygve Haave1mo. (Fore1æs ninger ved Aarhus Universitet, Efteraarssem.1938) Aarhus 1939. T E O R I INDLEDNING TIL STATISTIK.KENS

Trygve Haave1mo. (Fore1æs ninger ved Aarhus Universitet, Efteraarssem.1938) Aarhus 1939. T E O R I INDLEDNING TIL STATISTIK.KENS Trygve Haave1mo. INDLEDNING TIL STATISTIK.KENS T E O R I (Fore1æs iger ved Aarhus Uiversitet, Efteraarssem.1938) Aarhus 1939. le INDHOLD..._..._... Grudlaget for de teoretiske Statistik. Kollektiv og ~a:dsylighed.

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Hvad vi gør for jer og hvordan vi gør det

Hvad vi gør for jer og hvordan vi gør det Hvad vi gør for jer og hvorda vi gør det Vi skaber resultater der er sylige på di budliie... Strategi Orgaisatio Produktio Økoomi [ Ide du læser videre ] [ Om FastResults ] [ Hvorfor os? ] I foråret 2009

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007 Atom og kerefysik Igrid Jesperses Gymasieskole 2007 Baggrudsstrålig Mål baggrudsstrålige i 5 miutter. Udreg atallet af impulser i 10 sekuder. Alfa-strålig α Mål atallet af impulser fra e alfa-kilde ude

Læs mere

Blisterpakninger i det daglige arbejde

Blisterpakninger i det daglige arbejde Bettia Carlse Marts 2013 Blisterpakiger i det daglige arbejde I paeludersøgelse 35 1 har 1.708 beskæftigede sygeplejersker besvaret e række spørgsmål om (hådterige af) blisterpakiger i det daglige arbejde.

Læs mere

Nanomaterialer Anvendelser og arbejdsmiljøforhold

Nanomaterialer Anvendelser og arbejdsmiljøforhold F O A F A G O G A R B E J D E Naomaterialer Avedelser og arbejdsmiljøforhold Dee Kort & Godt pjece heveder sig til dig, som er medlem af FOA. Pjece giver iformatio om: Hvad er et aomateriale? Eksempler

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

NOTAT Det daglige arbejde med blisterpakninger

NOTAT Det daglige arbejde med blisterpakninger Sige Friis Christiase 7. maj 2015 NOTAT Det daglige arbejde med blisterpakiger I paeludersøgelse 55 i DSRs medlemspael blev deltagere stillet e række spørgsmål om deres arbejde med blisterpakiger. Afrapporterige

Læs mere