Meditation over Midterbinomialkoefficienten

Størrelse: px
Starte visningen fra side:

Download "Meditation over Midterbinomialkoefficienten"

Transkript

1 18 Juleeventyr Meditation over Midterbinomialkoefficienten En rusrejse fra en fjern juletid Frederik Ravn Klausen, Peter Michael Reichstein Rasmussen Ved juletid for ikke så længe siden faldt tre russer over et åbent problem. Formodning 1 Midterbinomialkoefficienten ( 2n n ) er altid delelig med 4 eller 9 for n 4 bortset fra n = 64 og n = 256. I deres rusnaivitet så det ud til at være et sødt lille problem, som man hurtigt kunne løse. Et lille krydderi til julestemningen. Snart kunne de dog konstatere at dette ikke var tilfældet, men undervejs i arbejdet med formodningen dukkede sjov matematik frem. Dette er historien om deres rejse. Rejsen indebærer flere hyggelige vandringer i talteoriens og kombinatorikkens snedækkede landskaber, som efter forfatternes anbefaling bør nydes foran en åben pejs. Indledende julekagebagning Notation 2 For a, p N og p > 1 skriver vi 4 p k a, hvis k er det største heltal således at p k a. Notation 3 Lad a, b N være givet med b > 1. Da betegner (a) b tallet a skrevet i base b, og a b betegne at a er skrevet i base b. I det følgende vil vi lege lidt med menter. Disse skal opfattes, som man lærte det, da man var en lille pebernødsgnaskende folkeskoleelev. Eksempelvis vil der komme to menter, når man lægger 1 til Hvor N naturligvis ikke indeholder 0.

2 Frederik Ravn Klausen, Peter Michael Reichstein Rasmussen 19 Sætning 4 (Kummers sætning) Der gælder p k ( m+n) m, hvis og kun hvis der er netop k menter i additionen (n) p + (m) p = (n + m) p. Bevis. Beviset og matematikken bag er rigtig fin, og kan for eksempel findes i [1]. Alternativt kan den entusiastiske læser se sætningen som en opbyggelig opgave. Eksempel 5 Hvis vi betragter ( 16 8 ), så er 8 skrevet i base 3 givet ved 22 3 = (8) 3, og i additionen (8) 3 + (8) 3 = = = (16) 3 sker der 2 menter. Det vil sige at 3 2 ( 16 8 ). Russerne så, at Kummers sætning straks indskrænker det oprindelige problem til et spørgsmål om at vise, at der ikke findes k > 2 så 9 ( 2 k+1 ) 2 bortset fra k = 6, 8. Dette overlades ligeledes k til læseren som en (noget nemmere) opgave. På trods af reduktionen af problemet var det dog stadig for hård en julenød for de unge russer, der i stedet betragtede følgende funktion: Definition 6 For alle a N defineres { ( )} 2 k+1 T 9 (a) = # 0 k < a 9 2 k. Denne nye funktion kunne altså tælle antallet af modeksempler til Formodning 1 mindre end 2 a. Et øvre estimat af funktionen blev derfor vore heltes mål. Ved hjælp af Kummers sætning kan en gæv rus benytte fordelingen af cifre i (2 k ) 3 for et generelt k til at sige noget om antallet af gange 3 deler ( 2 k+1 ) 2. Det vil da vise sig at de sidste t cifre af k (2 k ) 3 er periodiske med hensyn til k med periode 2 3 t 1. Da hver 24. årgang, nr. 1

3 20 Meditation over Midterbinomialkoefficienten periode desuden kommer til at indeholde alle mulige kombinationer af t cifre i base 3, hvor det sidste ciffer enten er 1 eller 2, fås et stærkt redskab. Dette var det første russerne satte sig ud for at vise. Definition 7 Eulers phi-funktion ϕ : N N er defineret som ϕ(n) = #{1 a < n gcd(a, n) = 1}. Sætning 8 (Euler-Fermat) For alle indbyrdes primiske tal a, b N gælder a ϕ(b) 1 (mod b). Bevis. Se [1, s. 133]. Lemma 9 For k 0 gælder 3 k k 1. Bevis. Beviset føres ved induktion. For k = 0 og k = 1 får vi henholdsvis = 3 og = 63, hvilket er sandt. Antag nu at 3 k k 1. for et vilkårligt k > 0. Benyt nu følgende faktorisering: ( ) ( ( 2 2 3k+1 1 = 2 2 3k k) ) k + 1. Vi bemærker nu, at 2 3k ( 2 3) 3 k 1 ( 1) 3k 1 1 (mod 9),

4 Frederik Ravn Klausen, Peter Michael Reichstein Rasmussen 21 hvorved vi har ( 2 2 3k) k + 1 ( 1) 4 + ( 1) (mod 9). Dermed gælder 3 får vi 3 k+2 ( 2 2 3k) k + 1, og da 3 k k 1, så ( ) ( ( 2 2 3k k) ) k + 1 = 2 2 3k+1 1. Definition 10 Lad a, b 1 være indbyrdes primiske positive heltal. Da defineres ordenen ord a (b) til at være det mindste positive heltal t så b t 1 (mod a). I julelys og måneskin kan det ses, at b r 1 (mod a) hvis og kun hvis ord a (b) r. Lemma 11 Lad k 0 og 0 < s < 2 3 k. Da gælder 2 s 1 (mod 3 k+1 ). Bevis. Lad t := ord 3 k+1(2). Vi viser nu, at t = 2 3 k. Vi har allerede t 2 3 k, idet t ϕ(3 k+1 ) = 2 3 k jævnfør Sætning 8. Antag nu for modstrid, at t < 2 3 k. Da må der enten gælde t 3 k eller t 2 3 k 1. Da vi har 2 3k 2 (mod 3), så er den første mulighed udelukket. Yderligere følger det af Lemma 9, at 3 k 2 2 3k 1 1, og derfor må der gælde 2 2 3k 1 1 (mod 3 k+1 ), 24. årgang, nr. 1

5 22 Meditation over Midterbinomialkoefficienten så t 2 3 k 1. Dette er i modstrid med antagelsen, og derfor gælder ord 3 k+1(2) = 2 3 k. Denne appetitvækkende julegodte viser altså, at 2 3 k 1 er den minimale periode for de k sidste cifre af (2 k ) 3 : Sætning 12 Lad k, l være givet, så 0 k < l < 2 3 t. Da gælder 2 k 2 l (mod 3 t+1 ). Det vil sige, at de t + 1 sidste cifre af (2 k ) 3 og (2 l ) 3 er forskellige. Bevis. Antag for modstrid at 2 k 2 l (mod 3 t+1 ). Så gælder 3 t+1 2 l 2 k = 2 k (2 l k 1), men dette er i modstrid med Lemma 11, da det medfører 3 t+1 2 k l 1 for 0 < l k < 2 3 t. Sætning 13 For vilkårligt k N 0 får man samtlige følger af k +1 cifre med 1 eller 2 på den sidste plads og 0, 1 eller 2 på de andre, når man betragter de sidste k + 1 cifre af (2 n ) 3 for n så 0 n < 2 3 k. Bevis. De mulige følger på ovenstående form kan vælges på 2 3 k måder. Videre ses det, at da det sidste ciffer af (2 n ) 3 altid vil være enten 1 eller 2, så er de sidste k + 1 cifre altid på denne form. Til sidst følger det af Sætning 12 at alle disse sekvenser af de første k + 1 cifre af (2 n ) 3 er forskellige, og da der er 2 3 k af disse, følger sætningen. Densitet af trinære julegodter Med juletræet forsvarligt pyntet med en præcis beskrivelse af opførelsen af de sidste cifre i (2 k ) 3 og med en passende mængde

6 Frederik Ravn Klausen, Peter Michael Reichstein Rasmussen 23 småkager ved hånden, begyndte udpakningen af julegaverne; et estimat af funktionen T 9 var indenfor rækkevidde. Sætning 14 Lad t 0. Da gælder T 9 (2 3 t ) 2 t 1 (t + 4) Bevis. Det følger af Kummers sætning, at 9 ikke deler ( 2 k+1 ) 2 hvis k og kun hvis additionen (2 k ) 3 + (2 k ) 3 = (2 k+1 ) 3 indebærer færre end to menter. For hvert eneste 2-tal i (2 k ) 3 forekommer der en mente i additionen, og altså vil 9 dele ( 2 k+1 ) 2 hvis der er to eller k flere 2-taller i (2 k ) 3. 5 Ved Sætning 13 vil de sidste t + 1 cifre af (2 k ) 3 antage alle kombinationer, hvor det sidste ciffer er 1 eller 2 og de andre er 0, 1 eller 2, når 0 k < 2 3 t. Vi vil tælle, hvor mange af disse kombinationer som indeholder færre end to 2-taller. Der er to tilfælde: Ingen 2-taller: Der er 2 t kombinationer af de sidste t + 1 cifre, så de ikke indeholder nogen 2-taller, da det sidste ciffer må være 1 og de andre enten er 0 eller 1. Netop ét 2-tal: Antallet af måder, hvorpå de sidste t+1 cifre kan indeholde præcis ét 2-tal kan findes på følgende måde. Hvis det sidste ciffer er et 2-tal, så er der 2 t forskellige måder de resterende cifre kan fordeles. Hvis det sidste ciffer er 1, så må et af de t cifre være et 2-tal, og de resterende kan antage værdierne 0 eller 1 på 2 t 1 måder. Dermed er der 2 t +t2 t 1 kombinationer, som opfylder dette. 5 Læseren, der endnu ikke er påvirket af juleøl, vil her bemærke, at man kan opnå bedre resultater ved også at kigge på menter fra et-taller. Det vil vi i denne fremstilling afholde os fra. 24. årgang, nr. 1

7 24 Meditation over Midterbinomialkoefficienten Det vil sige, at der ialt maksimalt er 2 t +2 t +t2 t 1 = 2 t 1 (t+4) tal 0 k < 2 3 t således at (2 k ) 3 giver mindre end to menter, når den lægges til sig selv i base 3. Dermed fås det ønskede estimat. Med denne gave godt udpakket kan vi nu få et generelt estimat: Sætning 15 For et vilkårligt a N gælder T 9 (a) a log 3 (2) (log 3 (a) + 5). Bevis. Lad t være givet, så 2 3 t a < 2 3 t+1. Da har vi t log 3 (a) log 3 (2). Da T 9 oplagt er en voksende funktion, så kan vi vurdere 6 T 9 (a) ved Sætning 14: ( T 9 (a) T t+1) 2 t (t + 5) 2 log 3 (a) log 3 (2) (log 3 (a) log 3 (2) + 5) 2 log 3 (a) (log 3 (a) + 5) = a log 3 (2) (log 3 (a) + 5). Russerne kunne nu bruge dette estimat til at sige noget om, hvor ofte Formodning 1 fejler. Eller med andre ord: densiteten af de bløde pakker blandt midterbinomialkoefficienterne. 6 Igen vil den opmærksomme læser bemærke, at vi for overskuelighedens skyld smider mere væk end julemanden i Bamses Julerejse.

8 Frederik Ravn Klausen, Peter Michael Reichstein Rasmussen 25 Definition 16 Densiteten af en mængde A N defineres som grænsen #(A {1, 2,, a}) ρ(a) = lim. a a Korollar 17 Lad R N være mængden af naturlige tal k, som opfylder 9 ( 2 k+1 2 k ). Da er ρ(r) = 0. Bevis. Vi ser at T 9(a) a er ρ(r) def = lim a T 9 (a) a = 0. log 3 (a)+5 a 1 log 3 (2), og da log lim 3 (a) + 5 a a 1 log 3 (2) = 0, Juletræets grønne top Nu kunne den pejsedøsige læser fristes til at tro at juleeventyret slutter her, men russerne fortsatte ufortrødent. Definition 18 For ulige m N lader vi: { T m (a) = # 0 s < a m ( )} 2 s+1 Denne funktion var lidt sværere at knække, men efter lang tids terningekasten skaffede russerne sig følgende julegave i matematikkens store pakkeleg: Sætning 19 Lad m > 1 være ulige og lad p være det største primtal, der deler m. Da gælder T m (a) = o (a log p ( p+1 )+ɛ) 2 for ethvert ɛ > 0. 2 s 24. årgang, nr. 1

9 26 Meditation over Midterbinomialkoefficienten Denne sætning blev vist, da juletiden var ved at gå på hæld og russerne lå og lavede sneengle på de salige idrætsstuderendes tilsneede spydkastmark. Her åbenbarede Herrens (eller Erdős eller læserens yndlingsmatematikers) engle sig for dem, og de så, at man for vilkårligt α N og primtal p kunne udvælge indekser i cifrene af (α k ) p så samtlige mulige følger af cifre fremkommer ved disse indekser. 7 Dette kunne russerne bruge. De styrtede ind til den nærmeste tavle og med samme teknik som i tilfældet α = 2 lykkedes det dem at sikre resultatet. Glade og tilfredse løb de ned til kagesøster og varm kakao. Det var nu blevet en rigtig jul. Litteratur [1] R. L. Graham, D. Knuth, O. Patashnik. Concrete Mathematics. Addison-Wesley, Interesserede læsere er meget velkomne til at kontakte forfatterne.

10 Blokkens præmieopgave 27 Hvad viser klokken? præmieopgave, 24. årgang nr. 2 Så er præmieopgaven tilbage igen! Som sædvanlig lyder præmien på et gavekort på 100 kr til GAMES. Betragt et ur, hvor vi ser bort fra mekanikken og antager, at time og minutviser går på kontinuert vis. Hvor mange forskellige klokkeslæt findes der, hvor man kan ombytte time og minutviser og stadig vise noget gyldigt? For eksempel får vi ikke et gyldigt klokkeslæt, når vi ombytter time- og minutviser kl. 05 : 00, da timeviseren ikke kan stå på præcist 12, når klokken er 25 over. Vinderen udtrækkes fra mængden af de besvarelser, som er mere eller mindre overbevisningsdygtige. Farvel til ekstraopgaven Mange tak til de flittige korrespondenter (særligt shoutout til Sune og Thor), der var med til at besvare Blokkens Ekstraopgave. Takket være jeres færdigtexede besvarelser havde vi en artikel at se frem til i hver blok. Dog er vores portrættegner optaget, og ingen af de resterende redaktionsmedlemmer har mod på at tegne Sune de første to potrætter var så flotte, at tredje gang kun kan blive en skuffelse. Vi siger derfor farvel til ekstraopgaven for denne gang årgang, nr. 1

11 FAMØS Fagblad for Aktuar, Matematik, -Økonomi og Statistik ved Københavns Universitet Illustrationer: Jing (Question Marc) Deadline for næste nummer: 1. marts 2015 Indlæg modtages gerne og bedes sendt til gerne i L A TEX og gerne baseret på skabelonen som kan hentes på hjemmesiden. Famøs er et internt fagblad. Eftertryk tilladt med kildeangivelse. Fagbladet Famøs c/o Institut for Matematiske Fag Matematisk Afdeling Universitetsparken København Ø Oplag: 300 stk. Tryk: Frydenberg A/S ISSN: årgang, nr. 1, Dec 2014

Nicolas Bourbaki Dan Saattrup Nielsen

Nicolas Bourbaki Dan Saattrup Nielsen Blokkens matematiker 13 Nicolas Bourbaki Dan Saattrup Nielsen I blokkens matematiker tager vi et kig på matematikere, hvis navne måske er dukket op hist og her, men personen bag navnet nok ikke er så kendt

Læs mere

Fagblad for Aktuar, Matematik, -Økonomi og Statistik 24. årgang, nr. 1, Dec Grundet besparelser på KU udebliver forsiden i denne udgave.

Fagblad for Aktuar, Matematik, -Økonomi og Statistik 24. årgang, nr. 1, Dec Grundet besparelser på KU udebliver forsiden i denne udgave. FAMØS Fagblad for Aktuar, Matematik, -Økonomi og Statistik 24. årgang, nr. 1, Dec 2014 Grundet besparelser på KU udebliver forsiden i denne udgave. Redaktion Nilin Abrahamsen, Sebastian Peek, Jonathan

Læs mere

Primtal - hvor mange, hvordan og hvorfor?

Primtal - hvor mange, hvordan og hvorfor? Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret

Læs mere

Matematikken bag kryptering og signering RSA

Matematikken bag kryptering og signering RSA Matematikken bag kryptering og signering RSA Oversigt 1 Indbyrdes primiske tal 2 Regning med rester 3 Kryptering og signering ved hjælp af et offentligt nøgle kryptosystem RSA Indbyrdes primiske hele tal

Læs mere

Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem

Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem Johan P. Hansen 18. april 2013 Indhold 1 Indbyrdes primiske hele tal 1 2 Regning med rester 3 3 Kryptering

Læs mere

TALTEORI Følger og den kinesiske restklassesætning.

TALTEORI Følger og den kinesiske restklassesætning. Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 1 TALTEORI Følger og den kinesiske restklassesætning Disse noter forudsætter et grundlæggende kendskab til talteori som man

Læs mere

Svar på blokkens præmieopgave (21. årgang nr. 4)

Svar på blokkens præmieopgave (21. årgang nr. 4) Leg med trekanter 19 Præmieopgave og svar på sidste bloks abestreger! Jingyu She Svar på blokkens præmieopgave (21. årgang nr. 4) I sidste præmieopgave blev læseren bedt om at finde sandsynligheden for,

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Noter om primtal. Erik Olsen

Noter om primtal. Erik Olsen Noter om primtal Erik Olsen 1 Notation og indledende bemærkninger Vi lader betegne de hele tal, og Z = {... 3, 2, 1, 0, 1, 2, 3...} N = {0, 1, 2, 3...} Z være de positive hele tal. Vi minder her om et

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Tallet π er irrationalt Jens Siegstad

Tallet π er irrationalt Jens Siegstad 32 Tallet π er irrationalt Jens Siegstad At tallet π er irrationalt har været kendt i pænt lang tid Aristoteles postulerede det da han påstod at diameteren og radius i en cirkel er inkommensurable størrelser

Læs mere

Hvad er et tal? Dan Saattrup Nielsen

Hvad er et tal? Dan Saattrup Nielsen 12 Det filosofiske hjørne Hvad er et tal? Dan Saattrup Nielsen Det virker måske som et spøjst spørgsmål, men ved nærmere eftertanke virker det som om, at alle vores definitioner af tal refererer til andre

Læs mere

Talteoriopgaver Træningsophold ved Sorø Akademi 2007

Talteoriopgaver Træningsophold ved Sorø Akademi 2007 Talteoriopgaver Træningsophold ved Sorø Akademi 2007 18. juli 2007 Opgave 1. Vis at når a, b og c er positive heltal, er et sammensat tal. Løsningsforslag: a 4 + b 4 + 4c 4 + 4a 3 b + 4ab 3 + 6a 2 b 2

Læs mere

Af Marc Skov Madsen PhD-studerende Aarhus Universitet email: marc@imf.au.dk

Af Marc Skov Madsen PhD-studerende Aarhus Universitet email: marc@imf.au.dk Af Marc Skov Madsen PhD-studerende Aarhus Universitet email: marc@imf.au.dk 1 Besøgstjenesten Jeg vil gerne bruge lidt spalteplads til at reklamere for besøgstjenesten ved Institut for Matematiske Fag

Læs mere

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så Introduktion 1) Hvad er Taleteori? Læren om de hele tal Primtal 2) Formalistisk struktur Definition Lemma Divisorer Definition (Divisor) Lad d og n være hele tal Hvis der findes et helt tal q så d q =

Læs mere

Store Uløste Problemer i Matematikken. Lisbeth Fajstrup Aalborg Universitet

Store Uløste Problemer i Matematikken. Lisbeth Fajstrup Aalborg Universitet Store Uløste Problemer i Matematikken. Lisbeth Fajstrup Aalborg Universitet Oversigt Hvad er et stort problem i matematik Eksempler fra 1900 og fra 2000 Problemer om tal perfekte tal, primtal. Meget store

Læs mere

Matematisk modellering og numeriske metoder. Lektion 8

Matematisk modellering og numeriske metoder. Lektion 8 Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er

Læs mere

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36 Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er

Læs mere

TALTEORI Ligninger og det der ligner.

TALTEORI Ligninger og det der ligner. Ligninger og det der ligner, december 006, Kirsten Rosenkilde 1 TALTEORI Ligninger og det der ligner. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne Terps og Peter

Læs mere

Løsning af præmieopgaven: Famøs årgang 22, nr. 1

Løsning af præmieopgaven: Famøs årgang 22, nr. 1 26 Opgaveløsninger Knæk og bræk Løsninger til sidste bloks opgaver Sune Precht Reeh Jeg antager som udgangspunkt at pinden i opgaverne er uden tykkelse og er formet som et ret linjestykke af længde l.

Læs mere

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur 6. december Talteoretiske algoritmer, RSA kryptosystemet, Primtalstest Motivation Definitioner Euclids algoritme Udvidet Euclid RSA kryptosystemet Randominserede algoritmer Rabin-Miller primtalstest Svært

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Banach-Tarski Paradokset

Banach-Tarski Paradokset 32 Artikeltype Banach-Tarski Paradokset Uden appelsiner Andreas Hallbäck Langt de fleste af os har nok hørt om Banach og Tarskis såkaldte paradoks fra 1924. Vi har hørt diverse poppede formuleringer af

Læs mere

Matematiske metoder - Opgaver

Matematiske metoder - Opgaver Matematiske metoder - Opgaver Anders Friis, Anne Ryelund 25. oktober 2014 Logik Opgave 1 Find selv på tre udtalelser (gerne sproglige). To af dem skal være udsagn, mens det tredje ikke må være et udsagn.

Læs mere

Euklids algoritme og kædebrøker

Euklids algoritme og kædebrøker Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n

Læs mere

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 3. april 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede sig

Læs mere

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder Sætning 9 Sylvesters kriterium Nej, ikke mit kriterium Rasmus Sylvester Bryder Inspireret af en statistikers manglende råd om hvornår en kvadratisk matrix er positivt definit uden at skulle ud i at bestemme

Læs mere

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 7. september 2016 Formålet med MASO Integer sequences Oversigt Relle tal Notation Tal Overtal og undertal Største

Læs mere

Kirchberger s sætning om separation af to mængder Maria Larissa Ziino

Kirchberger s sætning om separation af to mængder Maria Larissa Ziino 12 Formidlingsaktivitet Kirchberger s sætning om separation af to mængder Maria Larissa Ziino I denne artikel fremføres to sætninger af henholdsvis den østrigske matematiker Eduard Helly og den tyske matematiker

Læs mere

LINALG JULENØD 2013 SUNE PRECHT REEH

LINALG JULENØD 2013 SUNE PRECHT REEH LINALG JULENØD 203 SUNE PRECHT REEH Resumé I denne julenød skal vi se på lineær algebra for heltallene Z Hvad går stadig godt? og hvad går galt? I de reelle tal R kan vi for ethvert a 0 altid finde R som

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α )

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α ) GEOMETRI-TØ, UGE 8 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad X være en mængde og T familien af alle delmængder

Læs mere

Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser

Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser Analyse 2 Øvelser Rasmus Sylvester Bryder 24. og 27. september 203 Bevis af Fatous lemma (Theorem 9.) Hvis (u j ) j er en følge af positive, målelige, numeriske funktioner (dvs. med værdier i [, ]) over

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Eksempel på den aksiomatisk deduktive metode

Eksempel på den aksiomatisk deduktive metode Eksempel på den aksiomatisk deduktive metode Et rigtig godt eksempel på et aksiomatisk deduktivt system er Euklids Elementer. Euklid var græker og skrev Elemeterne omkring 300 f.kr. Værket består af 13

Læs mere

DM72 Diskret matematik med anvendelser

DM72 Diskret matematik med anvendelser DM72 Diskret matematik med anvendelser En hurtig gennemgang af de vigtigste resultater. (Dvs. ikke alle resultater). Logik Åbne udsagn 2 + 3 = 5 Prædikater og kvantorer P (x) := x er et primtal x N : n

Læs mere

Analyse af ombytningspuslespil

Analyse af ombytningspuslespil Analyse af ombytningspuslespil 1 / 7 Konkret eksempel på algoritmeanalyse Prøv ombytningspuslespillet på kurset webside. 2 / 7 Konkret eksempel på algoritmeanalyse Prøv ombytningspuslespillet på kurset

Læs mere

Noget om en symmetrisk random walks tilbagevenden til udgangspunktet

Noget om en symmetrisk random walks tilbagevenden til udgangspunktet Random Walk-kursus 2014 Jørgen Larsen 14. oktober 2014 Noget om en symmetrisk random walks tilbagevenden til udgangspunktet Dette notat giver et bevis for at en symmetrisk random walk på Z eller Z 2 og

Læs mere

Eksempler på elevbesvarelser af gådedelen:

Eksempler på elevbesvarelser af gådedelen: Eksempler på elevbesvarelser af gådedelen: Elevbesvarelser svinger ikke overraskende i kvalitet - fra meget ufuldstændige besvarelser, hvor de fx glemmer at forklare hvad gåden går ud på, eller glemmer

Læs mere

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder

Læs mere

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til. Polynomier Polynomier Polynomium Et polynomium P(x) = a n x n + a n x n +... + a x + a 0 Disse noter giver en introduktion til polynomier, centrale sætninger om polynomiumsdivision, rødder og koefficienter

Læs mere

Indhold. Model for en dag vol. 2. Julegaveværksted. Det Blå Marked. Juledekorationer. Madbix med gæstekok. Nissebowling. Lucia.

Indhold. Model for en dag vol. 2. Julegaveværksted. Det Blå Marked. Juledekorationer. Madbix med gæstekok. Nissebowling. Lucia. Dag Dato Aktivitet Personale Tirs 4. nov Model for en dag vol. 2 To, Ki, Ja, Tr, Ti Tors 6. nov Butterflymøde Ki, Ja, Ca, Tirs Tors 11. nov 13. nov Svanesang Julegaveværksted Drengerøvsaften FIFA på PlayStation

Læs mere

Spilstrategier. Indhold. Georg Mohr-Konkurrencen. 1 Vindermængde og tabermængde 2. 2 Kopier modpartens træk 4

Spilstrategier. Indhold. Georg Mohr-Konkurrencen. 1 Vindermængde og tabermængde 2. 2 Kopier modpartens træk 4 Indhold 1 Vindermængde og tabermængde 2 2 Kopier modpartens træk 4 3 Udnyt modpartens træk 5 4 Strategityveri 6 5 Løsningsskitser 7 Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende

Læs mere

Kryptologi og RSA. Jonas Lindstrøm Jensen (jonas@imf.au.dk)

Kryptologi og RSA. Jonas Lindstrøm Jensen (jonas@imf.au.dk) Kryptologi og RSA Jonas Lindstrøm Jensen (jonas@imf.au.dk) 1 Introduktion Der har formodentlig eksisteret kryptologi lige så længe, som vi har haft et sprog. Ønsket om at kunne sende beskeder, som uvedkommende

Læs mere

Diskrete Matematiske Metoder. Jesper Lützen

Diskrete Matematiske Metoder. Jesper Lützen Diskrete Matematiske Metoder Jesper Lützen Juni 2013 ii Indhold Introduktion. ix 0.1 Den aksiomatisk-deduktive metode................. ix 0.2 Diskret matematik; hvad er det?.................. x 1 Tal,

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

brikkerne til regning & matematik tal og algebra preben bernitt

brikkerne til regning & matematik tal og algebra preben bernitt brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

Matematikken bag kryptering og signering NemID RSA Foredrag i UNF

Matematikken bag kryptering og signering NemID RSA Foredrag i UNF Matematikken bag kryptering og signering NemID RSA Foredrag i UNF Disposition 1 PKI - Public Key Infrastructure Symmetrisk kryptografi Asymmetrisk kryptografi 2 Regning med rester Indbyrdes primiske tal

Læs mere

1 Sætninger om hovedidealområder (PID) og faktorielle

1 Sætninger om hovedidealområder (PID) og faktorielle 1 Sætninger om hovedidealområder (PID) og faktorielle ringe (UFD) 1. Introducér ideal, hovedideal 2. I kommutativt integritetsområde R introduceres primelement, irreducibelt element, association 3. Begrebet

Læs mere

Regulære udtryk og endelige automater

Regulære udtryk og endelige automater Regulære udtryk og endelige automater Regulære udtryk: deklarative dvs. ofte velegnede til at specificere regulære sprog Endelige automater: operationelle dvs. bedre egnet til at afgøre om en given streng

Læs mere

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X). Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x

Læs mere

Negative cifre n. I et positionssystem skriver man et tal på formen xn a + xn 1a

Negative cifre n. I et positionssystem skriver man et tal på formen xn a + xn 1a Af Peter Harremoës, Herlev Gymnasium Indledning De fleste lærebogssystemer til brug i gymnasiet eller HF indeholder et afsnit om vort positionssystem. Det bliver gerne fremstillet som noget af det mest

Læs mere

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik.

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik. Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1 1 Paritet Diskret matematik. I mange matematikopgaver er det en god ide at se på paritet dvs. hvornår en bestemt størrelse er henholdsvis lige

Læs mere

Ordbog over Symboler

Ordbog over Symboler Ordbog over Symboler Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Integer Factorization

Integer Factorization Integer Factorization Per Leslie Jensen DIKU 2/12-2005 kl. 10:15 Overblik 1 Faktorisering for dummies Primtal og aritmetikkens fundamentalsætning Lille øvelse 2 Hvorfor er det interessant? RSA 3 Metoder

Læs mere

Fokuspunkter for Juniorhuset for okt.-nov.-dec. måned 2010:

Fokuspunkter for Juniorhuset for okt.-nov.-dec. måned 2010: Fokuspunkter for Juniorhuset for okt.-nov.-dec. måned 2010: Sociale kompetencer Design Kulturelle udtryksformer og værdier Uge 40-41: Mandag: Bål Forskellige supper på bål (hvis vejret driller os, bliver

Læs mere

Fagblad for Aktuar, Matematik, -Økonomi og Statistik 23. årgang, nr. 4, Maj 2014

Fagblad for Aktuar, Matematik, -Økonomi og Statistik 23. årgang, nr. 4, Maj 2014 FAMØS Fagblad for Aktuar, Matematik, -Økonomi og Statistik 23. årgang, nr. 4, Maj 2014 Redaktion Nilin Abrahamsen, Søren Wengel Mogensen, Jonathan Mills, Jingyu She, Martin Patrick Speirs Indhold 3 Indhold

Læs mere

Fraktaler Mandelbrots Mængde

Fraktaler Mandelbrots Mængde Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................

Læs mere

Eksempel på muligt eksamenssæt i Diskret Matematik

Eksempel på muligt eksamenssæt i Diskret Matematik Eksempel på muligt eksamenssæt i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet???dag den?.????, 20??. Kl. 9-13. Nærværende eksamenssæt består af 13 nummererede sider med

Læs mere

Lineære ligningssystemer

Lineære ligningssystemer enote 2 1 enote 2 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

Sammenhængskomponenter i grafer

Sammenhængskomponenter i grafer Sammenhængskomponenter i grafer Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv

Læs mere

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9?

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9? Tip til 1. runde af Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal er deleligt med et andet. Derfor spiller primtallene en helt central rolle i talteori, hvilket vi skal se

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM58) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 7 Januar 010, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger,

Læs mere

1. og 2. Skanderborg Sct. Georgs Gilder 26. ÅRGANG NUMMER 11 DECEMBER 2009 FÆLLESGILDEMØDE 1. OG 2. GILDE

1. og 2. Skanderborg Sct. Georgs Gilder 26. ÅRGANG NUMMER 11 DECEMBER 2009 FÆLLESGILDEMØDE 1. OG 2. GILDE S c h a n d t o r p 1. og 2. Skanderborg Sct. Georgs Gilder 26. ÅRGANG NUMMER 11 DECEMBER 2009 FÆLLESGILDEMØDE 1. OG 2. GILDE MANDAG DEN 1. FEBRUAR 2010 KL 19.00 OBS! NY DATO! I KIRKECENTERET, BANEGÅRDSVEJ

Læs mere

P2-projektforslag Kombinatorik: grafteori og optimering.

P2-projektforslag Kombinatorik: grafteori og optimering. P2-projektforslag Kombinatorik: grafteori og optimering. Vejledere: Leif K. Jørgensen, Diego Ruano 1. februar 2013 1 Indledning Temaet for projekter på 2. semester af matematik-studiet og matematikøkonomi-studiet

Læs mere

sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb.

sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb. sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb. lemma: Hvis a, b og c er heltal så gcd(a, b) = 1 og a bc da vil a c. lemma: Hvis p er et primtal og p a 1 a 2 a n hvor hvert

Læs mere

Matematisk modellering og numeriske metoder. Lektion 16

Matematisk modellering og numeriske metoder. Lektion 16 Matematisk modellering og numeriske metoder Lektion 16 Morten Grud Rasmussen 6. november, 2013 1 Interpolation [Bogens afsnit 19.3 side 805] 1.1 Interpolationspolynomier Enhver kontinuert funktion f på

Læs mere

Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet

Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Komplekse tal 3 1.1 Definition.......................................

Læs mere

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 24. august 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede

Læs mere

IMADAs Fagråd. Evalueringsrapport. Matematik & Datalogi. 2. juni 2011. Kontaktpersoner

IMADAs Fagråd. Evalueringsrapport. Matematik & Datalogi. 2. juni 2011. Kontaktpersoner Evalueringsrapport Matematik & Datalogi 2. juni 2011 Kontaktpersoner Christian Kudahl - chkud08@student.sdu.dk Maria Buhl Hansen - marih09@student.sdu.dk Indhold Indhold 2 1 Indledning 4 1.1 Matematik-økonomi.......................

Læs mere

Skriftlig Eksamen Algoritmer og sandsynlighed (DM538)

Skriftlig Eksamen Algoritmer og sandsynlighed (DM538) Skriftlig Eksamen Algoritmer og sandsynlighed (DM538) Institut for Matematik & Datalogi Syddansk Universitet Fredag den 9 Januar 2015, kl. 10 14 Alle sædvanlige hjælpemidler(lærebøger, notater etc.) samt

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8. 2011 L&R Uddannelse A/S Vognmagergade 11 DK-1148 København K Tlf: 43503030 Email: info@lru.

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8. 2011 L&R Uddannelse A/S Vognmagergade 11 DK-1148 København K Tlf: 43503030 Email: info@lru. 1.1 Introduktion: Euklids algoritme er berømt af mange årsager: Det er en af de første effektive algoritmer man kender i matematikhistorien og den er uløseligt forbundet med problemerne omkring de inkommensurable

Læs mere

Hvad vil videnskabsteori sige?

Hvad vil videnskabsteori sige? 20 Ubehjælpelig og uvederhæftig åndsidealisme Hvad vil videnskabsteori sige? Et uundværligt svar til de i ånden endnu fattige Frederik Möllerström Lauridsen Men - hvem, der ved et filosofisk spørgsmål

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 12 (tolv) Eksamensdag: Fredag den 1. april 200, kl..00-11.00

Læs mere

Projektopgave til Mat2SS. Espen Højsgaard (CPR xxxx) Rune Højsgaard (CPR xxxx)

Projektopgave til Mat2SS. Espen Højsgaard (CPR xxxx) Rune Højsgaard (CPR xxxx) Projektopgave til MatSS Espen Højsgaard (CPR 04038-xxxx) Rune Højsgaard (CPR 090678-xxxx) 1 1 Samme sandsynlighed for drengefødsel Vi har som udgangspunkt for løsning af opgaven brugt følgende tabeller,

Læs mere

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Aarhus Universitet

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Aarhus Universitet Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Aarhus Universitet Kursusbeskrivelsen Kursusbeskrivelsen: Algoritmer og datastrukturer 1 Formål Deltagerne vil efter kurset have indsigt i algoritmer

Læs mere

Kratholmskolens julestue 2015

Kratholmskolens julestue 2015 Kratholmskolens julestue 2015 Lørdag den 28. november Kl. 09.30-14.00 Program Kl. 09.30 Kl. 10.00 Indledning i Kratholmskolens hal Juleværkstederne åbner Spisepause: Se opslag i værkstederne Efter spisepausen

Læs mere

1 Om funktioner. 1.1 Hvad er en funktion?

1 Om funktioner. 1.1 Hvad er en funktion? 1 Om funktioner 1.1 Hvad er en funktion? Man lærer allerede om funktioner i folkeskolen, hvor funktioner typisk bliver introduceret som maskiner, der tager et tal ind, og spytter et tal ud. Dette er også

Læs mere

Projekt 3.5 faktorisering af polynomier

Projekt 3.5 faktorisering af polynomier Projekt 3.5 faktorisering af polynomier Hvilke hele tal går op i tallet 60? Det kan vi få svar på ved at skrive 60 som et produkt af sine primtal: 60 3 5 Divisorerne i 60 er lige præcis de tal, der kan

Læs mere

P2-gruppedannelsen for Mat og MatØk

P2-gruppedannelsen for Mat og MatØk Institut for Matematiske Fag Aalborg Universitet Danmark 1-02-2012 Vejledere Bo Hove E-mail: bh@thisted-gymnasium.dk 3 Mat grupper (semesterkoordinator) E-mail: diego@math.aau.dk. Web page: http://people.math.aau.dk/~diego/

Læs mere

RSA Kryptosystemet. Kryptologi ved Datalogisk Institut, Aarhus Universitet

RSA Kryptosystemet. Kryptologi ved Datalogisk Institut, Aarhus Universitet RSA Kryptosystemet Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Kryptering med RSA Her følger først en kort opridsning af RSA kryptosystemet, som vi senere skal bruge til at lave digitale signaturer.

Læs mere

Fagblad for Aktuar, Matematik, -Økonomi og Statistik

Fagblad for Aktuar, Matematik, -Økonomi og Statistik FAMØS Fagblad for Aktuar, Matematik, -Økonomi og Statistik ved Københavns Universitet Illustrationer: Nilin Abrahamsen (Forside) Deadline for næste nummer: 1. oktober 2014 Indlæg modtages gerne og bedes

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 15. juni, 2015. Kl. 9-13. Nærværende eksamenssæt består af 12 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 13/14 Institution Vejle HF og VUC/Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold Hf2 Matematik

Læs mere

Formål & Mål. Ingeniør- og naturvidenskabelig. Metodelære. Kursusgang 1 Målsætning. Kursusindhold. Introduktion til Metodelære. Indhold Kursusgang 1

Formål & Mål. Ingeniør- og naturvidenskabelig. Metodelære. Kursusgang 1 Målsætning. Kursusindhold. Introduktion til Metodelære. Indhold Kursusgang 1 Ingeniør- og naturvidenskabelig metodelære Dette kursusmateriale er udviklet af: Jesper H. Larsen Institut for Produktion Aalborg Universitet Kursusholder: Lars Peter Jensen Formål & Mål Formål: At støtte

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Omskrivningsregler. Frank Nasser. 10. december 2011

Omskrivningsregler. Frank Nasser. 10. december 2011 Omskrivningsregler Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer.

LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer. LINEÆR OPTIMERING JESPER MICHAEL MØLLER Indhold 1 Introduktion 1 2 Kanoniske programmer 2 3 Standard programmer 2 4 Svag dualitet for standard programmer 3 5 Svag dualitet for generelle lineære programmer

Læs mere

Svarene til opgaverne kan I finde i centeret, men ikke kigge før I går hjem!

Svarene til opgaverne kan I finde i centeret, men ikke kigge før I går hjem! Hjerl Hede er fyldt med spændende oplevelser. Mens I nyder alle de spændende ting, kan I med dette hæfte hjælpe Holger Hede Nisse med at finde de tabte bogstaver, så han kan købe ind for Nissemor. Svarene

Læs mere