Eksempler på temaopgaver i matematik indenfor geometri

Størrelse: px
Starte visningen fra side:

Download "Eksempler på temaopgaver i matematik indenfor geometri"

Transkript

1 Eksempler på temaopgaver i matematik indenfor geometri Med udgangspunkt i begrebsafklaringen fra dokumentet Matematik og den ny skriftlighed gives her fem eksempler på, hvordan de forskellige opgavetyper, der indgår i en samlet temaopgave, kan se ud indenfor et konkret emneområde: Geometri. Der fokuseres i det følgende på nedenstående typer af opgaver (citat fra dokumentet Matematik og den ny skriftlighed ): Matematikopgaver med forskellig grad af kompleksitet inden for temaet. Opgaverne kan være stillet af læreren eller af andre elever. Der skelnes mellem følgende opgavetyper: - Mindre træningsopgaver, der træner et emne eller en metode. - Tidligere stillede eksamensopgaver eller vejledende eksamensopgaver, der har til formål at vise kravene til eksamen. - Mere krævende matematikopgaver (der ikke kan kategoriseres under en af de øvrige) og som indeholder større grad af kompleksitet end træningsopgaver og eksamensopgaver. Formidlingsopgaver, hvor temaet (eller dele heraf) formidles på forskellig måde afhængig af modtager. Dette kan både være formidling af et emne (fx et referat af et forløb) og formidling af teori eller beviser. Projektrapporter. Disse vil tage udgangspunkt i en problemformulering, som læreren eller eleven udformer. Projekter er af undersøgende karakter og arbejdet vil være mindre lærerstyret end i de øvrige opgavetyper. Projektet kan fx omhandle matematiske ræsonnementer. Projektrapporten bør i sin endelige udformning være en sammenhængende tekst og kan bruges som træning i at skrive matematikholdige tekster, herunder SRO, SRP, AT synopsis og SSO. Projektrapporten vil indeholde følgende dele: - Problemfelt - Redegørelse for metode (numerisk, formel eller syntetisk) - Behandling af problem - Konklusion I forlængelse af præsentationen af opgaverne findes kommentarer til deres indhold m.m. De fem eksempler kan enten bruges som selvstændige temaopgaver eller sættes sammen til en større temaopgave. Dette kan tilrettelægges på flere måder. Eleverne kan på forhånd få en opgavebeskrivelse af den samlede temaopgave, eller de kan få de enkelte dele efterhånden. Et hold Side 1 af 15

2 vil nok ikke vælge at lave alle fem eksempler om geometri, men kun et udvalg af dem. Hvorvidt temaopgaven opbevares i en elektronisk eller fysisk mappe, må ligeledes være op til den enkelte lærer og elev. Side 2 af 15

3 Temaopgave: n kanter Formål: At udvikle og træne logiske, matematiske ræsonnementer. Arbejdsform: Individuelt arbejde med mulighed for samarbejde undervejs. Produkt: Et resumé med formidling samt besvarelse af opgaver. Du skal svare på spørgsmålene i dette dokument. Skriv besvarelserne ind i dokumentet efter spørgsmålene og gem dokumentet på din egen computer. I må gerne arbejde sammen, men du skal skrive selv. Det er vigtigt, at du ikke blot skriver i stikord, men i hele sætninger, når du svarer på spørgsmålene. Du skal altså ikke bare skrive svaret, men huske argumenter for dit svar. Tænk på, at en klassekammerat skal kunne læse svaret, uden at have været igennem det samme forløb som dig. Brug så korrekt matematisk notation, som du kan. Opgaverne skal ikke afleveres samlet, men du skal specielt vise din lærer dine svar på spørgsmål 4, 10 og 12. Og du skal til slut skrive et kort resume af dine spørgsmål (se spørgsmål 16) det skal afleveres. I en trekant er vinkel A=29 og vinkel B=58 1. Bestem størrelsen af den sidste vinkel, dvs. vinkel C Tegn en sekskant enten på et stykke papir eller i et geometriprogram. Del den ind ud fra skitsen nedenfor: 2. Hvad er vinkelsummen i sekskanten? Husk, du skal (stadig) argumentere for dit svar. 3. Gør noget lignende med en otte kant hvad er vinkelsummen her? Du skal nu forsøge at kombinere de to opgaver ovenfor kan du se en sammenhæng mellem dine argumenter? 4. Opstil på baggrund af seks og otte kanten en formel for vinkelsummen i en n kant. Det vil sige, at du angive en formel, som kan bruges til at udregne vinkelsummen i en figur med n kanter. Side 3 af 15

4 5. Brug din formel til at regne vinkelsummen i en 24 kant. En geometrisk figur kaldes regulær, hvis alle vinkler og sider er lige store. 6. Hvordan ser en regulær trekant ud og hvad kaldes den også? 7. Hvor store er vinklerne i en regulær trekant? 8. Hvor store er vinklerne i en regulær sekskant? 9. Hvad med en regulær otte kant? 10. Opstil en formel for den enkelte vinkel i en regulær n kant. Forsøg at bruge en matematisk formel. Du skal nu betragte dine regulære figurer som fliser, der kan lægges i en indgang til et hus. Det viser sig nemlig, at man skal tænke lidt over, hvilke regulære fliser man køber ind, hvis man gerne vil have en indkørsel uden mellemrum mellem fliserne! 11. Kig på billedet ovenfor, og beskriv med ord, hvad sker de steder, hvor fliserne mødes med andre fliser. Hvilke krav er der til flisernes vinkler i disse møder? Du skulle nu gerne have nået frem til, at det ikke er ligegyldigt, hvilken form de regulære fliser har. 12. Hvilke former af regulære n kanter kan fliserne have, for at du kan lykkes med at dække en indgang med ens fliser, uden at der opstår mellemrum mellem fliserne? 13. Kan du bruge 12 kanter til denne opgave? Hvorfor/hvorfor ikke? 14. Kan du udelukke nogen flisetyper? Som en afsluttende del af opgaven skal du nu prøve at lave et mønster af fliser, som ikke kun består af ens regulære fliser. Men kravet er igen: Der må ikke være mellemrum mellem fliserne. Side 4 af 15

5 15. Fliselæg en indkørsel med regulære n kant fliser. Argumenter for, hvilke kombinationer af fliser, du bruger undervejs. 16. Skriv et kort resume (ca. 20 linjer) af dine arbejdsgange, og svar på spørgsmålene Resuméet skal skrives, så det kan læses af en klassekammerat, som ikke har arbejdet med spørgsmålene. Husk de vigtigste punkter. Kommentarer til temaopgaven n kanter Denne temaopgave består primært af små træningsopgaver med en indlagt formidlingsopgave (opgave 16). Temaopgaven har fokus på at redegøre for teori og i mindre grad på at regne matematikopgaver. Temaopgaven indeholder ligeledes et element af undersøgende karakter (spørgsmål 15). Afleveringsdelen er resuméet og understreger dermed temaopgavens placering som en formidlingsopgave. Men der er indlagt kontrolfaser i forbindelse med opgave 4, 10 og 14. Opgaven er primært henvendt til matematik C eller 1. g. Side 5 af 15

6 Temaopgave: Landmåling Formål: Formålet med denne temaopgave er at skabe indsigt i, hvordan trigonometri bliver anvendt i praksis. Arbejdsform: Gruppearbejde. Produkt: Opgaven består af tre dele med hver sit problem med tilhørende underpunkter. Besvarelserne til hver af de tre dele samles i en projektrapport. Husk at gøre rede for metoderne i de forskellige dele ved brug af et passende antal mellemregninger, en forklarende tekst samt en skitse og evt. et billede af situationen. I de opgaver, hvor I selv skal bestemme længder eller højder, kan I med fordel tage billeder (fx med jeres mobiltelefon) og inkludere i rapporten. Billedet kan ikke erstatte en skitse. Materiale: Gyldendals Gymnasiematematik grundbog B1 side 34 til 46 samt udleverede noter fra Knud Erik Nielsen og Esper Fogh, Naturfag for 1. g (HAX data2000) skal ligge til grund for opgavens besvarelse. Bemærk: Træningsopgaver skal ikke med i den endelige temaopgave, men er lektier til den pågældende dag. Del 1: Afstandsmåling med ensvinklede trekanter Litteratur: Nielsen & Fogh: side 188 og 189 Grundbogen: s (se ovenfor) Problemfelt: Hvordan måler man en højde ved brug af ensvinklede trekanter? Træningsopgaver: Efter Nielsen & Fogh opgave 175 side 198. Gengivet med tilladelse fra forlaget. Underpunkter a) Redegør for, hvilken matematik det er nødvendigt at have kendskab til for at besvare problemfeltet? Opskriv nødvendige begreber, formler definitioner, sætninger osv. b) Kom med to eksempler på hvordan man bestemmer en højde. Husk en præcis og uddybende forklaring af metoden, hvor I bruger begreber og sætninger fra del a). c) Hvilke styrker og svagheder er der ved metoden? Side 6 af 15

7 Konklusion: Skriv en sammenhængende konklusion, der indeholder, hvad I er kommet frem til. Husk, at konklusionen skal besvare problemfeltet. Del 2: Afstandsmåling vha. vinkelmåling. Litteratur: Nielsen & Fogh: side 188 og 189 Grundbogen: s (se ovenfor) Problemfelt: Hvordan bestemmer man afstande mellem to punkter og højder af genstande ved at måle vinkler? Træningsopgaver: 192 side 199 i Nielsen & Fogh. (se ovenfor) Efter Nielsen & Fogh opgave 190 og 192 side 199. Gengivet med tilladelse fra forlaget Underpunkter a) Redegør for, hvilken matematik det er nødvendigt at have kendskab for at kunne løse dette problem? Opskriv nødvendige begreber, formler definitioner, sætninger osv. b) Beskriv, hvordan man gør, når man skal bestemme en længde og en højde. Brug en teodolit til at måle vinkler med, og husk en præcis og uddybende forklaring af metoden, hvor I bruger begreber og sætninger fra del a). c) Hvilke styrker og svagheder er der ved metoden? Sammenlign denne metode med metoden i første del. Konklusion: Skriv en sammenhængende konklusion om, hvad I er kommet frem til. Husk, at konklusionen skal svare på problemstillingen. Side 7 af 15

8 Del 3: Tegning af kort ved triangulering. Litteratur: Nielsen & Fogh: side 196 og 197 Grundbogen: s (se ovenfor). Træningsopgaver: Opgave 196 og 200 side 200 i Nielsen & Fogh (se ovenfor). Efter Nielsen & Fogh opgave 196 og 200 side Gengivet med tilladelse fra forlaget. Problemfelt: Hvordan laver man et præcist kort over et område? Underpunkter a) Redegør for, hvad triangulering er. Hvilke matematiske begreber, formler, definitioner osv. er nødvendige at have kendskab til for at forstå, hvad triangulering er? b) Beskriv, hvordan man gør ved at tegne et kort. Husk en præcis og uddybende forklaring af metoden, hvor vigtige begreber fremhæves. c) Hvilke styrker og svagheder er der ved metoden? Sammenlign denne metode med metoderne i de to første dele. Konklusion: Skriv en sammenhængende konklusion om, hvad I er kommet frem til. Husk, at konklusionen skal svare på problemstillingen. Kommentarer til temaopgaven landmåling Denne temaopgave består af tre dele, som tilsammen udgør en projektrapport den følger meget stringent overvejelser om problemfelt, redegørelse for metoder, behandling af problem og konklusion. Formidlingsdelene/ræsonnementet er bundet op til det givne problemfelt og udgør således en del af den undersøgende karakter i projektdelen. Projektrapporten kan sammen med træningsopgaverne udgøre en temaopgave eller indgå med andre opgave i en større temaopgave der også kan pege mere eller mindre frem mod den skriftlige eksamen. Temaopgaven består altså for eleven af træningsopgaverne samt projektrapporten, mens det kun projektrapporten der afleveres og rettes af læreren. Træningsopgaverne kan evt. rettes af andre elever i gruppen eller gennemgås i løbet af timerne. Side 8 af 15

9 Temaopgave: Klassisk geometri Formål I dette forløb skal du forsøge at bruge matematiske metoder til at nå frem til sammenhænge for geometriske figurer. Disse skal formuleres som matematiske sætninger som du skal argumentere for. Produkt I skal i grupper aflevere en temaopgave på ca. 3 sider bestående af svar på arbejdsspørgsmålene nedenfor. Temaopgaven skal danne baggrund for en fremlæggelse, hvor I skal overbevise jeres klassekammerater om de sammenhænge, sætninger og argumenter I har fundet. Arbejdsspørgsmål Konstruer en tilfældig trekant vha. jeres CAS værktøj, og tegn de tre vinkelhalveringslinjer. Deformer trekanten (ved at flytte rundt på dens hjørner), og undersøg, om I kan afsløre en egenskab ved de tre vinkelhalveringslinjer og deres skæringspunkt. Formuler resultatet som en sætning, og overvej, hvorfor det kan passe. Tegn en cirkel med centrum i vinkelhalveringslinjernes skæringspunkt, og juster cirklens radius, så den netop rammer alle tre sider i trekanten (dvs. cirklen tangerer siderne i trekanten). Lav så om på trekantens form (ved at trække i et hjørne), og se, om I kan justere cirklen, så den stadig tangerer alle tre sider. Formuler resultatet som en sætning, og overvej, hvorfor det kan passe. (Tilsvarende spørgsmål om midtnormaler og omskreven cirkel, medianer og højder kan tilføjes, hvis det ønskes eventuelt deles ud på forskellige grupper.) Konstruer en firkant, og forbind de fire siders midtpunkter, så der dannes en ny firkant inden i den første. Deformer den store firkant, og hold øje med den lille. Hvad ser der ud til at gælde for den? Prøv at formulere en sætning, der omhandler denne opdagelse, og overvej, hvorfor den kan passe. Arbejdsform: pararbejde Materialer: Noter om klassisk geometri. Kommentarer til temaopgaven klassisk geometri Denne temaopgave er i udgangspunktet en formidlingsopgave, men har ikke en klassisk opbygning. Den indeholder dog både problemfelt, metoderedegørelse, behandling af problem og konklusioner. Og der er eksperimenterende/undersøgende dele, samt krav til ræsonnement. Side 9 af 15

10 Desuden indeholder temaopgaven en formidlingsopgave, fordi sammenhænge og argumenter skal fremlægges for resten af klassen gennem det nedskrevne. Der kan yderligere indlægges kortere skriveøvelser i den indledende del, f.eks. hurtigskrivning om alt hvad eleverne på forhånd ved om trekanter, og differentiering, hvis dette ønskes. Forud for arbejdet med temaopgaven ligger et kort forløb om klassisk geometri, herunder matematikkens opbygning. Side 10 af 15

11 Temaopgave: Cosinus og sinusrelationer Formål At arbejde med og forstå et geometrisk bevis. At skrive noter for at skabe overblik over bevis. Træning af mundtlig og skriftlig dimension. Materiale Kopieret materiale fra tre forskellige matematikbøger med de to beviser, samt ti udvalgte eksamensopgaver inden for emnet. Arbejdsform Gruppearbejde. Produkt Mundtlige fremlæggelser for resten af klassen med baggrund i en drejebog, som ikke skal afleveres. Besvarelse af udvalgte eksamensopgaver (som uploades til klassens elektroniske platform). Retning og kommentering af en anden gruppes opgavebesvarelser (som sendes tilbage til gruppen, der har udarbejdet den). Arbejdsgang Studielæs de tre beviser, samtidigt med at I tager noter på et stykke papir. Hvilket af de tre beviser foretrækker I? Redegør for, hvorfor I foretrækker dette bevis (denne forklaring skal med i jeres mundtlige fremlæggelse). Gennemarbejd nu jeres udvalgte beviser, så I kan fremlægge det (lav en drejebog ). Udvælg fem opgaver fra materialet, som I ønsker at løse. Klargør argumenterne for, hvorfor I vælger netop disse opgaver. Forklaringen skal stå som indledning på jeres besvarelse. Udarbejd besvarelsen, og upload den til klassens konference. Hent en anden gruppes besvarelse af fem opgaver ned fra konferencen. Ret og kommenter disse opgaver. Gennemlæs kommenteringen af jeres egne besvarelser Kommentarer til temaopgaven cosinus og sinusrelationer Denne temaopgave indeholder mange forskellige dele. Der indgår skriveøvelser (i den indledende del af bevisførelsen), matematikopgaver (tidligere stillede eksamensopgaver), formidlingsopgaver ( drejebogen til fremlæggelsen, redegørelser undervejs). Side 11 af 15

12 Retning og kommentering af andre gruppers opgaver inddrager forskellige dele af ovenstående. Alt efter hvordan man ønsker aflevering og fremlæggelse, kan der skrues på de forskellige dele. Herunder hvor meget, der skal rettes af læreren og af elever. Side 12 af 15

13 Temaopgave: Afstande i plan og rum Formål At skabe overblik over afstandsberegning i plan og rum både med hensyn til beregninger og med hensyn til beviser. Materiale Grundbogens indhold om afstande og afstandsberegning (Jensen, Jessen og Overgård Nielsen: Matema10k A niveau). I skal i gruppen udvælge centrale afstandsberegninger [her kan man som lærer justere, hvad man ønsker skal med]. Desuden skal I vælge en sætning for en afstandsformel, som I ønsker at bevise. Arbejdsform Gruppearbejde. Produkt Skriv en temaopgave, der indeholder oversigt over, hvad I vurderer, der er centrale afstandsberegninger i plan og rum. Rapporten skal indeholde eksempler på afstandsberegninger (enten som opgaver fra bog eller andet eller selvproducerede), og den skal indeholde mindst et eksempel på bevis for sætning for en afstandsformel. Målgruppen for opgaven skal være elever på samme niveau som jer. Rapporten skal være i elektronisk form, så den kan formidles til resten af klassen. Kommentarer til temaopgaven Afstande i plan og rum Denne temaopgave indeholder eksempler på formidlingsopgaver, idet målet er at formidle beviserne. Materialet kan justeres efter ønske. Eleverne kan selv finde eksempler på opgaver, eller de kan få som opgave at konstruere opgaver. Det kan gøre mere eller mindre frit for den enkelte gruppe at vælge sætning, der skal bevises. Denne temaopgave gør det nemt at niveaudifferentiere, da eleverne selv skal vælge, hvilken sætning der skal bevises, og de lægger dermed selv niveauet for temaopgaven og det tilhørende mundtlig eksamensspørgsmål. Det er afgørende, at eleverne får dette at vide på forhånd. Side 13 af 15

14 Eksempler på eksamensspørgsmål til geometri ud fra temaopgaver Følgende eksamensspørgsmål er formuleret ud fra eksemplerne på temaopgaver i geometri. C niveau Geometri Redegør for n kanter på baggrund af din temaopgave n kanter. B niveau Geometri Redegør for landmåling på baggrund af din temaopgave landmåling. B eller A niveau Geometri Redegør for landmåling på baggrund af din temaopgave landmåling. Fremlæg og bevis cosinusrelationen. A niveau Geometri og vektorer Redegør for klassisk geometri på baggrund af din temaopgave klassisk geometri. Udvælg eksempler på sætninger, og fremlæg mindst ét bevis 1. 1 Vi har diskuteret, om kravet i formuleringerne er klare nok. Det er naturligvis afgørende, at læreren grundigt orienterer om, hvordan valg har betydning for karakteren. Desuden er spørgsmålet et eksamensspørgsmål på A niveau. Den enkelte elever skal hjælpes til at vælge et eller flere beviser, som vedkommende magter at fremlægge. Side 14 af 15

15 A niveau Geometri og vektorer På baggrund af din temaopgave afstande i plan og rum skal du redegøre for beregning af afstande i plan og rum. Vælg selv én eller flere sætninger om afstande 1, og bevis den valgte sætning eller de valgte sætninger. Morten Overgård Nielsen, Katja Kofod Svan, Janus Lylloff, Peter Pedersen og Lars Bo Kristensen Side 15 af 15

NY SKRIFTLIGHED I MATEMATIK DEL II

NY SKRIFTLIGHED I MATEMATIK DEL II 1 NY SKRIFTLIGHED I MATEMATIK DEL II Matematiklærerforeningen for gymnasiet har i forlængelse af udviklingsprojekt fra skoleåret 2009/2010 i skoleåret 2010/2011 haft endnu et udviklingsprojekt i ny skriftlighed.

Læs mere

Skriftlige opgaver i matematik Teksttyper og stilladsering. Ved Morten Overgård Nielsen, KVUC

Skriftlige opgaver i matematik Teksttyper og stilladsering. Ved Morten Overgård Nielsen, KVUC Skriftlige opgaver i matematik Teksttyper og stilladsering Ved Morten Overgård Nielsen, KVUC Link til resultaterne fra udviklingsarbejde i matematik http://uvmat.dk/skrift/materialer.htm Alt materiale

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2014/2015, eksamen maj-juni 2015 Institution Kolding HF&VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Vestegnens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Jack

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2015/2016, eksamen maj-juni 2016 Institution Kolding HF&VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2018 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik A Klaus

Læs mere

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin maj-juni 10/11 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold stx Matematik C Trille Hertz Quist 1.c mac Oversigt over gennemførte undervisningsforløb

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Niels Just Mikkelsen mac3 Oversigt over gennemførte undervisningsforløb Forløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) August 2015- juni 2017 ( 1 og 2. År) Rybners HTX Matematik B

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold VUC Lyngby Hf Matematik C Ashuak Jakob France

Læs mere

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever.

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever. År Sommer 2015 Institution Horsens HF & VUC Uddannelse HF2-årigt Fag og Matematik C niveau Lærer Søren á Rógvu Hold 1b Oversigt over forløb Forløb 1 Forløb 2 Forløb 3 Forløb 4 Forløb 5 Forløb 6 Forløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Forår 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Matematik C Rabia Jeelani

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Juni 2013/2014 Institution Frederiksberg hf-kursus Uddannelse Fag og niveau Hf Matematik C Lærer(e) Manisha de Montgomery Nørgård (MAN) og Daniel Christensen (DC) - barselsvikar.

Læs mere

1 Oversigt I. 1.1 Poincaré modellen

1 Oversigt I. 1.1 Poincaré modellen 1 versigt I En kortfattet gennemgang af nogle udvalgte emner fra den elementære hyperbolske plangeometri i oincaré disken. Der er udarbejdet både et Java program HypGeo inkl. tutorial og en Android App,

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2014 Skoleår 2013/2014 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Ny skriftlighed - Matematik

Ny skriftlighed - Matematik Ny skriftlighed - Matematik Indhold Andres tanker og ideer:... 2 Andre nyttige links:... 2 Kompetencer:... 2 Eksempler på opgaver der træner forskellige kompetencer... 3 Eksempel 1: Opgaveløsning med forskellige

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Klasseundervisning. Makkerpar. Individuelt arbejde. få forståelse for og erfaringer med, hvordan man regner med negative tal

Klasseundervisning. Makkerpar. Individuelt arbejde. få forståelse for og erfaringer med, hvordan man regner med negative tal Fagårsplan 13/14 Fag: Matematik Fagområde/ emne Tal og regning Regneregler Periode Mål Eleverne skal: Klasse: 8.a Lærer: LBJ få indblik i ligheder og forskelle mellem naturlige tal, hele tal, rationale

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Årstid/årstal Institution Sommereksamen 2015 VUF - Voksenuddannelsescenter Frederiksberg Uddannelse Hf/hfe/hhx/htx/stx/gsk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2015 Institution Kolding HF og VUC, Kolding Åpark 16, 6000 Kolding Uddannelse Flexhold Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December-januar 15/16 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C

Læs mere

Bemærkninger til den mundtlige årsprøve i matematik

Bemærkninger til den mundtlige årsprøve i matematik Spørgsmål til årsprøve 1v Ma 2008 side 1/5 Steen Toft Jørgensen Bemærkninger til den mundtlige årsprøve i matematik IT-værktøjer Jeg forventer, at I er fortrolige med lommeregner TI-89 og programmerne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2016 Skoleår 2014/2015 (niveau C) og 2015/2016

Læs mere

Formalia AT 2 på Svendborg Gymnasium og HF

Formalia AT 2 på Svendborg Gymnasium og HF Formalia AT 2 på Svendborg Gymnasium og HF AT 2 ligger lige i foråret i 1.g. AT 2 er det første AT-forløb, hvor du arbejder med et skriftligt produkt. Formål Omfang Produktkrav Produktbedømmelse Opgavens

Læs mere

Eksempel på den aksiomatisk deduktive metode

Eksempel på den aksiomatisk deduktive metode Eksempel på den aksiomatisk deduktive metode Et rigtig godt eksempel på et aksiomatisk deduktivt system er Euklids Elementer. Euklid var græker og skrev Elemeterne omkring 300 f.kr. Værket består af 13

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Bodil Krongaard

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 13/14 Institution Vestegnen HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Kirsten

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januer-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus

Læs mere

Undervisningsbeskrivelse for hold h1mac4b5

Undervisningsbeskrivelse for hold h1mac4b5 Undervisningsbeskrivelse for hold h1mac4b5 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution KVUC Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Periode Mål Eleverne skal: 32/33 Få kendskab til opgavetypen og få rutine.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Hf

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Mundtlig eksamen Maj-Juni 2014 Institution VUF Uddannelse Fag og niveau stx (Studenterkursus) Matematik C

Læs mere

Undervisningsbeskrivelse for: hf15b 0813 Matematik C, 2HF

Undervisningsbeskrivelse for: hf15b 0813 Matematik C, 2HF Undervisningsbeskrivelse for: hf15b 0813 Matematik C, 2HF Fag: Matematik C, 2HF Niveau: C Institution: HF og VUC Fredericia (607247) Hold: 1. hel hf B, 1. år af 2 Termin: Juni 2014 Uddannelse: HF Lærer(e):

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 16/17 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Matematik C Lise A.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2016 Institution VUC Vest - Esbjerg Uddannelse Fag og niveau Lærer(e) Hold hf2 Matematik C Willy Højgård

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2014 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold STX Matematik A Jesper

Læs mere

Elevvejledning HF Større skriftlige opgaver Århus Akademi 2007 2. udgave

Elevvejledning HF Større skriftlige opgaver Århus Akademi 2007 2. udgave Vejledning, HF 1 NAVN: KLASSE: Elevvejledning HF Større skriftlige opgaver Århus Akademi 2007 2. udgave Indholdsfortegnelse: 1. Placering af opgaverne s.1 2. Den større skriftlige opgave s.1 3. Generel

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2015 Institution Skive Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik A Niveau A Emil Hartvig emh@skivets.dk 1bhtx13 Oversigt over gennemførte

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår efterår 16, eksamen december 2016 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Progression frem mod skriftlig eksamen

Progression frem mod skriftlig eksamen Progression frem mod skriftlig eksamen Ikke alle skal have 12 Eksamensopgavernes funktion i det daglige og til eksamen Progression i sættet progression i den enkelte opgave Hvornår inddrages eksamensopgaver

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar-maj 16 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Glenn Aarhus

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance Fag: Matematik Hold: 1 Lærer: Andreas Haas Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 33-37 Hele året Hovedvægten er elevernes forståelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2013 Institution Campus Vejle, VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik A Pia Kejlberg

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2012 Institution Uddannelse Fag og niveau VUF - Voksenuddannelsescenter Frederiksberg GSK Matematik

Læs mere

HANS CHRISTIAN HANSEN JOHN SCHOU KRISTINE JESS JEPPE SKOTT GEOMETRI MATEMATIK FOR LÆRERSTUDERENDE 4. 10. KLASSE

HANS CHRISTIAN HANSEN JOHN SCHOU KRISTINE JESS JEPPE SKOTT GEOMETRI MATEMATIK FOR LÆRERSTUDERENDE 4. 10. KLASSE HANS CHRISTIAN HANSEN JOHN SCHOU KRISTINE JESS JEPPE SKOTT MATEMATIK FOR LÆRERSTUDERENDE GEOMETRI 4. 10. KLASSE Hans Christian Hansen, Joh n Schou, Kristine Jess og Jeppe Skott Matematik for lærerstuderende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2014 Institution VUC Vest - Esbjerg Uddannelse Fag og niveau Lærer(e) Hold hf2 Matematik C Willy Højgård

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse 1 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold maj-juni 06 Marie Kruses Skole Hf matematik C Lars Petersen

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

Opgaver hørende til undervisningsmateriale om Herons formel

Opgaver hørende til undervisningsmateriale om Herons formel Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Kommentarer til matematik B-projektet 2015

Kommentarer til matematik B-projektet 2015 Kommentarer til matematik B-projektet 2015 Mandag d. 13/4 udleveres årets eksamensprojekt i matematik B. Dette brev er tænkt som en hjælp til vejledningsprocessen for de lærere, der har elever, som laver

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Mat C Trine Eliasen

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse. Fag:matematik Hold:18 Lærer:ym Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 33-37 Hovedvægten er elevernes forståelse for matematiske begreber.

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Der anvendes ikke blandet tal, men uægte brøker. Ikke så vigtigt (bortset fra beløb). Alle decimaler skal med i mellemregninger.

Der anvendes ikke blandet tal, men uægte brøker. Ikke så vigtigt (bortset fra beløb). Alle decimaler skal med i mellemregninger. Faglige Områder Tal og brøker Der anvendes blandet tal. Der anvendes ikke blandet tal, men uægte brøker. Anvender brøker Anvender både blandet tal og brøker. Antal cifre Der skal afrundes til et passende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleåret 13/14 Institution Herning HF oh VUC Uddannelse Fag og niveau Lærer(e) Hold hf Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Herning HF og VUC (657248) Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C,

Læs mere

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb. Termin Aug 10- jun 11

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb. Termin Aug 10- jun 11 Studieplan Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Aug 10- jun 11 Institution Uddannelse Fag og niveau Lærer(e) Hold Grenaa Tekniske Gymnasium HTX Matematik B1 Klavs Skjold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013/2014 Institution Frederiksberg hf-kursus Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B (hf-enkeltfag)

Læs mere

Interaktiv Whiteboard og geometri

Interaktiv Whiteboard og geometri Interaktiv Whiteboard og geometri Nærværende dokumentation af et undervisningsforløb til undervisning i geometri er blevet til som et resultat af initiativet Spredningsprojektet. Spredningsprojektet er

Læs mere

Trekanter. Frank Villa. 8. november 2012

Trekanter. Frank Villa. 8. november 2012 Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin 2012-2015 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold Stx Matematik A MT 3.a Matematik Oversigt over gennemførte undervisningsforløb Titel 1 Titel

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar-juni, 2013 Institution VUC Vejle Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C HUNI 2HF TmaCK13j

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 14 Institution VUC Thy-Mors Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik niveau C Knud Søgaard

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold HFe Mat C-B Henrik Jessen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer Hold hf Matematik C Dorte Christoffersen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Vest - Esbjerg Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Peter

Læs mere

Det gyldne snit, forløb i 1. g

Det gyldne snit, forløb i 1. g Det gyldne snit, forløb i 1. g Mål - Træne at skrive elementære matematiske tekster på computer inkl. billeder, formler og tabeller - Bruge geometriprogram - Læse en elementær tekst selv om et fagligt

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Termin hvori undervisningen afsluttes: Juni 2017 HANSENBERG

Læs mere

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34 Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 15 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Kristian Møller

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Forår 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold STX Matematik A Bo Løvschall

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2014 Institution VUC Albertslund Uddannelse Fag og niveau Lærer(e) HF Matematik C Maha M. Jassim Hold

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Års- og aktivitetsplan i matematik hold 4 2014/2015

Års- og aktivitetsplan i matematik hold 4 2014/2015 Års- og aktivitetsplan i matematik hold 4 2014/2015 Der arbejdes hen mod slutmålene i matematik efter 10. klassetrin. www.uvm.dk => Fælles Mål 2009 => Faghæfter alfabetisk => Matematik => Slutmål for faget

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2016, skoleåret 15/16 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hf Matematik

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere