Hvor lang tid varer et stjerneskud?

Størrelse: px
Starte visningen fra side:

Download "Hvor lang tid varer et stjerneskud?"

Transkript

1 Hvor lang id varer e jernekud? Ole Wi-Hanen, Køge Gymnaium Hvordan kan man ud fra en meeor mae og haighed bekrive den vej ned gennem amofæren? Her giver forfaeren en fremilling af fyikken bag. Søndag den 18. januar kunne man obervere en meeor over ore dele af de ølige Danmark. Alle ved, a meeorer opnår å høje emperaurer, a de flee brænder op og fordamper på dere vej ned gennem Jorden amofære. Ikke ualmindelig bliver man om fyiklærer purg, om man kan forklare dee. De kan man måke god, men hvi de er en forklaring, der involverer al, å kal man nok ikke ilføje, a pørgeren andynligvi ikke har nogen mulighed for a forå forklaringen. Umiddelbar kender jeg ikke il beregninger, der omrenlig ud fra meeoren mae og haighed kan bekrive, hvad der ker med meeoren på den vej ned gennem amofæren. De om populær kalde e jernekud. Jeg vil forøge a bevare nogle af die pørgmål nedenfor. Vi anager, a en meeor er e klippeykke. Hvorfor nedbreme en meeor For kvaliaiv a forå nedbremningen af en meeor berager vi lufmodanden om e fuldændig uelaik ød mod lufen molekyler. A meeoren og lufen ikke foræer om é legeme er af mindre beydning for beregningerne nedenfor. Meeoren mae beegne. I idrumme d øder den ind i en maen dm af lufmolekyler og får derved en haighedilvæk dv. Der gælder ifølge impulbevarele. ( + dm (v + dv = v v+dv = + dm v _ _ dm v Ide _ dm _ 1 << 1, anvender vi ilnærmelen 1+h 1 h på nævneren. Vi får da _ 1 v+dv = 1 + _ dm v = (1 _ dm v dv = _ dm v. Den ide ligning kan omkrive il dv + dm v =, om udrykker en differeniel impulbevarele, og dee kunne vi elvfølgelig ogå have opille direke. Vi anager, a amofæren maefylde ρ er konan og ikke om de er ilfælde ekponeniel afagende efer formlen ρ(h = M RT p _ Mg exp ( RT h. Dee er ikke nogen egenlig indkrænkning, ide vi kan erae den virkelige amofære med en amofære med konan maefylde og mindre ykkele. De følger af ligningen: ρ luf g h = p, hvor ρ luf =1,29 kg, og p m 3 h = 1, Pa, om giver h = 8, km. Dee får kun beydning for de beregnede afande i de følgende. For a finde e udryk for dm berager vi de rør, om e værni af meeoren pløjer igennem i idrumme d. Røre længde er d = v d, og værnie af røre, om er meeoren værni, kalder vi A. Rumfange er derfor dv = A v d. Vi kan da opille e udryk for maen dm = ρ A v d og dermed _ dm d = ρ A v, e almindelig kend udryk for vækerømning, mv. Dividere ligningen dv = _ dm v med d, får man en ligning, der kan inegrere. _ dm d = d _ m v = ρav _ v = ρav v 2, en ligning, der er kend fra urbulen lufmodand. I denne ligning er der ikke age henyn il den haighedforøgele, der ker på grund af yngdeacceleraionen. I ligningen ovenfor er de nu mege le a ilføje e led g il højre ide, hvorefer ligningen bliver: d = _ ρav v 2 + g Denne ligning kan kun vankelig inegrere, men man kan løe uligheden: < 1 1 a g < 1 ρa luf 1 m v 2, om giver v > _ 1 g m ρa v >241, hvoraf vi konaerer, a yngdeacceleraionen er hel uden beydning, hvilke ogå fremgår ved en numerik løning. LMFK-blade, nr. 2, mar 2941 Fyik Maemaik

2 Uden g kan ligningen eparere og inegrere. v 1 _ ρa vo 2 dv = v d 1_ v + v 1 = ρa v v = 1 + ρav Bemærk a afande kal æe i relaion il amofæren ykkele, om er a il 8, km. Vi udregner dernæ ilvæken på den kineike energi: ΔE = 1_ 2 m (v v = 1_ 2 m ((,1v v =,99 1_ 2 m v 2 =,99 5, 1 9 J Maemaik Fyik Vi kan ogå finde e udryk for den ilbagelage rækning. v d = v d = 1 + ρav d v d = 1 + ρav d _ = ρ A ln(1 + ρav Er rækningen give, kan man beemme faldiden af den ide ligning, om å kan indæe i udrykke for haigheden, il a beemme v. Udledningerne ovenfor kan ikke opreholde af flere grunde, men vi vil udregne abe i kineik energi for a få en fornemmele af emperaurigningen. Vi kal da bruge nogle daa. ρ = ρ luf = 1,29 kg, v m 3 = 1 _ km, = 1 kg, _ ρ meeor = 2,8 g, 4_ cm 3 3 π r 3 ρ meeor meeor = 1 kg, giver r meeor =,24 m og A =,131 m 2. _ Heraf følger: ρ A = 1, m -1. Vi kan for ekempel underøge, hvor lang id der går, før meeoren har reducere in haighed il 1 1 v. Da vi ikke ved, hvor lang en rækning, der kal anvende il dee, beregner vi før iden. Vi løer derfor ligningen: v v = 1 + ρav d = 1 1 v, om giver m = ρ Av (1 1 =,533. Selv om denne id er ammenlignelig med e jernekud, kan man ikke lægge å mege i dee reula. Tilføjer man nemlig en formfakor α < 1 il værniareale A, vil iderne blive forlænge med reciprokværdien il denne formfakor. Srækningen, den har bevæge ig, få af = _ m ρ A ln (1 + ρ Av = 1,36 km Ud fra denne beregning mier meeoren 99% af in energi på en rækning på 1,36 km. Hvor mege af den miede energi, der går il opvarmning af enen, kan vi kun gine om. _ J Sæer vi enen varmefylde il c en = 8 kgk og anager vi, a brøkdelen η = 1 1 går il opvarmning af enen, kan vi beregne emperaurigningen: ΔE = mcδt = 1 1,99 5, 19 J = 4, J, om giver T = 6,2 1 3 K. Alå omkring 6. K. Ud fra denne beregning er de alå lang fra overrakende, a en meeor er ærk lyende og fordamper på in vej ned gennem amofæren. Vi har ikke nogen rigig mulighed for a beemme, hvilken brøkdel, der går il opvarmning af enen. Anager vi, a η = _ 1 1 finder man (naurligvi, a T = 6,2 1 2 K. Da meeoren fakik fordamper, er den føre anagele nok den, der ligger nærme virkeligheden. Beregningen ovenfor kan kun kvaliaiv redegøre for opvarmningen af en meeoren ved in paage gennem Jorden amofære. Man bemærker, a formlen for lufmodanden er den amme, om man i almindelighed anvender for urbulen rømning, dog med ilføjele af en formfakor, om eraer værniareale A. Tilføjer man en formfakor ved a erae A med en reducere værdi A r, å A r = α A, og æer α = 1 1, bliver både iden og rækningen, indil haigheden er reducere il 1 1 v, grof age muliplicere med en fakor 1, å vi får = 5,91 og = 14,2 km. Dee yne a være bedre i overenemmele med virkeligheden. Begyndelehaigheden for en meeor er nok narere 2-3 _ km. Laver man de amme beregninger for en ådan meeor, finder man, a iden reducere med 1_ 3 il 2,, men er 8,7 km. Man kan elvfølgelig krue på formfakoren α og brøkdelen η, indil man får præci de reul- 42 LMFK-blade, nr. 2, mar 29

3 Meeor i Leonideværmen november 26. Bemærk farvekife og ændringen i lyyrke! Foo: Jeper Grønne, Silkeborg. Billeddaa fi nde på aro phoo.dk/gallery/diplayimage.php?po=-435. a, man ønker, men modellen ovenfor er i virkeligheden hel urealiik. Hvor lang id varer e jernekud? Anagelen, a hele meeoren bliver opvarme il amme emperaur, hvorefer den fordamper, kan naurligvi ikke opreholde. Vi berager da probleme på en hel anden måde, ide vi anager, a de kun er de allerydere lag af meeoren, om bliver opvarme, og om å fordamper. Herved mier meeoren gradvi in mae på vej ned gennem amofæren. Umiddelbar lang rimeligere, men de fremkomne ligninger kan ikke længere løe analyik, og for a lave beregningen må man kende fordampningvarmen for enen. Vi anager om før, a kun brøkdelen η af abe i kineik energi går il opvarmning af meeoren, og α beegner om før formfakoren, å A r = α A. Ud fra den idligere formel d = ρ α A m v 2, kan vi udrykke den effek, om meeoren mier. P = η F re v = ηm _ ραa d v = ηm m v 2 v = η α ρ A v 3. Bemærk, a den afae effek voker proporional med v 3. Når maen ikke er konan, kan vi ikke længere direke inegrere ligningen for d. De er imidlerid mulig a opille en ligning, om bekriver ammenhængen mellem mae og haighed. Anagelen er, a de kun er en lille mae dm, om er den ydere kal, om opvarme å krafig, a den fordamper. Heril anvende en energi dq = L dm, hvor L er fordampningvarmen for meeoren. Energien heril levere om før af ammenøde med lufen molekyler. dq = η Pd = ηm d vd = Ldm ηmvdv = Ldm _ dm m = η L vdv om inegrere il: ln ( m η = v Ligningen kan løe med henyn il m eller v 2 LMFK-blade, nr. 2, mar 2943 Fyik Maemaik

4 m = v v 2 2 = v + 2L η ln ( m m Vi kan ud fra nogle imple anageler få e begreb om ørrelen af η 2L. På grund af den ekponenielle afhængighed er formlen ærdele følom over for værdien af η 2L. Anager vi f.ek., a for v = 2 _ km, hvor maen er reducere il 1 m, når haigheden er re- _ 1 ducere il 1 1 v, å finder man 2L η = 8,7 1 7 J kg. Anager vi om før, a η = 1 1, giver dee L = 4, J kg. Fordampningvarmen for jern er L jern = 6, J, å denne værdi, kan ikke kg umiddelbar afvie. Afhængig af valge af værdier for α, η og L opnår man naurligvi forkellige reulaer. I de følgende vil vi anvende α = η = 1 1 og L=4, J kg. Vi er inereerede i a finde, hvorlede haigheden v, rækningen og maen m afhænger af iden. Vi vender ilbage il den oprindelige differenialligning d = _ ραa m v 2, men hvor maen nu afhænger af haigheden efer formlen: m = v Indæe dee udryk får man: d = _ ραa v v 2 Men når maen formindke, kan vi ikke længere regne med, a værniareale A er konan. Maen er imidlerid proporional med r 3, men A er proporional med r 2, å A m A = ( m 2_ 3 Indæe dee i d = ρ α A m v 2, får man: d = ραa ( m m 2_ 3 m v 2 = ραa v 2 2_ m 3 m 1_ 3 _ ραa η v 2 exp ( 2L (v 2 1_ 2 v 3 _ = ραa v 2 exp( η 6L (v 2 2 v Ud fra ligningerne: P = ηαρav 3 og P = L _ dm d kan man ogå finde en differenialligning for maen afhængighed af iden: _ dm d = _ ηαρ A m L v 3 = ηαρ ( m m 2_ 3 _ A L v 3 Skal vi beemme rækningen, om meeoren ilbagelægger, anvender vi formlen d d = v. Formlerne for haigheden v, rækningen og maen m er give ovenfor om 3 koblede differenialligninger. For a løe differenialligningerne er man imidlerid henvi il numerike meoder. Nedenfor er vi nogle løninger, hvor = 1 kg i alle ekempler undagen de ide o, og v = 1, 12, 15, 25 og 3 km/. Graferne vier maen, haigheden og rækningen i den amme graf. Maen måle i enheden 1 kg, haigheden i _ km og rækningen i km, for a man i Maemaik Fyik = 1 kg, v = 1 km _ = 1 kg, v = 15 km 44 LMFK-blade, nr. 2, mar 29

5 = 1 kg, v = 2 _ km = 1 kg, v = 25 _ km = 1. kg, v = 25 _ km = 1 kg, v = 25 _ km de flee ilfælde kan anvende amme enhed på 2. aken. Graferne vier bland ande, a for en mae på 1 kg vil meeoren brænde op, hvi haigheden overiger 2 _ km, men en meeor med maen 1 kg før brænder op, når haigheden overiger 25 _ km. Som de fremgår af figurerne, mier en 1 kg meeor mere en 9% af in energi på mindre end e ekund, hvi haigheden er over 15 _ km. Vi luer heraf, a i almindelighed er varigheden af jernekud omkring e ekund. I løbe af ca. e ekund vil den enen være brænd op eller have ram jorden. I de ilfælde, a den ikke har haf ilrækkelig haighed il a brænde hel op, vil den muligvi kunne e om en glødende kugle i længere id, iær hvi den bane er nær parallel med jordoverfladen. LMFK-blade, nr. 2, mar Fyik Maemaik

En ny mellemfristet holdbarhedsindikator

En ny mellemfristet holdbarhedsindikator En ny mellemfrie holdbarhedindikaor Andrea Øergaard Iveren Danih aional Economic Agen Model, DEAM Peer Sephenen Danih aional Economic Agen Model, DEAM DEAM Arbejdpapir 03: Februar 03 Abrac Arbejdpapire

Læs mere

1. Raketligningen. 1.1 Kinematiske forhold ved raketopsendelse fra jorden. Raketfysik

1. Raketligningen. 1.1 Kinematiske forhold ved raketopsendelse fra jorden. Raketfysik Rakefysik. Rakeligningen Rakeligningen kan udlede ud fra iulssæningen. Vi anager a vi har en rake ed asse (), Rakeen drives fre ved a der udslynges en konsan asse µ r. idsenhed µ -d/d ed hasigheden u i

Læs mere

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72.

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72. Bioeknologi 2, Tema 4 5 Kineik Kineik er sudier af reakionshasigheden hvor man eksperimenel undersøger de fakorer, der påvirker reakionshasigheden, og hvor resulaerne afslører reakionens mekanisme og ransiion

Læs mere

Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen

Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen Fysikrappor: Vejr og klima Maila Walmod, 13 HTX, Rosklide I gruppe med Ann-Sofie N Schou og Camilla Jensen Afleveringsdao: 30 november 2007 1 I dagens deba høres orde global opvarmning ofe Men hvad vil

Læs mere

Newtons afkølingslov løst ved hjælp af linjeelementer og integralkurver

Newtons afkølingslov løst ved hjælp af linjeelementer og integralkurver Newons afkølingslov løs ved hjælp af linjeelemener og inegralkurver Vi så idligere på e eksempel, hvor en kop kakao med emperauren sar afkøles i e lokale med emperauren slu. Vi fik, a emperaurfalde var

Læs mere

Maksimal strømning 1

Maksimal strømning 1 Makimal rømning 1 Srømningneærk E rømningneærk (eller blo e neærk) N beår af En æge, orienere graf G med ikke-negaie helallige kanæge, hor ægen af en kan e kalde kapacieen c(e) af e To ærlige knder, og

Læs mere

Sammenhængen mellem strækning og tid Farten angiver den tilbagelagte strækning i et tidsrum. Farten kan bestemmes ved brug af formlen:

Sammenhængen mellem strækning og tid Farten angiver den tilbagelagte strækning i et tidsrum. Farten kan bestemmes ved brug af formlen: Oplag 8: FORMLHÅNDTRING Sammenhængen mellem trækning og tid Farten angiver den tilbagelagte trækning i et tidrum. Farten kan betemme ved brug af formlen: fart = trækning tid Anvender vi i tedet ymboler,

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014 Maemaik A Sudenereksamen Forberedelsesmaeriale il de digiale eksamensopgaver med adgang il inernee sx141-matn/a-0505014 Mandag den 5. maj 014 Forberedelsesmaeriale il sx A ne MATEMATIK Der skal afsæes

Læs mere

Faldmaskine. Esben Bork Hansen Amanda Larssen Martin Sven Qvistgaard Christensen. 23. november 2008

Faldmaskine. Esben Bork Hansen Amanda Larssen Martin Sven Qvistgaard Christensen. 23. november 2008 Faldmakine Eben Bork Hanen Amanda Laren Martin Sven Qvitgaard Chritenen 23. november 2008 Indhold Formål 3 2 Optilling 3 2. Materialer............................... 3 2.2 Optilling...............................

Læs mere

Hvad betyder økonomi og helbred for tilbagetrækningen

Hvad betyder økonomi og helbred for tilbagetrækningen Hvad beyder økonomi og helbred for ilbagerækningen Profeor Paul Bingley og PHD Michael Jørgenen SFI De Naionale Forkningcener for Velfærd 1. Formåle med præenaionen. Dagorden 2. De Danke ilbagerækninglandkab.

Læs mere

Eksponentielle sammenhänge

Eksponentielle sammenhänge Eksponenielle sammenhänge y 800,95 1 0 1 y 80 76 7, 5 5% % 1 009 Karsen Juul Dee häfe er en forsäelse af häfe "LineÄre sammenhänge, 008" Indhold 14 Hvad er en eksponeniel sammenhäng? 53 15 Signing og fald

Læs mere

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE?

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? Af Torben A. Knudsen, Sud. Poly. & Claus Rehfeld, Forskningsadjunk Cener for Trafik og Transporforskning (CTT) Danmarks Tekniske Uniersie Bygning 115, 800

Læs mere

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og EPDEMER DYAMK AF Kasper Larsen, Bjarke Vilser Hansen Henriee Elgaard issen, Louise Legaard og Charloe Plesher-Frankild 1. Miniprojek idefagssupplering, RUC Deember 2007 DLEDG Maemaisk modellering kan anvendes

Læs mere

En varmluftsballon. s Kurvelængden fra ballonens toppunkt til punktet P. til symmetriaksen.

En varmluftsballon. s Kurvelængden fra ballonens toppunkt til punktet P. til symmetriaksen. P og En varmluftballon Denne artikel er en lettere revideret udgave af en artikel, om Dan Frederiken og Erik Vetergaard fra Haderlev Katedralkole havde i LMFK-bladet nr. 2, februar 1997. Enhver, om er

Læs mere

2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk

2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk Oversig Mes repeiion med fokus på de sværese emner Modul 3: Differenialligninger af. orden Maemaik og modeller 29 Thomas Vils Pedersen Insiu for Grundvidenskab og Miljø vils@life.ku.dk 3 simple yper differenialligninger

Læs mere

8.14 Teknisk grundlag for PFA Plus: Bilag 9-15 Indholdsforegnelse 9 Bilag: Indbealingssikring... 3 1 Bilag: Udbealingssikring... 4 1.1 Gradvis ilknyning af udbealingssikring... 4 11 Bilag: Omkosninger...

Læs mere

1 Stofskifte og kropsvægt hos pattedyr. 2 Vægtforhold mellem kerne og strå. 3 Priselasticitet. 4 Nedbrydning af organisk materiale. 5 Populationsvækst

1 Stofskifte og kropsvægt hos pattedyr. 2 Vægtforhold mellem kerne og strå. 3 Priselasticitet. 4 Nedbrydning af organisk materiale. 5 Populationsvækst Oversig Eksempler på hvordan maemaik indgår i undervisningen på LIFE Gymnasielærerdag Thomas Vils Pedersen Insiu for Grundvidenskab og Miljø vils@life.ku.dk Sofskife og kropsvæg hos paedyr Vægforhold mellem

Læs mere

Fag: Fysik - Matematik - IT Elever: Andreas Bergström, Mads Paludan, Jakob Poulsgærd & Mathias Elmhauge Petersen. Det skrå kast

Fag: Fysik - Matematik - IT Elever: Andreas Bergström, Mads Paludan, Jakob Poulsgærd & Mathias Elmhauge Petersen. Det skrå kast Det krå kat Data Forøg 1: = 38 V 0 = 4, 94 K vidde = 2, 058 H = 0, 406 t = 0, 53 Forøg 2 (60 ): = 60 V 0 = 4, 48 K vidde = 1, 724 H = 0, 788 t = 0, 77 Fyik del Udførel af forøg Kat på 38 : Forøgoptilling:

Læs mere

Termodynamik - Statistisk fysik - Termodynamiske relationer - Fri energi - Entropi

Termodynamik - Statistisk fysik - Termodynamiske relationer - Fri energi - Entropi Fag: Termodynamik - Statitik fyik - Termodynamike relationer - Fri energi - Entropi 1 Indholdfortegnele... 2 Forord... 3 Formelle definitioner... 3 Et ytem... 3 Et lukket ytem... 3 Et ioleret ytem... 3

Læs mere

Tennis eksempel på opgaveløsning i MatematiKan.nb

Tennis eksempel på opgaveløsning i MatematiKan.nb Opgave 1 1.1 Caroline alder, da hun blev profeionel: 2005-1990 15 18-11 7 Caroline var 15 år og 7 dage gammel. 1.2-1.6 1.5 Det er ud til, at den ekponentielle tendenlinje følger punkterne bedt. 1.6 R-kvadreret

Læs mere

TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD)

TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD) Underøgele af forældre brugerhed med dagilbud i kommun Apr. 2012 SPØRGESKEMA TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD) De er valgfri for kommun, om de pørgmål, der

Læs mere

Arkimedes lov - Opdrift. Navne: Rami Kaddoura Safa Sarac

Arkimedes lov - Opdrift. Navne: Rami Kaddoura Safa Sarac Arkiee lov - Oprif avne: Rai Kaoura Safa Sarac Klae: 1.4 ag: yik Vejleer: Ahuak J rance Skole: Rokile eknike gynaiu, Hx Dao: 16.04.2010 orål oråle e rapporen er, a vi elv kal ille en probleilling u fra

Læs mere

BRUGERUNDERSØGELSE 2015 PLEJEBOLIG LANGGADEHUS

BRUGERUNDERSØGELSE 2015 PLEJEBOLIG LANGGADEHUS BRUGERUNDERSØGELSE PLEJEBOLIG LANGGADEHUS Sundhed- og Omorgforvaltningen Brugerunderøgele : Plejebolig 1 Brugerunderøgele Plejebolig Brugerunderøgelen er udarbejdet af Epinion P/S og Afdeling for Data

Læs mere

Matematisk modellering og numeriske metoder

Matematisk modellering og numeriske metoder Matematik modellering og numerike metoder Morten Grud Ramuen 4. oktober 26 Laplace-tranformationer. Definitionen af Laplace-tranformationen Definition. (Laplace-tranformation). Lad f være en funktion defineret

Læs mere

Hvad er en diskret tidsmodel? Diskrete Tidsmodeller. Den generelle formel for eksponentiel vækst. Populationsfordobling

Hvad er en diskret tidsmodel? Diskrete Tidsmodeller. Den generelle formel for eksponentiel vækst. Populationsfordobling Hvad er en diskre idsmodel? Diskree Tidsmodeller Jeppe Revall Frisvad En funkion fra mængden af naurlige al il mængden af reelle al: f : R f (n) = 1 n + 1 n Okober 29 1 8 f(n) = 1/(n + 1) f(n) 6 4 2 1

Læs mere

Elektriske størrelser, enheder, formler mm.

Elektriske størrelser, enheder, formler mm. Dee er en aling af forler og elekrike ørreler, a e forøg på, a forklare de på en foråelig åde. De er forøg gjor ved brug af analogier il andre åke ere kende fyike ørreler. Hvi du finder fejl eller ener,

Læs mere

Lektion 10 Reaktionshastigheder Epidemimodeller

Lektion 10 Reaktionshastigheder Epidemimodeller Lekion 1 Reakionshasigheder Epidemimodeller Simpel epidemimodel Kermack-McKendric epidemimodel Kemiske reakionshasigheder 1 Simpel epidemimodel I en populaion af N individer er I() inficerede og resen

Læs mere

Dermed er frekvensen: 1 1. s b) Ud fra frekvensen og bølgens udbredelseshastighed i luften kan bølgelængden bestemmes:

Dermed er frekvensen: 1 1. s b) Ud fra frekvensen og bølgens udbredelseshastighed i luften kan bølgelængden bestemmes: Løningerne er hene på www.zyankipil.dk Løninger il Ekaenopgaver i fyik 18- Fyikforlage (Koebogen) Quizpillene ASHRAM, MIR og SPORTSØRD Opgave 1 ide 11: a) På ocillokopbillede aflæe vingningiden/perioden.

Læs mere

Logaritme-, eksponential- og potensfunktioner

Logaritme-, eksponential- og potensfunktioner Logarime-, eksponenial- og poensfunkioner John Napier (550-67. Peer Haremoës Niels Brock April 7, 200 Indledning Eksponenial- og logarimefunkioner blev indfør på Ma C niveau, men dengang havde vi ikke

Læs mere

Bankernes renter forklares af andet end Nationalbankens udlånsrente

Bankernes renter forklares af andet end Nationalbankens udlånsrente N O T A T Bankernes rener forklares af ande end Naionalbankens udlånsrene 20. maj 2009 Kor resumé I forbindelse med de senese renesænkninger fra Naionalbanken er bankerne bleve beskyld for ikke a sænke

Læs mere

Logaritme-, eksponential- og potensfunktioner

Logaritme-, eksponential- og potensfunktioner Logarime-, eksponenial- og poensfunkioner John Napier (550-67. Peer Haremoës Niels Brock July 27, 200 Indledning Eksponenial- og logarimefunkioner blev indfør på Ma C nivea uden en præcis definiion. Funkionerne

Læs mere

Undervisningsnoter til Makro A, E15

Undervisningsnoter til Makro A, E15 Underviningnoer il Makro A, E5 Gouham Jørgen Surendran 7. juni 206 Indhold Forelæning om væk og veland 3 Mål af veland:................................................ 3 Sylized fac aka Oberverbare fænomener

Læs mere

Sammenhæng mellem prisindeks for månedstal, kvartalstal og årstal i ejendomssalgsstatistikken

Sammenhæng mellem prisindeks for månedstal, kvartalstal og årstal i ejendomssalgsstatistikken 6. sepember 2013 JHO Priser og Forbrug Sammenhæng mellem prisindeks for månedsal, kvaralsal og årsal i ejendomssalgssaisikken Dee noa gennemgår sammenhængen mellem prisindeks for månedsal, kvaralsal og

Læs mere

Semesterprojekt 2007 - Svingningssystemer mekanisk/elektrisk analogi

Semesterprojekt 2007 - Svingningssystemer mekanisk/elektrisk analogi Semeterprojekt SDU - Det Teknik Fakultet Gruppe 6 DDF1 Vejleder: Henning Bremøe Hanen Projektperiode: 10. eptember 007-14. december 007 Semeterprojekt 007 - Svingningytemer mekanik/elektrik analogi Udarbejdet

Læs mere

DiploMat Løsninger til 4-timersprøven 4/6 2004

DiploMat Løsninger til 4-timersprøven 4/6 2004 DiploMa Løsninger il -imersprøven / Preben Alsholm / Opgave Polynomie p er give ved p (z) = z 8 z + z + z 8z + De oplyses, a polynomie også kan skrives således p (z) = z + z z + Vi skal nde polynomies

Læs mere

Brugerundersøgelse 2013 Plejebolig

Brugerundersøgelse 2013 Plejebolig Brugerunderøgele 2013 Plejebolig Brugerunderøgelen er udarbejdet af Epinion AS og Afdeling for Data og Analye, Sundhed- og Omorgforvaltningen, København Kommune. Layout: KK deign Foridefoto: Henrik Friberg

Læs mere

TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD)

TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD) Uderøgele af forældre brugerilfredhed med dagilbud i kommue Sep. 2013 SPØRGESKEMA TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD) De er valgfri for kommue, om de pørgmål,

Læs mere

1. Undersøg om den nye astma-medicin har en signifikant virkning.

1. Undersøg om den nye astma-medicin har en signifikant virkning. Opgave 4.7 For a vurdere virkige af e y amamedici, er 10 paieer lugekapacie bleve mål før og behadlige med de ye medici og ige 3 uger ide i behadligperiode. Die reulaer e i edeåede abel: Lugekapacie Lugekapacie

Læs mere

Afdækning af nyankomne elevers sprog og erfaringer

Afdækning af nyankomne elevers sprog og erfaringer Hele vejen rundt om eleven prog og reourcer afdækning af nyankomne og øvrige toprogede elever kompetencer til brug i underviningen Afdækning af prog og erfaringer TRIN Afdækning af nyankomne elever prog

Læs mere

Afleveringsopgaver i fysik i 08-y2 til

Afleveringsopgaver i fysik i 08-y2 til Page 1 of 6 Afleveringopgaver i fyik i 08-y2 til 04.01.11 Fra hæftet: pgaver i fyik A-Niveau pgave A11 ide 33 A11a I kernekortet e det, at Si-31 er beta-radioaktiv. Da ladningtal og aetal kal være bevaret,

Læs mere

Hjemmeopgave 1 Makroøkonomi, 1. årsprøve, foråret 2005 Vejledende besvarelse

Hjemmeopgave 1 Makroøkonomi, 1. årsprøve, foråret 2005 Vejledende besvarelse Hjemmeopgave Makroøkonomi,. årprøve, foråret 2005 Vejledende bevarele Opgave. Korrekt. Arbejdtyrken er en beholdning- (tock) variabel, idet man på et givet tidpunkt (fx. jan) kan tælle, hvor mange der

Læs mere

guide skift elselskab og spar en formue billigere Januar 2015 Se flere guider på bt.dk/plus og b.dk/plus

guide skift elselskab og spar en formue billigere Januar 2015 Se flere guider på bt.dk/plus og b.dk/plus guide Januar 2015 få billigere el kift elelkab og par en formue Se flere guider på bt.dk/plu og b.dk/plu 2 SKIFT ELSELSKAB SPAR EN FORMUE INDHOLD SIDE 4 Mange kan core hurtige og nemme penge ved at kifte

Læs mere

I forældrenes fodspor

I forældrenes fodspor D Indig Nummer 18 31. okober 26 I forældrene fodpor A f C h e f k o n u l e n D v i d J e n e n, d j @ d i. d k 3 Finlnd om koleekempel Finlnd udløer i dg de fglige poenile i lng flere koleelever, end

Læs mere

Hvor bliver pick-up et af på realkreditobligationer?

Hvor bliver pick-up et af på realkreditobligationer? Hvor bliver pick-up e af på realkrediobligaioner? Kvanmøde 2, Finansanalyikerforeningen 20. April 2004 Jesper Lund Quaniaive Research Plan for dee indlæg Realkredi OAS som mål for relaiv værdi Herunder:

Læs mere

Vanskelige vilkår for generationsskifte med nye regler - Afskaffelse af formueskattekursen samt svækkelse af sikkerheden trods bindende svar

Vanskelige vilkår for generationsskifte med nye regler - Afskaffelse af formueskattekursen samt svækkelse af sikkerheden trods bindende svar - 1 Vankelige vilkår for generationkifte med nye regler - Afkaffele af formuekattekuren amt vækkele af ikkerheden trod bindende var Af advokat (L) Bodil Chritianen og advokat (H), cand. merc. (R) Tommy

Læs mere

24 cm = dm 131 cm = dm. 42 cm = dm 87 cm = dm. 178 cm = dm 147 cm = dm. 137 cm = dm 191 cm = dm. 159 cm = dm 100 cm = dm. 60 cm = dm 63 cm = dm

24 cm = dm 131 cm = dm. 42 cm = dm 87 cm = dm. 178 cm = dm 147 cm = dm. 137 cm = dm 191 cm = dm. 159 cm = dm 100 cm = dm. 60 cm = dm 63 cm = dm Navn: Klasse: 24 cm = dm 131 cm = dm 42 cm = dm 87 cm = dm 178 cm = dm 147 cm = dm 137 cm = dm 191 cm = dm 159 cm = dm 100 cm = dm 60 cm = dm 63 cm = dm 46 cm = dm 62 cm = dm 72 cm = dm 199 cm = dm 172

Læs mere

BRUGERUNDERSØGELSE 2014 PLEJEBOLIG. Dr. Ingrids Hjem. Sundheds- og Omsorgsforvaltningen - Brugerundersøgelse 2014: Plejebolig 1

BRUGERUNDERSØGELSE 2014 PLEJEBOLIG. Dr. Ingrids Hjem. Sundheds- og Omsorgsforvaltningen - Brugerundersøgelse 2014: Plejebolig 1 BRUGERUNDERSØGELSE 2014 PLEJEBOLIG Sundhed- og Omorgforvaltningen - Brugerunderøgele 2014: Plejebolig 1 Brugerunderøgele 2014 Plejebolig Brugerunderøgelen er udarbejdet af Epinion P/S og Afdeling for Data

Læs mere

Computer- og El-teknik Formelsamling

Computer- og El-teknik Formelsamling ompuer- og El-eknik ormelsamling E E E + + E + Holsebro HTX ompuer- og El-eknik 5. og 6. semeser HJA/BA Version. ndholdsforegnelse.. orkorelser inden for srøm..... Modsande ved D..... Ohms ov..... Effek

Læs mere

Data og metode til bytteforholdsberegninger

Data og metode til bytteforholdsberegninger d. 3. maj 203 Daa og meode il byeforholdsberegninger Dee noa redegør for daagrundlage og beregningsmeoden bag byeforholdsberegningerne i Dansk Økonomi, forår 203.. Daagrundlag Daagrundlage for analysen

Læs mere

Estimation og test i normalfordelingen

Estimation og test i normalfordelingen af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:

Læs mere

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager Fysikrapport: Rapportøvelse med kalorimetri Maila Walmod, 1.3 HTX, Rosklide I gruppe med Ulrik Stig Hansen og Jonas Broager Afleveringsdato: 30. oktober 2007* *Ny afleveringsdato: 13. november 2007 1 Kalorimetri

Læs mere

FitzHugh Nagumo modellen

FitzHugh Nagumo modellen FizHugh Nagumo modellen maemaisk modellering af signaler i nerve- og muskelceller Torsen Tranum Rømer, Frederikserg Gymnasium Fagene maemaik og idræ supplerer hinanden god inden for en lang række emner.

Læs mere

MOGENS ODDERSHEDE LARSEN. Sædvanlige Differentialligninger

MOGENS ODDERSHEDE LARSEN. Sædvanlige Differentialligninger MOGENS ODDERSHEDE LARSEN Sædvanlige Differenialligninger a b. udgave 004 FORORD Dee noa giver en indføring i eorien for sædvanlige differenialligninger. Der lægges især væg på løsningen af lineære differenialligninger

Læs mere

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Torsdag den 2. januar 1997, kl.

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Torsdag den 2. januar 1997, kl. Skriflig Eksamen Daasrukurer og lgorimer (DM0) Insiu for Maemaik og Daalogi Odense Universie Torsdag den. januar 199, kl. 9{1 lle sdvanlige hjlpemidler (lrebger, noaer, ec.) sam brug af lommeregner er

Læs mere

Estimation af markup i det danske erhvervsliv

Estimation af markup i det danske erhvervsliv d. 16.11.2005 JH Esimaion af markup i de danske erhvervsliv Baggrundsnoa vedrørende Dansk Økonomi, eferår 2005, kapiel II Noae præsenerer esimaioner af markup i forskellige danske erhverv. I esimaionerne

Læs mere

Indhold. Indledning 4 Skat, mælk, Palæstina og nye Verdensmål 5 Strategiske målsætninger 6 Organisatoriske målsætninger 24

Indhold. Indledning 4 Skat, mælk, Palæstina og nye Verdensmål 5 Strategiske målsætninger 6 Organisatoriske målsætninger 24 Mellemfolkelig Samvirke årberening 2014 .2 Årberening 2014 Årberening 2014.3 Indhold Indledning 4 Ska, mælk, Palæina og nye Verdenmål 5 Sraegike målæninger 6 Organiaorike målæninger 24 Foride: Agne Mulenga,

Læs mere

ARBEJDSPORTFOLIO. 1. hovedforløb. mia phillippa fabricius

ARBEJDSPORTFOLIO. 1. hovedforløb. mia phillippa fabricius ARBEJDSPORTFOLIO 1. hovedforløb mia phillippa fabriciu Out of Office ikoner, november 2014 Idékiter Det færdige reultat af ikonerne Out of Office ikoner, november 2014 I mit praktikophold ho MediaXpre

Læs mere

Matematil projekt Bærbar

Matematil projekt Bærbar Maemaik Kursusopgave Bærbar -6-26 Maemail projek Bærbar Opgave A. For a finde ligningen for planen så skal jeg bruge e punk på planen, og normalvekoren for planen. Punke på planen, kan jeg finde fordi

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmark Teknike Univeritet Side 1 af 7 Skriftlig prøve, tordag den 6 maj, 1, kl 9:-1: Kuru navn: Fyik 1 Kuru nr 1 Tilladte hjælpemidler: Alle hjælpemidler er tilladt "Vægtning": Bevarelen bedømme om en

Læs mere

Efterspørgslen efter læger 2012-2035

Efterspørgslen efter læger 2012-2035 2013 5746 PS/HM Eferspørgslen efer læger 2012-2035 50000 45000 40000 35000 30000 25000 20000 15000 10000 5000 Anal eferspurge læger i sundhedsudgifalernaive Anal eferspurge læger i finanskrisealernaive

Læs mere

En-dimensionel model af Spruce Budworm udbrud

En-dimensionel model af Spruce Budworm udbrud En-dimensionel model af Sprce dworm dbrd Kenneh Hagde Mandr p Niel sen o g K asper j er ing Søby Jensen, ph.d-sderende ved oskilde Universie i hhv. maemaisk modellering og maemaikkens didakik. Maemaisk

Læs mere

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Nulkuponobligationer

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Nulkuponobligationer Dagens forelæsning Ingen-Arbirage princippe Claus Munk kap. 4 Nulkuponobligaioner Simpel og generel boosrapping Nulkuponrenesrukuren Forwardrener 2 Obligaionsprisfassæelse Arbirage Værdien af en obligaion

Læs mere

Raketter og deres virkemåde - et SRP oplæg

Raketter og deres virkemåde - et SRP oplæg Rakeer og deres virkeåde - e SRP olæg Rakeer siller en vial rolle i forbindelse ed udforskningen af rue sa il a få brag saellier i kredsløb okring jorden. Skøn rakeer, so bruges il rufar er ege kolicerede

Læs mere

Appendisk 1. Formel beskrivelse af modellen

Appendisk 1. Formel beskrivelse af modellen Appendisk. Formel beskrivelse af modellen I dee appendiks foreages en mere formel opsilning af den model, der er beskreve i ariklen. Generel: Renen og alle produenpriser - eksklusiv lønnen - er give fra

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen Program Statitik og Sandynlighedregning 2 Normalfordelingen venner og bekendte Helle Sørenen Uge 9, ondag Reultaterne fra denne uge kal bruge om arbejdhete i projekt 1. I formiddag: χ 2 -fordelingen, t-fordelingen,

Læs mere

Ny ligning for usercost

Ny ligning for usercost Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh 8. okober 2008 Ny ligning for usercos Resumé: Usercos er bleve ændre frem og ilbage i srukur og vil i den nye modelversion have noge der minder om

Læs mere

Lidt om trigonometriske funktioner

Lidt om trigonometriske funktioner DEN TEKNISK-NATURVIDENSKABELIGE BASISUDDANNELSE MATEMATIK TRIGNMETRISKE FUNKTINER EFTERÅRET 000 Lid m rignmeriske funkiner Funkinerne cs g sin De rignmeriske funkiner defines i den elemenære maemaik ved

Læs mere

Løsninger til eksamensopgaver på fysik A-niveau 2014. 23. maj 2014

Løsninger til eksamensopgaver på fysik A-niveau 2014. 23. maj 2014 Løningerne er hentet på www.zyankipil.dk Løninger til ekaenopgaver på fyik A-niveau 014. aj 014 Opgave 1: Poelukker a) Den oatte effekt i en leder er givet ved P U I, og Oh 1. lov giver aenhængen elle

Læs mere

Fysik A og Astronomi. Keplers love. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.

Fysik A og Astronomi. Keplers love. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3. Keples lve Skeve af Jacb Lasen.å HTX Slagelse Udgive i samabejde med Main Gyde Pulsen.å HTX Slagelse 1 De Lve På baggund af den danske asnm Tych Bahes bsevaine. De va isæ paallaksemålinge af Mas placeing

Læs mere

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner trin 1 preben bernitt brikkerne til regning & matematik grafer og funktioner, trin 1 ISBN: 978-87-92488-11-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Pensions- og hensættelsesgrundlag for ATP gældende pr. 30. juni 2014

Pensions- og hensættelsesgrundlag for ATP gældende pr. 30. juni 2014 Pensions- og hensæelsesgrundlag for ATP gældende pr. 30. juni 2014 Indhold 1 Indledning 6 1.1 Lovgrundlag.............................. 6 1.2 Ordningerne.............................. 6 2 Risikofakorer

Læs mere

Lindab Comdif. Fleksibilitet ved fortrængning. fortrængningsarmaturer. Comdif er en serie af luftfordelingsarmaturer til fortrængningsventilation.

Lindab Comdif. Fleksibilitet ved fortrængning. fortrængningsarmaturer. Comdif er en serie af luftfordelingsarmaturer til fortrængningsventilation. comfor forrængningsarmaurer Lindab Comdif 0 Lindab Comdif Ved forrængningsvenilaion ilføres lufen direke i opholds-zonen ved gulvniveau - med lav hasighed og underemperaur. Lufen udbreder sig over hele

Læs mere

Dynamik i effektivitetsudvidede CES-nyttefunktioner

Dynamik i effektivitetsudvidede CES-nyttefunktioner Danmarks Saisik MODELGRUPPEN Arbejdspapir Grane Høegh. augus 006 Dynamik i effekiviesudvidede CES-nyefunkioner Resumé: I dee papir benyes effekiviesudvidede CES-nyefunkioner il a finde de relaive forbrug

Læs mere

RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2003

RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2003 RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Eferårssemesre 2003 Generelle bemærkninger Opgaven er den redje i en ny ordning, hvorefer eksamen efer førse semeser af makro på 2.år

Læs mere

Planetatmosfærer. Hvorfor denne forskel?

Planetatmosfærer. Hvorfor denne forskel? Planetatmosfærer De indre planeter Venus og Jorden har tykke atmosfærer. Mars' atmosfære er kun 0,5% af Jordens. Månen har nærmest ingen atmosfære. De ydre planeter De har alle atmosfærer. Hvorfor denne

Læs mere

Øvelse i Ziegler-Nichols med PID-regulator

Øvelse i Ziegler-Nichols med PID-regulator Øvele i Ziegler-Nichol med PID-regulator Formål Forøgoptilling 1-1. orden ytem Procerør Formålet med øvelen er at finde brugbare parametre til regulering af et 1. og 2. orden ytem ved hjælp af Ziegler-Nichol

Læs mere

Modellove ved fysiske modelforsøg

Modellove ved fysiske modelforsøg DANSIS emadag om eksperimenel fluid dynamik (EFD) på FORCE Technology, yngby, 8. okober 003 odellove ved fysiske modelforsøg Chrisian Aage Docen, ph.d. Danmarks Tekniske Universie ariim Teknik Absrac:

Læs mere

Undervisningsmiljøvurdering Style og Wellness College

Undervisningsmiljøvurdering Style og Wellness College Underviningmiljøvurdering 2014 Underøgelen er gennemført via pørgekemaunderøgele Wellne Efterår 2014 10 9 8 7 6 79,2 73,4 88,6 Overordnede reultater 73,2 73,8 74,1 67,7 64,4 57,7 85,5 80,4 96,8 5 4 3 2

Læs mere

Bilag 16 Licensbetingelser mv.

Bilag 16 Licensbetingelser mv. Bilag 16 Licenbetingeler mv. Vejledning: Som led i Leverancen kal Leverandøren løbende bitå Kunden med licentyring. I nærværende bilag kal Leverandøren løbende indætte licenerne til det Programmel med

Læs mere

Opmærksomhed på kropssprog og stemmeføring med særligt henblik på formidling

Opmærksomhed på kropssprog og stemmeføring med særligt henblik på formidling S i l kar ppådi kr op pr og AfDi Mar i as nmor Mål gr upp: 5. 9. k l a Undrviningforløb 5.-9.årgang Sil karp på di kropprog Opmærkomhd på kropprog og mmføring md ærlig hnblik på formidling Tidforbrug:

Læs mere

Figur 1. fs10 Matematik - Tennisklubben

Figur 1. fs10 Matematik - Tennisklubben Figur 1 fs10 Matematik - Tennisklubben 1 Hammel Tennisklub Hammel tennisklub har eksisteret siden år 1904 1.1 Hvor lang tid har klubben eksisteret? Der spilles fra april, til oktober starter. 1.2 Hvor

Læs mere

Tjekkiet Štěpán Vimr, lærerstuderende Rapport om undervisningsbesøg Sucy-en-Brie, Frankrig 15.12.-19.12.2008

Tjekkiet Štěpán Vimr, lærerstuderende Rapport om undervisningsbesøg Sucy-en-Brie, Frankrig 15.12.-19.12.2008 Tjekkie Šěpán Vimr lærersuderende Rappor om undervisningsbesøg Sucy-en-Brie Frankrig 15.12.-19.12.2008 Konak med besøgslæreren De indledende konaker (e-mail) blev foreage med de samme undervisere hvilke

Læs mere

Regning med enheder. Måleenheder... 11 Kg-priser... 13 Tid og hastighed... 15 Valuta... 17. Regning med enheder Side 10

Regning med enheder. Måleenheder... 11 Kg-priser... 13 Tid og hastighed... 15 Valuta... 17. Regning med enheder Side 10 Regning med enheder Måleenheder... 11 Kg-priser... 13 Tid og hastighed... 15 Valuta... 17 Regning med enheder Side 10 Måleenheder Du skal kende de vigtigste måleenheder for vægt, rumfang og længde. Vægt

Læs mere

1. Tryk. Figur 1. og A 2. , der påvirkes af luftartens molekyler med kræfterne henholdsvis F 1. og F 2. , må der derfor gælde, at (1.1) F 1 = P.

1. Tryk. Figur 1. og A 2. , der påvirkes af luftartens molekyler med kræfterne henholdsvis F 1. og F 2. , må der derfor gælde, at (1.1) F 1 = P. M3 1. Tryk I beholderen på figur 1 er der en luftart, hvis molekyler bevæger sig rundt mellem hinanden. Med jævne mellemrum støder de sammen med hinanden og de støder ligeledes med jævne mellemrum mod

Læs mere

Bygningsfilm Isoleringsfilm s Sikringsfilm Autofilm

Bygningsfilm Isoleringsfilm s Sikringsfilm Autofilm Trit punktum for Schioldan Side 28-29 TIRSDAG 15. mart 2011 NS 245. årgang Uge 11 Nr. 72 Kr. 20,00 Sej kamp mod brand i køleolie Klichéfyldt, men flot Side 4-5 Side 24-25 Hårdt pre på læger 159 kilo lettere

Læs mere

På nedenstående billede skal du finde den figur som optræder nøjagtig 3 gange.

På nedenstående billede skal du finde den figur som optræder nøjagtig 3 gange. Navn: Klasse: Materiale ID: PIC.33.1.1.da Lærer: Dato: Klasse: Materiale ID: PIC.33.1.1.da Navn: Klasse: Materiale ID: PIC.33.2.1.da Lærer: Dato: Klasse: Materiale ID: PIC.33.2.1.da Navn: Klasse: Materiale

Læs mere

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 2 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 2 ISBN: 978-87-92488-09-1 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Øresund en region på vej

Øresund en region på vej OKTOBER 2008 BAG OM NYHEDERNE Øresund en region på vej af chefkonsulen Ole Schmid Sore forvenninger il Øresundsregionen Der var ingen ende på, hvor god de hele ville blive når broen blev åbne, og Øresundsregionen

Læs mere

Rumfang af væske i beholder

Rumfang af væske i beholder Matematikprojekt Rumfang af væske i beholder Maila Walmod, 1.3 HTX Roskilde Afleveringsdato: Fredag d. 7. december 2007 1 Fru Hansen skal have en væskebeholder, hvor rumfanget af væsken skal kunne aflæses

Læs mere

Bølgeligningen. Indhold. Udbredelseshastighed for bølger i forskellige stoffer 1

Bølgeligningen. Indhold. Udbredelseshastighed for bølger i forskellige stoffer 1 Udbredelseshastighed for bølger i forskellige stoffer 1 Bølgeligningen Indhold 1. Bølgeligningen.... Udbredelseshastigheden for bølger på en elastisk streng...3 3. Udbredelseshastigheden for longitudinalbølger

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe131-mat/b-31052013 Fredag den 31. maj 2013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Bilbeholdningen i ADAM på NR-tal

Bilbeholdningen i ADAM på NR-tal Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh 4. april 2008 Bilbeholdningen i ADAM på NR-al Resumé: Dee papir foreslår a lade bilbeholdningen i ADAM være lig den officielle bilbeholdning fra Naionalregnskabe.

Læs mere

Prisfastsættelse af fastforrentede konverterbare realkreditobligationer

Prisfastsættelse af fastforrentede konverterbare realkreditobligationer Copenhagen Business School 2010 Kandidaspeciale Cand.merc.ma Prisfassæelse af fasforrenede konvererbare realkrediobligaioner Vejleder: Niels Rom Aflevering: 28. juli 2010 Forfaere: Mille Lykke Helverskov

Læs mere

Berlin eksempel på opgavebesvarelse i Word m/mathematics

Berlin eksempel på opgavebesvarelse i Word m/mathematics Berlin eksempel på opgavebesvarelse i Word m/mathematics 1.1 Gennemsnitsfarten findes ved at dividere den kørte strækning med den forbrugte tid i decimaltal. I regnearket bliver formlen =A24/D24. Resultatet

Læs mere

Pensionsformodel - DMP

Pensionsformodel - DMP Danmarks Saisik MODELGRUPPEN Arbejdspapir Marin Junge og Tony Krisensen 19. sepember 2003 Pensionsformodel - DMP Resumé: Vi konsruerer ind- og udbealings profiler for pensionsformuerne. I dee ilfælde kigger

Læs mere

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer Hypoteetet Hypoteetet og kritike værdier Type og Type fejl Styrke af e tet Sammeligig af to populatioer Kofideiterval for σ tore tikprøver. Hvi X følger e χ -fordelig med frihedgrader, dv. X~χ (), gælder

Læs mere

MAKRO 2 KAPITEL 7: GRÆNSER FOR VÆKST? SOLOW-MODELLEN MED NATURRESSOURCER. - uundværlig i frembringelsen af aggregeret output og. 2.

MAKRO 2 KAPITEL 7: GRÆNSER FOR VÆKST? SOLOW-MODELLEN MED NATURRESSOURCER. - uundværlig i frembringelsen af aggregeret output og. 2. KAPITEL 7: GRÆNSER FOR VÆKST? SOLOW-MODELLEN MED NATURRESSOURCER MAKRO 2 2. årsprøve Klassisk syn: JORDEN/NATUREN er en produkionsfakor, som er - uundværlig i frembringelsen af aggregere oupu og Forelæsning

Læs mere

Undervisningsmaterialie

Undervisningsmaterialie The ScienceMah-projec: Idea: Claus Michelsen & Jan Alexis ielsen, Syddansk Universie Odense, Denmark Undervisningsmaerialie Ark il suderende og opgaver The ScienceMah-projec: Idea: Claus Michelsen & Jan

Læs mere

Øvelse i Ziegler-Nichols metode med PLC

Øvelse i Ziegler-Nichols metode med PLC Øvele i Ziegler-Nichol metode med PLC Formål Formålet med øvelen er at ætte et 1. orden ytem op i FLXlab med en hjemmelavet PIDregulator i et PLC-program. Der ud over kal der efterprøve hvilken forkel

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx122-mat/b-15082012 Onsdag den 15. august 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere