Ligningsløsning som det at løse gåder

Størrelse: px
Starte visningen fra side:

Download "Ligningsløsning som det at løse gåder"

Transkript

1 Ligningsløsning som det at løse gåder Nedenstående er et skærmklip fra en TI-Nspirefil. Vi ser at tre kræmmerhuse og fem bolsjer balancerer med to kræmmerhuse og 10 bolsjer. Spørgsmålet er hvor mange bolsjer, der er i kræmmerhusene (der er lige mange i dem hver). Du kan trække bolsjer og kræmmerhusene helt fri af vægen ved at trække til siden (henholdsvis til højre og venstre) idet kræmmerhusene trækkes i punktet i midten. Sørg for hele tiden at bringe vægten i balance. Så hvis du fjerner et bolsje i skålen til venstre skal du også fjerne et til højre! Tilsvarende gælder for kræmmerhuse! Antallet er bolsjer i kræmmerhusene er: Bemærk at for at få vægten til fungere kan det være nødvendigt at evaluere formlen nederst til venstre i tns-filen ved at klikke på formlen og trykke ENTER: Øvelse 1 Bestem antallet af bolsjer i kræmmerhusene i de følgende opgaver i tns-filen, hvor kræmmerhusene i hver opgave er pakket forskelligt: Fra ligevægt til ligning 1

2 En ligning er udtryk for at to størrelser er i balance. Man kan som ovenfor forestille sig en gammeldags vægt med to vægtskåle. Vi ser at fem poser balancerer med to poser og 12 terninger men spørgsmålet er hvor mange terninger, der er i hver pose idet der er lige mange terninger i hver. Denne oplysning kan også udtrykkes ved en ligning: 5 pose = 2 pose + 12 Ved at fjerne to poser fra hver vægtskål bevarer vi ligevægten. Altså gælder der: 5 pose 2 pose = 2 pose pose som giver at 3 pose = 12 En tredjedel af det der er på venstre vægtskål, må veje det samme som en tredjedel af det der er på den højre vægtskål. Altså kan vi skalere ned med 3: 3 pose = som giver at pose = 4 Altså er der 4 terninger i hver pose da en pose balancerer med 4 terninger Ovenfor har vi løst en ligning. Lad x være udtryk for antal af terninger i en pose så ligner det en mere traditionel ligning : 5 pose = 2 pose + 12 svarer dermed til ligningen 5 x = 2 x + 12 Dermed er en ligning en formel, der udtrykker at to størrelser (udtryk) er i balance. Hvis vi skal løse ovenstående ligning skal vi altså bestemme den værdi x kan være for at ligningen er sand (stadig i balance). Metoden til at bestemme x-værdien går ud på at isolere x på den ene side at lighedstegnet vi skal altså have x til at stå alene på enten venstre eller højre side af lighedstegnet som vi netop gjorde ved at lade pose stå alene. 2

3 Øvelse 2 På venstre skål ligger tre poser med et ukendt antal terninger sammen med en terning. På højre skål ligger en pose og syv terninger. 1) Ud fra ovenstående oplysninger skal du på den første vægt herunder indtegne antallet af poser og terninger, der er i balance. Bestem herefter antallet af terninger i en pose ved hjælp af nedenstående vægte ved at fjerne poser og terninger mens der bevares ligevægt på vægten. 2) I rækken under vægtene skal du ovenfor skrive de tilsvarende ligninger idet x står for antal af terninger i en pose. Sammenfatter vi ovenstående øvelser ser vi altså at der gælder et balanceprincip: Fjerner vi noget, eller tilføjer vi noget på den ene skål, bliver der ubalance, hvis ikke vi gør præcis det samme på den anden skål. Men foretager vi de samme operationer på begge sider gælder lighedstegnet stadig. Det gælder følgende regler for ligningsløsning: Nr. Regel 1 I en ligning må samme led lægges til eller trækkes fra på hver side af lighedstegnet 2 I en ligning må man gange eller dividere med samme tal på begge sider af lighedstegnet (bare ikke med tallet 0) Øvelse 3 Prøv at forklare følgende billedserie ud fra balanceprincippet og ovenstående regler. Altså skal du forklare hvad der sker billede for billede for at sikre balance: Hvordan forstås lignigen i forhold til poser og terninger Hvad er der trukket fra? 3

4 Lær at løse ligninger med TI-Nspire CAS Trin 1 TI-Nspire CAS kan hjælpe os med at lære at løse ligninger efter balanceprincippet idet målet er at isolere en ukendt størrelse, der indgår i ligningen. Åben TI-Nspire CAS og inddel siden i to ved at vælge det andet layouttype fra ikonen Sidelayout. Indsæt en Beregner-applikation til venstre og en Noter-applikation vil højre: Skriv følgende ligning i Beregner værkstedet og tryk ENTER: Til venstre står vores indtastning og til højre står det evaluerede resultat af vores indtastning som her er det samme! Det er nu en god idé at samle x erne på den ene side af lighedstegnet. Så for at forenkle ligningen kan vi trække 2 x fra på begge sider af lighedstegnet. I anden linje starter vi med at lave en parentes. Placer herefter cursoren inde i parentesen og brug PIL OP tasten på tastaturet en gang for at markere ligningen ovenfor til højre. Tryk herefter på ENTER på tastaturet en gang for at indsætte ligningen i parentesen: Efter parentesen skriver vi nu 2 x for at trække 2 x fra på begge sider af lighedstegnet: VOILA! Vores ligning er blevet forenklet idet vi har samlet x erne på den ene side af lighedstegnet. Bemærk at du i Noter-værkstedet kan skrive hvad du har gjort! Det er nu en god idé at få x erne til at stå alene på den ene side af lighedstegnet. Så for at forenkle ligningen kan vi lægge 3 fra på begge sider af lighedstegnet. I tredje linje laver vi en parentes og henter den evaluerede ligning ovenfor til højre. Efter ligningen skriver vi +3, trykker ENTER for at evaluere ligningen og skriver note til hvad vi har gjort: 4

5 Vi kunne nu godt gætte på et x der løser ligningen 4 x = 10. Men lad os anvende TI-Nspire CAS til at få x til at stå HELT alene på venstre side således at det bliver klart hvad løsningen til ligningen er. For at forenkle ligningen skal vi skalere begge sider passende ned for at få x til at stå alene på højre side af ligningen. Det gør vi ved at dividere med 4 på begge sider af lighedstegnet. Den evaluerede ligning ovenfor divideres med 4 ved at skrive /4 efter parentesen: HURRA, vi har løst ligningen! Eller vi har i hvert fald et bud på et x der løser ligningen. For at sikre os at vi har løst ligningen korrekt skal vi nu lave en kontrol. Erstat 2.5 i den oprindelige ligning i stedet for x og tryk Enter: True betyder sandt hvilket betyder at 2.5 er løsning til ligningen! Øvelse 4 Løs nedenstående ligninger ved hjælp af TI-Nspire CAS som ovenfor: Opgave Ligning Løsning a) 2.5 x + 4 = x b) x = x c) x = 12 x + 10 d) x = 2.3 x + 11 e) f) 6.4 = 4.3 x = x x 5

6 Lær at løse ligninger med TI-Nspire CAS Trin 2 Vi skal nu gerne have indset at ligningsløsning kan betragtes som en dynamisk proces efter ligevægtsprincippet, hvor vi hele tiden anvender modsatte eller omvendte funktioner (operationer) for at forenkle ligningerne for til sidst at have isoleret en ukendt størrelse: 3 ophæves af det modsatte tal +3 2x ophæves af det modsatte led 2x Gange med 4 ophæves af den omvendte operation: division med 4. Dette gælder generelt, også for trigonometriske, eksponentielle og logaritmiske ligninger eller ligninger med potenser og rødder: En bestemt operation ophæves at anvende den omvendte operation på begge sider af lighedstegnet. Øvelse 5 Åben TI-Nspire CAS. Vælg Tastatur som tredje faneblad i venstre sidepanel og vælg herefter TI-Nspire TM CAS med Clickpad med Normal visning. Ud fra tastaturet kan du identificere omvendte regneoperationer idet + tasten ligger under tasten og kvadratrods tegnet ligger på samme tast som kvadratet på x. Udfyld nedenstående tabel over omvendte operationer: Operation Omvendte operation Operation Omvendte operation + - sin(..) - + cos(..) tan(..) : (eller /) e x (..) 2 ln(x).. 10 x (.. ) n Log(x) n.. Vi vil nu med et eksempel vise anvendelse af omvendte operationer. Vi ved fra Pythagoras læresætning af arealerne på kvadraterne på kateterne balancerer med arealet af kvadratet på hypotenusen. Vi får oplyst at en katete er 5 og hypotenusen er 8. Altså har vi følgende balance: x 2 = 8 2 6

7 Hvis vi løser ligningen med hensyn til x bestemmer vi altså længden af den sidste katete. Åben TI-Nspire CAS og inddel siden i tre med hhv. en Beregner, Noter og Geometri applikation. Tegn en skitse af en retvinklet trekant i Geometri værkstedet hvor de oplyste størrelse sættes ind og i Beregner værkstedet opskrives ligningen: For at isolere x 2 på venstre side trækker vi 25 fra på begge sider: At løse ligningen x 2 = 39 svarer til at bestemme det (de) tal der ganget med sig selv giver 39. Den omvendte operation til at kvadrere er at uddrage kvadratroden. Dermed skal vi tage kvadratroden på begge sider af lighedstegnet. Brug lommeregner tastaturet i 3. faneblad i sidepanelet for at indsætte kvadratrodstegnet idet du skal benytte CTRL tasten. Indsæt ligningen ovenfor til højre og skriv eventuelt et decimalpunktum efter tallet 39. Afslut med ENTER for at gennemføre udregningen: De lodrette streger omkring x betyder at den numeriske værdi af x er lig Det svarer til at både x = og x = er løsning til ligningen x 2 = 39. I denne opgave giver det ikke mening at x er negativ idet længden af en katete ikke kan være negativ. Altså er x = løsning til ligningen. Øvelse 6 Brug de omvendte operationer/funktioner til at løse følgende ligninger i en Beregner applikation via lommeregner tastaturet: a) cos(v) = 0.83 b) log(m) = 2.9 c) x 3 = 68 d) e 3 x = 200 7

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Øvelser til Eksamensopgaver i matematik

Øvelser til Eksamensopgaver i matematik Øvelser til Eksamensopgaver i matematik med TI-Nspire CAS ver. 2.0 Udarbejdet af: Brian M.V. Olesen Marts 2010 Indholdsfortegnelse TI-Nspire CAS version 2.0...2 Generelle TIPS & TRICKS (T&T)...3 Eksempel

Læs mere

Simple udtryk og ligninger

Simple udtryk og ligninger Simple udtryk og ligninger 009 Karsten Juul Til eleven Brug blyant og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt at slå op i under dit videre arbejde med

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

Vejledning til Excel 2010

Vejledning til Excel 2010 Vejledning til Excel 2010 Indhold Eksempel på problemregning i Excel... 2 Vejledning til skabelon og opstilling... 3 Indskrivning... 5 Tips til problemregninger... 6 Brøker... 6 Når du skal bruge pi...

Læs mere

Løsning af simple Ligninger

Løsning af simple Ligninger Løsning af simple Ligninger Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul Bogstavregning En indledning for stx og hf 2008 Karsten Juul Dette hæfte træner elever i den mest grundlæggende bogstavregning (som omtrent springes over i lærebøger for stx og hf). Når elever har lært

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

Brug af Word til matematik

Brug af Word til matematik Flex på KVUC, matematik C Brug af Word til matematik Word er et af de gængse tekstbehandlingssystemer der slipper bedst fra det at skrive matematiske formler. Selvfølgelig findes der andre systemer der

Læs mere

Beregning til brug for opmåling, udfoldning og konstruktion

Beregning til brug for opmåling, udfoldning og konstruktion VVS-branchens efteruddannelse Beregning til brug for opmåling, udfoldning og konstruktion Beregning til brug for opmåling, udfoldning og konstruktion Med de trigonometriske funktioner, kan der foretages

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Matematik B Klasse 1.4 Hjemmeopaver

Matematik B Klasse 1.4 Hjemmeopaver Matematik B Klasse 1.4 Hjemmeopaver 1) opgave 336, side 23 Opgaven går ud på at jeg skal finde ud af hvor gamle børnene højst kan være, når forældrene tilsammen er 65 år og de skal være 40 år ældre end

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L SIMULATION 4 2 RENTES REGNING F I NMED N H REGNEARK. K R I S T I A N S E N KUGLE 5 LANDMÅLING 3 MÅLSCORE I HÅNDBO G Y L D E N D A L Faglige mål: Anvende simple geometriske modeller og løse simple geometriske

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

06 Formler i retvinklede trekanter del 2

06 Formler i retvinklede trekanter del 2 06 Formler i retvinklede trekanter del 2 I del 2 udledes (nogle af) de generelle formler, der gælder for sinus, cosinus og tangens i retvinklede trekanter. Sætning 1 For enhver vinkel v gælder der BEVIS

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Introduktion til TI-Nspire 1. Dokumentformat

Introduktion til TI-Nspire 1. Dokumentformat 1 Dokumentformat Åbn TI-Nspire. Første gang man åbner programmet vises som regel et skærmbillede fra en håndholdt lommeregner. Denne visning skiftes til Computer i menuen eller ved ALT-Shift-C. Denne indstilling

Læs mere

5 Ligninger og uligheder

5 Ligninger og uligheder 5 Ligninger og uligheder Faglige mål Kapitlet Ligninger og uligheder tager udgangspunkt i følgende faglige mål: Regler for løsning af ligninger og uligheder: kende reglerne for ligningsløsning og uligheder

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Løsningsforslag Mat B August 2012

Løsningsforslag Mat B August 2012 Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Geometri, (E-opgaver 9b & 9c)

Geometri, (E-opgaver 9b & 9c) Geometri, (E-opgaver 9b & 9c) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER...

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING MANDATFORDELING Dette materiale er lavet som supplement til Erik Vestergaards hjemmeside om samme emne. 1 http://www.matematiksider.dk/mandatfordelinger.html I dette materiale er en række øvelser der knytter

Læs mere

Vejledning til WordMat på Mac

Vejledning til WordMat på Mac Installation: WordMat på MAC Vejledning til WordMat på Mac Hent WordMat for MAC på www.eduap.com Installationen er først slut når du har gjort følgende 1. Åben Word 2. I menuen vælges: Word > Indstillinger

Læs mere

Formelsamling C-niveau

Formelsamling C-niveau Formelsamling C-niveau Maj 2017 Indhold C-niveau 1 Tal og Regnearter 3 1.1 Regnearternes hierarki................................... 3 1.1.1 Regneregler..................................... 3 1.2 Parenteser..........................................

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005)

Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005) Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (005) Indholdsfortegnelse Indholdsfortegnelse... Stamfunktion og integralregning...3 Numerisk integration...3 Areal under

Læs mere

Tekst, tal og formler I et regneark kan man indtaste tekst, tal og formler:

Tekst, tal og formler I et regneark kan man indtaste tekst, tal og formler: Tekst, tal og formler I et regneark kan man indtaste tekst, tal og formler: I cellerne A1, A2 og A3 er der indtastet tekst. Tekst bliver venstrestillet. I cellerne B1 og B2 er der indtastet tal. Tal bliver

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

User s guide til cosinus og sinusrelationen

User s guide til cosinus og sinusrelationen User s guide til cosinus og sinusrelationen Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Matematikbanken.dk WORDMAT - VEJLEDNING - TILRETTET 6. KLASSE.

Matematikbanken.dk WORDMAT - VEJLEDNING - TILRETTET 6. KLASSE. WordMat er en udvidelse til Microsoft Word, som kan køre både på Windows og Mac. Windows-versionen kræver mindst Office 2007, og mac-versionen kræver mindst Office 2011. Du downloader WordMat her: http://goo.gl/wubvvo

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

FlexMatematik B. Introduktion

FlexMatematik B. Introduktion Introduktion TI-89 er fra start indstillet til at åbne skrivebordet med de forskellige applikationer, når man taster. Almindelige regneoperationer foregår på hovedskærmen som fås ved at vælge applikationen

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Aktivitet 1b: Regnehistorie

Aktivitet 1b: Regnehistorie Aktivitet 1b: Regnehistorie Vi tager igen udgangspunkt i en eksamensopgave fra sommeren 014: En regneopskrift består af nogle linjer med en ordre i hver linje. Det tal, du får, når du følger en ordre i

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

VEJLEDNING TIL WORD INDHOLDSFORTEGNELSE. 1. Linjeafstand. side 3. 2. Margener.. side 3. 3. Sidehoved og sidefod... side 4. 4. Sidetal..

VEJLEDNING TIL WORD INDHOLDSFORTEGNELSE. 1. Linjeafstand. side 3. 2. Margener.. side 3. 3. Sidehoved og sidefod... side 4. 4. Sidetal.. VEJLEDNING TIL WORD VEJLEDNING TIL WORD INDHOLDSFORTEGNELSE 1. Linjeafstand. side 3 2. Margener.. side 3 3. Sidehoved og sidefod... side 4 4. Sidetal.. side 5 5. Spalter.... side 5 6. Skifte ordbog.. side

Læs mere

Start-mat. for stx og hf Karsten Juul

Start-mat. for stx og hf Karsten Juul Start-mat for stx og hf 0,6 5, 9 2017 Karsten Juul Start-mat for stx og hf 2017 Karsten Juul 1/8-2017 (7/8-2017) Nyeste version af dette hæfte kan downloades fra http://mat1.dk/noter.htm. Hæftet må benyttes

Læs mere

Afstandsformlen og Cirklens Ligning

Afstandsformlen og Cirklens Ligning Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Trigonometri at beregne Trekanter

Trigonometri at beregne Trekanter Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 )

Læs mere

Introduktion til Calc Open Office med øvelser

Introduktion til Calc Open Office med øvelser Side 1 af 8 Introduktion til Calc Open Office med øvelser Introduktion til Calc Open Office... 2 Indtastning i celler... 2 Formler... 3 Decimaler... 4 Skrifttype... 5 Skrifteffekter... 6 Justering... 6

Læs mere

Modellering af elektroniske komponenter

Modellering af elektroniske komponenter Modellering af elektroniske komponenter Formålet er at give studerende indblik i hvordan matematik som fag kan bruges i forbindelse med at modellere fysiske fænomener. Herunder anvendelse af Grafregner(TI-89)

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

Velkommen til TI-Nspire CAS 2.0 (Lærerversion)

Velkommen til TI-Nspire CAS 2.0 (Lærerversion) Velkommen til TI-Nspire CAS 2.0 (Lærerversion) Når du åbner for TI-Nspire CAS i en standardopsætning ser brugerfladen således ud (hvis ikke, så vælg Dialogboks > Indlæs standardområdet): I midterpanelet

Læs mere

Symbolsprog og Variabelsammenhænge

Symbolsprog og Variabelsammenhænge Indledning til Symbolsprog og Variabelsammenhænge for Gymnasiet og Hf 1000 kr 500 0 0 5 10 15 timer 2005 Karsten Juul Brugsanvisning Du skal se i de fuldt optrukne rammer for at finde: Regler for løsning

Læs mere

ALMINDELIGT ANVENDTE FUNKTIONER

ALMINDELIGT ANVENDTE FUNKTIONER ALMINDELIGT ANVENDTE FUNKTIONER I dette kapitel gennemgås de almindelige regnefunktioner, samt en række af de mest nødvendige redigerings- og formateringsfunktioner. De øvrige redigerings- og formateringsfunktioner

Læs mere

Mattip om. Ligninger 1. Du skal lære: Kan ikke Kan næsten Kan. Hvad en ligning er. Hvordan du kan genkende en ligning

Mattip om. Ligninger 1. Du skal lære: Kan ikke Kan næsten Kan. Hvad en ligning er. Hvordan du kan genkende en ligning Mattip om Ligninger 1 Du skal lære: Hvad en ligning er Kan ikke Kan næsten Kan Hvordan du kan genkende en ligning Ligningsløsning ved gæt og kontrol Reducering og løsning af ligninger 2016 mattip.dk 1

Læs mere

Lærervejledning Matematik 1-2-3 på Smartboard

Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning til Matematik 1-2-3 på Smartboard Materialet består af 33 færdige undervisningsforløb til brug i matematikundervisningen i overbygningen. Undervisningsforløbene

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2 Logik Udsagn Reduktion Ligninger Uligheder Regnehistorier I en trekant er den største vinkel 0 større end den næststørste og denne igen 0 større end den mindste. Find vinklernes gradtal. = og Lig med og

Læs mere

Grundlæggende matematiske begreber del 2 Algebraiske udtryk Ligninger Løsning af ligninger med én variabel

Grundlæggende matematiske begreber del 2 Algebraiske udtryk Ligninger Løsning af ligninger med én variabel Grundlæggende matematiske begreber del Algebraiske udtryk Ligninger Løsning af ligninger med én variabel x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse ALGEBRAISKE UDTRYK... 3 Regnearternes

Læs mere

Grundlæggende færdigheder

Grundlæggende færdigheder Regnetest A: Grundlæggende færdigheder Træn og Test Niveau: 7. klasse Uden brug af lommeregner 1 INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag

Læs mere

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 2 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 2 ISBN: 978-87-92488-09-1 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

matematikhistorie og dynamisk geometri

matematikhistorie og dynamisk geometri Pythagoras matematikhistorie og dynamisk geometri med TI-Nspire Indholdsfortegnelse Øvelse 1: Hvem var Pythagoras?... 2 Pythagoras læresætning... 2 Geometrisk konstruktion af Pythagoræisk tripel... 3 Øvelse

Læs mere

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring Matematik - et grundlæggende kursus Dennis Cordsen Pipenbring 22. april 2006 2 Indhold I Matematik C 9 1 Grundlæggende algebra 11 1.1 Sprog................................ 11 1.2 Tal.................................

Læs mere

Sammensætning af regnearterne

Sammensætning af regnearterne Sammensætning af regnearterne Plus, minus, gange og division... 19 Negative tal... 0 Parenteser og brøkstreger... Potenser og rødder... 4 Sammensætning af regnearterne Side 18 Plus, minus, gange og division

Læs mere

Introduktion til EXCEL med øvelser

Introduktion til EXCEL med øvelser Side 1 af 10 Introduktion til EXCEL med øvelser Du kender en almindelig regnemaskine, som kan være til stort hjælp, når man skal beregne resultater med store tal. Et regneark er en anden form for regnemaskine,

Læs mere

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Løsning MatB - januar 2013

Løsning MatB - januar 2013 Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x 6 2 + 6 > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =]

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...

Læs mere

Projekt 3.7. Pythagoras sætning

Projekt 3.7. Pythagoras sætning Projekt 3.7. Pythagoras sætning Flere beviser for Pythagoras sætning... Bevis for Pythagoras sætning ved anvendelse af ensvinklede trekanter... Opgave 1: Et kinesisk og et indisk bevis for Pythagoras sætning...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Pythagoras og andre sætninger

Pythagoras og andre sætninger Pythagoras og andre sætninger Pythagoras Pythagoras fra den græske ø Samos levede i det 6. århundrede f.v.t. fra ca. 580 til ca. 500. Han lægger som sagt navn til den sætning, vi tidligere har nævnt,

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Enhedscirklen og de trigonometriske Funktioner

Enhedscirklen og de trigonometriske Funktioner Enhedscirklen og de trigonometriske Funktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere

Regneark Excel fortsat

Regneark Excel fortsat Regneark Excel fortsat Indhold SÅDAN TEGNES GRAFER I REGNEARK EXCEL... 1 i Excel 97-2003... 1 I Excel 2007... 1 ØVELSE... 2 I Excel 97-2003:... 2 I Excel 2007... 3 OM E-OPGAVER 12A... 4 Sådan tegnes grafer

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik potenstal og rodtal trin 2 preben bernitt brikkerne til regning & matematik potenstal og rodtal, trin 2 ISBN: 978-87-92488-06-0 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Projekt 8.12 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter

Projekt 8.12 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Projekter: Kapitel 8 Projekt 8. Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Projekt 8. Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Trigonometrien til beregning af

Læs mere

Rettevejledning, FP10, endelig version

Rettevejledning, FP10, endelig version Rettevejledning, FP10, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. I forbindelse med FP10 fremstiller opgavekommissionen

Læs mere