Bilag A. Dexia-obligationen (2002/2007 Basis)
|
|
- Ole Toft
- 2 år siden
- Visninger:
Transkript
1 Bilag A Dexia-obligationen (2002/2007 Basis) Også kaldet A.P. Møller aktieindekseret obligation (A/S 1912 B). Dette værdipapir som i teorien handles på Københavns Fondsbørs (omend med meget lille omsætning) er konstrueret som følger: Køber betaler 105 til tid 0. Køber betaler årlige provisioner, hvilket der ses bort fra i det følgende af nemheds hensyn. Køber modtager 100 til tid 5 år. Køber modtager tillige 73% af den gennemsnitlige APM kursstigning, beregnet aritmetetisk med 5 støttepunkter med et års mellemrum, startende fra tid 1. Det ses, at produktet i virkeligheden er en asiatisk option med følgende egenskaber: køber betaler straks 5 køber udlåner 100 i 5 år uden forrentning køber modtager 73% af en asiatisk option med følgende parametre: So=100, X=100, r=6%, vol=30%, T=5, A=5 Idet rente og volatilitet er skønnede værdier, herunder at der naturligvis skal anvendes dels den ved udstedelsen gældende rentestruktur og volatiliteten formodentlig skal beregnes ud fra APM aktiens historiske volatilitet. Både rente og volatilitet er med vilje skønnet højt. Ved de senere beregninger kan prisen for 1 stk. option sættes til: ( 5 + nutidsværdien af 5 års renter af 100 ) / 73% = ( /1,06^5 ) / 73% = 41,47 (regnet før skat og uden inflation). 1 stk asiatisk option, pris 41,47 Som kuriosum nævnes, at det fra bankrådgiveren med speciale i aktieindekserede obligationer i den lokale Lån&Spar (formidler produktet) udtales, at produktet har været en overvældende succes ved salg til private investorer, og at der ikke længere er noget udbud af produktet, angiveligt fordi købere er meget tilfredse med stigningerne i APM aktien.
2 Bilag C Varians ved Antithetic-metoden Ved Antithetic-metoden udtrækkes først en ordinære række af fx M tilfældige tal fra normalfordelingen, X1... Xm. Dernæst anvendes en sekundær række, som ikke længere er tilfældige, men findes ved at skifte fortegn: -X1... Xm. Denne talrække er også et udtræk fra normalfordelingen, da normalfordelingen er symmetrisk omkring 0. De to talrækker benævnes i det følgende med vektorerne:r(x) og R(-X). På baggrund af disse to vektorer simuleres to aktiekurser, og på baggrund heraf beregnes to optionsværdier, benævnt hhv. f [ R(X) ] og f [ R (-X) ]. Når der bruges M tal i hver vektor, svarer det til at der foretages M tidsskridt i Monte Carlo-simulering. Endelig simuleres N gange, hvorved det empiriske gennemsnit bliver en estimator for optionsprisens middelværdi: middelværdi = 1/(2N) * [ f(r(x)_ f(r(x)_n + f(r(-x)_ f(r(-x)_n] Interessen samler sig imidlertid om variansen for denne middelværdi, som jo samtidig er udtryk for præcisionen i Monte Carlo-simuleringen. Imidlertid er denne varians ikke triviel, eftersom de de simulerede værdier ved brug af hhv. vektorerne R(X) og R(-X) er partvist afhængige, hvorfor hyppigt benyttede regneregler for uafhængige stokastiske variable ikke finder anvendelse. I stedet må variansen V regnes helt fra begyndelsen, med følgende simplificering i notation X = f(r(x)), -X = f(r(-x)): V( middelværdien ) = V [ 1/(2N) * ( X_ X_n + -X_ X_n ) ] = 1/(4N^2) * V [ X_ X_n + -X_ X_n ] = 1/(4N^2) * N * V [ X_1 + -X_1 ] = 1/(4N) * V [ X_1 + -X_1 ] = 1/(4N) * [ V(X_1) + V(-X_1) + 2 * Cov (X ; -X) ] = 1/(2N) * V(X_1) + 1/(2N) * Cov (X ; -X) Det ses heraf, at denne varians vil konvergere imod 1/(2N) V(X), såfremt covariansen på de to afhængige optionspriser er tilpas lille i forhold til 1/(2N).
3 Eftersom variansen på en middelværdi beregnet uden brug af Antithetic-metoden er givet ved: 1/N * V (X) ses det, at forholdet i varians ved brug af Antithetic-metoden hhv. uden brug heraf er givet ved: = [ 1/(2N) * V(X) + 1/(2N) * Cov (X ; -X) ] / [ 1/N * V(X) ] = 1/2 + 1/2 * Cov (X;-X) / VX Det ses heraf, at brug af Antithetic-metoden vil give anledning til en reduktion i varians som nøje afhænger af covariansen mellem de to simulerede optionspriser. Eftersom aktiekursen vil bevæge sig i hver sin retning ved Antithetic metoden, vil optionspriserne have negativ covarians, hvorved andet led bliver negativt og det samlede resultat bliver mellem 0 og 50%. Der vil altså ske en reduktion i varians på mellem 50% og 100%. Ønsker man at vurdere effektiviteten ved Antithetic-metoden kan dette altså gøres ved at estimere covariansen for de to vektorer af tilfældige tal, ved brug af den sædvanlige definition for covarians: 1 Cov( X; Y) n n X i X Y i Y i 1 Den estimerede covarians indsættes da i udtrykket ovenfor ( 1/2 + 1/2*Cov(X;-X) ) / VX. Når der ønskes at finde konfidensintervallet for optionspriserne fundet ved Antithetic-metoden tager der udgangspunkt i, at gennemsnittet af to optionspriser, f(r(x)) + f(r(-x)) kan betragtes som en ny og nu uafhængig og identisk fordelt stokastisk variabel (engelsk: idd) hvorfor der ved den centrale middelværdi sætning vil gælde at variablens gennemsnit ved mange simuleringer vil blive assumptotisk normalfordelt. Der kan nu opstilles konfidensintervallet på samme måde, som ved blot at simulere uden brug af Antitheticmetoden, blot bruges altså det empiriske hhv. den empiriske standardafvigelse fra de enkelte simuleringer af optionspriserne gived ved: 1/ 2 * ( f(r(x) + f(r(-x) ), benævnt E og Std: 95% konfidensinterval = E +/- 1,96 * Std/Sqr(Std).
4 Bilag D Indstilling af tidsskridt i model B Simtid = simuleringstid i sek. E = middelværdi i simuleringen Std = standardafvigelse på simuleringerne Cf_low hhv. Cf_high = konfidensintervallet på 98% testniveau L = bredden af konfidensintervallet Tid = optionens varighed Kald = antal simulationer A = antal støttepunkter ved beregning af optionens gennemsnitskurs Step = antal tidsskridt i simulationen AsiaMCa = middelværdi af optionspris ved simuleringer i model A. E 7,43 7,71 7,66 7,93 7,91 7,83 7,81 6,87 7,12 7,08 7,11 7,22 7,11 6,69 Std 8,65 9,02 8,90 8,94 8,84 8,96 9,37 7,74 8,02 8,03 8,02 8,14 7,96 7,74 Cf_low 7,29 7,50 7,37 7,52 7,38 7,17 6,83 6,74 6,94 6,81 6,74 6,72 6,53 5,89 Cf_high 7,57 7,92 7,95 8,35 8,44 8,49 8,78 7,00 7,31 7,34 7,49 7,71 7,70 7,50 L 0,28 0,42 0,59 0,83 1,06 1,32 1,95 0,25 0,37 0,53 0,75 0,98 1,17 1,61 Tid 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 AsiaMCa 7,71 7,71 7,71 7,71 7,71 7,71 7,71 7,17 7,17 7,17 7,17 7,17 7,17 7,17 E 8,77 9,11 9,25 9,47 8,51 9,77 8,79 7,98 8,20 8,72 8,33 8,69 7,98 8,61 Std 11,01 11,36 11,42 11,35 11,01 11,56 11,06 9,88 10,02 10,37 10,10 10,17 9,95 10,30 Cf_low 8,59 8,84 8,87 8,95 7,84 8,92 7,64 7,81 7,96 8,38 7,86 8,08 7,25 7,54 Cf_high 8,95 9,37 9,62 10,00 9,17 10,62 9,94 8,14 8,43 9,06 8,80 9,30 8,72 9,69 L 0,36 0,53 0,75 1,06 1,33 1,70 2,30 0,33 0,47 0,68 0,94 1,22 1,46 2,14 Tid 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 AsiaMCa 9,19 9,19 9,19 9,19 9,19 9,19 9,19 8,40 8,40 8,40 8,40 8,40 8,40 8,40
5 E 10,42 11,03 11,00 10,86 11,18 10,36 10,66 9,42 9,81 9,53 9,57 9,51 9,57 10,52 Std 13,77 14,46 14,29 14,20 14,26 13,35 14,18 12,52 12,66 12,46 12,13 12,68 12,32 12,88 Cf_low 10,20 10,70 10,53 10,20 10,32 9,38 9,19 9,21 9,52 9,12 9,01 8,75 8,67 9,18 Cf_high 10,65 11,37 11,47 11,52 12,04 11,34 12,14 9,62 10,11 9,94 10,14 10,27 10,48 11,86 L 0,45 0,67 0,94 1,32 1,72 1,96 2,95 0,41 0,59 0,82 1,13 1,53 1,81 2,68 Tid AsiaMCa 10,93 10,93 10,93 10,93 10,93 10,93 10,93 9,91 9,91 9,91 9,91 9,91 9,91 9,91 E 12,75 13,40 13,58 13,42 12,56 14,76 13,33 11,66 11,76 11,85 11,90 12,14 11,46 12,38 Std 18,99 19,04 18,98 18,40 17,82 19,37 18,62 17,13 16,75 16,82 16,73 16,66 16,41 17,00 Cf_low 12,44 12,95 12,96 12,57 11,49 13,34 11,39 11,38 11,37 11,30 11,12 11,14 10,26 10,61 Cf_high 13,06 13,84 14,21 14,28 13,63 16,19 15,26 11,94 12,15 12,40 12,68 13,14 12,67 14,15 L 0,62 0,89 1,25 1,71 2,15 2,85 3,87 0,56 0,78 1,11 1,56 2,01 2,41 3,54 Tid AsiaMCa 13,46 13,46 13,46 13,46 13,46 13,46 13,46 11,80 11,80 11,80 11,80 11,80 11,80 11,80 De skraverede celler er der, hvor konfidensintervallerne ikke overlapper, hvilket indikerer for få tidsskridt i simulationen.
Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen
Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:
MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som
MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,
Kvantitative Metoder 1 - Forår Dagens program
Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer
Statistiske modeller
Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder
Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen
Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Note om Monte Carlo metoden
Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.
Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og
Note om Monte Carlo eksperimenter
Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 9. september 003 Denne note er skrevet til kurset Økonometri på. årsprøve af polit-studiet.
Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:
Repetition Stokastisk variabel
Repetition Stokastisk variabel Diskret stokastisk variabel Udfaldsrum endelige eller tællelige mange antal elementer Sandsynlighedsfunktion f(x) er ofte tabellagt Udregning af sandsynligheder P( a < X
Kvantitative Metoder 1 - Efterår Dagens program
Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler
Hjemmeprøve 1 Efterår 2013: Afkast og risiko ved investering i aktier
Hjemmeprøve 1 Efterår 2013: Afkast og risiko ved investering i aktier Udviklingen i OMXC20 aktieindekset 2008 2013 1 1 OMXC20 er et indeks over de 20 mest omsatte aktier på Nasdaq OMX Copenhagen ( Københavns
Kvantitative Metoder 1 - Forår Dagens program
Dagens program Kontinuerte fordelinger Simultane fordelinger Kovarians og korrelation Uafhængighed Betingede fordelinger - Middelværdi og varians - Sammenhæng med uafhængighed 1 Figur 1: En tæthedsfunktion
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på
, i ' 1,...,N ; t ' 1,...,T, - i.i.d.(0,f 2, ), ) ' 0, E(, it. x kjs. œ i,t,s,j,k.
3 Den model, som vi gennemgående skal arbejde med i øvelsen, er»one-way Error Component«Modellen (1EC) Modellen specificeres på følgende måde: y it ' x it $ % µ i %, it, i ' 1,,N ; t ' 1,,T, hvor y it
Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med
Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X
Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006
Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
Valuta-, aktie- og råvareindekserede obligationer
Valuta-, aktie- og råvareindekserede obligationer Finansanalytikerforeningen, 22. november 2005 Svend Jakobsen Institut for regnskab, finansiering og logistik Handelshøjskolen i Århus Indekseret obligation
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater
Note til styrkefunktionen
Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H
Definition. Definitioner
Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Estimation og usikkerhed
Estimation og usikkerhed = estimat af en eller anden ukendt størrelse, τ. ypiske ukendte størrelser Sandsynligheder eoretisk middelværdi eoretisk varians Parametre i statistiske modeller 1 Krav til gode
Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model
Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H
! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion
Dagens program Økonometri 1 Dummy variable 4. marts 003 Emnet for denne forelæsning er kvalitative variable i den multiple regressionsmodel (Wooldridge kap. 7.5-7.6+8.1)! Husk at udfylde spørgeskema 3!
Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3
Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +
Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable
Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen
STATISTIK Skriftlig evaluering, 3. semester, mandag den 6. januar 004 kl. 9.00-13.00. Alle hjælpemidler er tilladt. Opgaveløsningen forsynes med navn og CPR-nr. OPGAVE 1 Et firma tuner biler. Antallet
Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner
Kvantitative Metoder 1 - Forår 2007
Dagens program Estimation: Kapitel 9.1-9.3 Estimation Estimationsfejlen Bias Eksempler Bestemmelse af stikprøvens størrelse Konsistens De nitioner påkonsistens Eksempler på konsistente og middelrette estimatorer
Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.
Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt
Løsninger til kapitel 6
Opgave 6.1 a) 180 200 P ( X < 180) = Φ = Φ( = 0, 1587 b) 220 200 P ( X > 220) = Φ = Φ(1) = 0, 8413 c) 200 200 P ( X > 200) = 1 X < 200) = 1 Φ = ) = 1 0,5 = 0, 5 d) P ( X = 230) = 0 e) 180 200 P ( X 180)
Erhvervsøkonomisk Institut. Vejleder: Henrik Nørholm BILAG. Analyse og prissætning af JB Ti Aktier 2013. I skyggen af en finanskrise
Erhvervsøkonomisk Institut Kandidatafhandling Forfatter: Henrik Gerstrøm (xxxxxx) Vejleder: Henrik Nørholm BILAG Analyse og prissætning af JB Ti Aktier 2013 I skyggen af en finanskrise 1. december 2010
Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)
Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske
Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium
Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,
Opgave nr. 28. Prisfastsættelse af asiatiske optioner på aktier - ved Monte Carlo-simulering foretaget i Excel
H.D.-studiet i Finansiering Hovedopgave forår 004 Opgaveløser: Vejleder: Carsten Holdum Peter Toftager Ejlersen Opgave nr. 8 Prisfastsættelse af asiatiske optioner på aktier - ved Monte Carlo-simulering
Markedsindekseret obligation
Markedsindekseret obligation Bedst-af-3 II - Investering med hovedstolsgaranti Det er en gylden regel inden for investering, at man ofte opnår det bedste resultat, hvis man spreder sine investeringer på
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
3 Stokastiske variable 3.1 Diskrete variable
3 Stokastiske variable 3.1 Diskrete variable Punktsandsnligheden benævnes P(x) = P(X = x). {x, P(x)} er en sandsnlighedsfordeling for den stokastiske variabel, X, hvis 1) P(x) $ 0 for alle værdier af x.
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Forelæsning 8: Inferens for varianser (kap 9)
Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby
Ingen forbrugspanik over hysteriet på aktiemarkederne
ERHVERVSØKONOMISK ANALYSE marts 16 Ingen forbrugspanik over hysteriet på aktiemarkederne OMXC faldt 1 pct. på dage i begyndelsen af 16, og det skabte usikkerhed hos investorerne. Usikkerheden har dog ikke
Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens
Oversigt Oversigt over emner 1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens 2 Konfidensinterval Konfidensinterval for andel Konfidensinterval - normalfordelt stikprøve
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff
Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark
Aktieindekseret obligation knyttet til
Aktieindekseret obligation Danske Aktier Aktieindekseret obligation knyttet til kursudviklingen i 15 førende, danske aktieselskaber Notering på Københavns Fondsbørs 100 % hovedstolsgaranti Danske Aktier
Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable
IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret
Metal 2010 investering i råvarer. 0 % Eksportfinans Metal 2010
Metal 2010 investering i råvarer. 0 % Eksportfinans Metal 2010 Råvarer har længe været et område i vækst, og der er en stigende opmærksomhed rettet mod råvarer som investeringsobjekt. Det skyldes blandt
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk
Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning
Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,
Private Banking Workshop Den Danske Finansanalytikerforening
Private Banking Workshop Den Danske Finansanalytikerforening Asset Allocation Asset Allocation Et hav af forudsætninger Hvad er afkast? Der findes to relevante afkastbegreber, når der arbejdes med Asset
Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger
Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
Note om Monte Carlo eksperimenter
Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 22. februar 2005 Denne note er skrevet til kurset Økonometri 1 på 2. årsprøve af polit-studiet.
Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader
Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af
hvor a og b er konstanter. Ved middelværdidannelse fås videre
Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den
Den todimensionale normalfordeling
Den todimensionale normalfordeling Definition En todimensional stokastisk variabel X Y siges at være todimensional normalfordelt med parametrene µ µ og når den simultane tæthedsfunktion for X Y kan skrives
Det naturvidenskabelige fakultet Sommereksamen 1997 Matematisk-økonomisk kandidateksamen Fag: Driftsøkonomi 2
1 Det naturvidenskabelige fakultet Sommereksamen 1997 Matematisk-økonomisk kandidateksamen Fag: Driftsøkonomi 2 Opgavetekst Generelle oplysninger: Der ses i nedenstående opgaver bort fra skat, transaktionsomkostninger,
Valgkampens og valgets matematik
Ungdommens Naturvidenskabelige Forening: Valgkampens og valgets matematik Rune Stubager, ph.d., lektor, Institut for Statskundskab, Aarhus Universitet Disposition Meningsmålinger Hvorfor kan vi stole på
1. Intoduktion. Undervisningsnoter til Øvelse i Paneldata
1 Intoduktion Før man springer ud i en øvelse om paneldata og panelmodeller, kan det selvfølgelig være rart at have en fornemmelse af, hvorfor de er så vigtige i moderne mikro-økonometri, og hvorfor de
Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Version 1.1
Noter i fejlteori Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen Version 1.1 April 2013 2 Indhold 1 Motivation 3 2 Det matematiske fundament 5 2.1 Lidt sandsynlighedsregning......................
Tidsværdi for gods i Sverige
Tidsværdi for gods i Sverige Mogens Fosgerau 1 og Mikkel Birkeland, COWI 1 Indledning COWI har sammen med INREGIA i Stockholm gennemført en undersøgelse af tidsværdien for gods for SIKA, Statens Institut
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Den flerdimensionale normalfordeling, fordeling af ( X,SSD) Helle Sørensen Uge 9, mandag SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 1 / 16 Program Resultaterne
Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.
Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 4: Diskrete fordelinger Afsnit 4.1-4.2, 4.7: Bernoulli fordeling Binomial fordeling Store Tals Lov (Laws of Averages, Laws of Large Numbers) 1 Bernoulli fordeling Kvantitative Metoder
Opgave nr. 5 og 31. Værdiansættelse af stiafhængige bermuda optioner, ved Least Squares Monte Carlo simulation.
H.D.-studiet i Finansiering Hovedopgave - forår 2009 ---------------- Opgaveløser: Martin Hofman Laursen Joachim Bramsen Vejleder: Niels Rom-Poulsen Opgave nr. 5 og 31 Værdiansættelse af stiafhængige bermuda
Finansiel planlægning
Side 1 af 8 SYDDANSK UNIVERSITET Erhvervsøkonomisk Diplomuddannelse HD 2. del Regnskab og økonomistyring Reeksamen Finansiel planlægning Tirsdag den 12. juni 2007 kl. 9.00-13.00 Alle hjælpemidler er tilladte.
Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning
Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,
Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser
Uge 36 Velkommen tilbage Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl. -2 i Kirkesalen, Studiestræde 38 Øvelser Hold -4 og 6: mandag og onsdag kl. 8-; start 3. september Hold 5: tirsdag
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Landmålingens fejlteori - Lektion 5 - Fejlforplantning
Landmålingens fejlteori Lektion 5 Fejlforplantning - kkb@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/30 Fejlforplantning Landmåling involverer ofte bestemmelse af størrelser som ikke
Hvor: D = forventet udbytte. k = afkastkrav. G = Vækstrate i udbytte
Dec 64 Dec 66 Dec 68 Dec 70 Dec 72 Dec 74 Dec 76 Dec 78 Dec 80 Dec 82 Dec 84 Dec 86 Dec 88 Dec 90 Dec 92 Dec 94 Dec 96 Dec 98 Dec 00 Dec 02 Dec 04 Dec 06 Dec 08 Dec 10 Dec 12 Dec 14 Er obligationer fortsat
Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning
Fejlforplantning Landmålingens fejlteori Lektion 5 Fejlforplantning - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Landmåling involverer ofte bestemmelse af størrelser som ikke kan
Stastistik og Databehandling på en TI-83
Stastistik og Databehandling på en TI-83 Af Jonas L. Jensen (jonas@imf.au.dk). 1 Fordelingsfunktioner Husk på, at en fordelingsfunktion for en stokastisk variabel X er funktionen F X (t) = P (X t) og at
En Introduktion til SAS. Kapitel 5.
En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel
Center for Statistik. Multipel regression med laggede responser som forklarende variable
Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der
Mulige bachelorprojekter
Bachelorprojektformalia Selvstændigt projekt (under vejledning), der involverer litteratursøgning og -studier og rapportskrivning. Ikke (for meget) overlap med (obligatoriske) kurser. Ekstern censur &
Opgavebesvarelse til øvelse 4
Opgavebesvarelse til øvelse 4 Opgave 4.2 Antag at den årlige indkomst for en person er $80.000 samt at efterspørgslen efter penge er givet ved a) Hvad er denne persons pengeefterspørgsel hvis renten er
Reduceret varighed på indeksobligationer bias på BEI
10. november 2009 Reduceret varighed på indeksobligationer bias på BEI Lille kursfølsomhed på indeksobligationer Positiv bias på BEI Ny kursliste og udvidelse af nøgletalsfil Af chefanalytiker Michael
Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??
Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,
1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable
Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
Værktøjer og teknikker til at prioritere risici i internationale projekter: Sensivitetsanalyse og realoptioner.
Værktøjer og teknikker til at prioritere risici i internationale projekter: Sensivitetsanalyse og realoptioner. Kapitel 9 rioritizing Risk: Sensitivity Analysis and Real Options International roject Management
Monte Carlo simulering
Handelshøjskolen i København / Copenhagen Business School Institut for Finansiering Cand.merc.mat studiet Kandidatafhandling Monte Carlo simulering Anvendelse af metoden samt introduktion af de variansreducerende
a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl?
Module 6: Exercises 6.1 To laboranter....................... 2 6.2 Nicotamid i piller..................... 3 6.3 Karakterer......................... 5 6.4 Blodtryk hos kvinder................... 6 6.5
Appendiks A Anvendte test statistikker
Appendiks A Anvendte test statistikker Afhandlingen opdeler testene i henholdsvis parametriske og ikke-parametriske test. De første fire test er parametriske test, mens de ikke-parametriske test udgør
Kvantitative Metoder 1 - Forår 2007
Dagens program Afsnit 3.3-3.5 Varians Eksempel: Forventet nytte Kovarians og korrelation Middelværdi og varians af summer af stokastiske variabler Eksempel: Porteføljevalg 1 Beskrivelse af fordelinger
Kursus 02402/02323 Introducerende Statistik
Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet
Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der
{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}
Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,
enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår
Vedrørende renteeksperimenter i ADAM
Danmarks Statistik MODELGRUPPEN Arbejdspapir* Grane H. Høegh, Tony M. Kristensen og Dan Knudsen 12. september 2012 Vedrørende renteeksperimenter i ADAM Resumé: Når man foretager et rentestød er det vigtigt
Strategi for gældspleje og kapitalforvaltning 2008
Økonomiforvaltningen NOTAT Bilag 1 06-12-2007 Strategi for gældspleje og kapitalforvaltning 2008 Dette notat beskriver kommunens finansielle risikopolitik via den udarbejdede strategi for gældspleje og
Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved
Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,