1 α K = A t, (SS1) n + g + δ eller: ln yt =lna t +

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "1 α K = A t, (SS1) n + g + δ eller: ln yt =lna t +"

Transkript

1 Tag Med-Hjem-Eksamen Makroøkonomi,. Årsprøve Efterårssemestret 5 Udleveres mandag den. januar, 6, kl. 10. Afleveres onsdag den 4. januar, 6, senest kl. 10. på: Eksamenskontoret, Center for Sundhed og Samfund (CSS) Det Samfundsvidenskabelige Fakultet, Øster Farimagsgade 5, opg. B, 1. sal, 1353 Denne eksamen består af opgave 1, hvortil hører et datamateriale i form af Tabel til Opgave 1. Tabellen kan findes som Excel regneark på E05/makro.htm. Opgave 1. De rige og de fattige Tabel til opgave 1 indeholder relevante data for 15 af verdens rigeste og 15 af verdens fattigste lande. Definitioner af de indgående variable er givet i tabellen og som kendt fra pensum. For denne opgave skal det lægges til grund, at de medtagne lande og data er repræsentative for hhv. den rigeste og den fattigste del af verden. Opgavens tema er at søge at forstå indkomstforskellene mellem denne verdens rigeste og fattigste lande, herunder at besvare spørgsmål som: Hvor stor en del af indkomstforskellene mellem rig og fattig kan ud fra relevante vækstmodellers steady states forklares som hidrørende fra forskelle i strukturelle parametre som de i Tabel til opgave 1 anførte, og hvor stor en del må (residualt) henføres til forskelle i teknologisk niveau? Er den del, der således må henføres til teknologiske forskelle, af en plausibel størrelsesorden? Én af de modeller, der skal betragtes, er Solow-modellen fra pensumbogens kapitel 5. Denne giver anledning til følgende bestemmelse af indkomst per arbejder i steady state: yt s 1 α = A t, (SS1) n + g + δ eller: ln yt =lna t + α 1 α [ln s ln (n + g + δ)], hvor A t =(1+g) t A 0,ogn + g + δ er antaget at være større end nul. Alle brugte betegnelser er de fra pensum kendte. Der er et par steder set bort fra det negligible led ng. Som sædvanlig kan en rimelig værdi for parametren α, elasticiteten i output mht. fysisk kapital, antages at være omkring 1/3, mens rimelige værdier for g og δ på årsbasis kan sættes til hhv. 0.0 og 0.055, såg + δ er omkring

2 Spørgsmål 1. Diskutér kortfattet hvordan variablen A t kan opfattes i denne model? I pensumbogens kapitel 5 er Solow-modellens steady state-udsigelse testet ved en analyse, hvor der på tværs af et større antal lande (indekseret ved i) er lavet et plot af ln y i mod [ln s i ln (ni )] og i sammenhæng hermed udført en OLS-estimation af regressionsligningen ln y i = γ 0 +γ [ln s i ln (ni )],seFigure5.7. Énantagelse (til diskussion) bag denne analyse var, at de indgående lande havde samme værdi A for variablen A t i år 0. Spørgsmål. Hvilke antagelser lå i øvrigt bag den udførte analyse? På baggrund af lignende antagelser ønskes udfærdiget en tilsvarende analyse på datamaterialet i Tabel til Opgave 1, så analysen kun opfatter de 30 lande i denne tabel. ommentér såvel plot som regressionsanalyse og sammenlign herunder med de tilsvarende resultater fra pensum. Udførogsåetplotafln y i mod 0.5 [ln s i ln (ni )] og indtegn i figuren den ved OLS-estimation bestemte bedst fittende linje gennem punkterne og indtegn ligeledes en sammenligningslinje, som har hældning én og samme afskæring på andenaksen som den bedst fittende linje. ommentér figuren. Diskutér antagelsen om et fælles A for de indgående lande på baggrund af analysen i dette spørgsmål. For at sætte sig ud over antagelsen om et fælles A kan man gå frem som følger: De 15 rige lande i Tabel til opgave 1 slås sammen til den rige verden, og de 15 fattige lande slås sammen til den fattige verden, hvor y, s, s H, u og n for hver af disse verdener beregnes som simple gennemsnit over hhv. de 15 rige lande og de 15 fattige lande. Der opstår således gennemsnitsmål for indkomst per arbejder i hhv. den rige og den fattige verden, y rig og y fat, ligesom der opstår gennemsnitsværdier, s rig, sfat, srig H, sfat H, urig, u fat og n rig, n fat for de strukturelle parametre. Spørgsmål 3. Med den rige og den fattige verden således defineret, med hvilken faktor (hvor mange gange) overstiger indkomst per arbejder i den rige verden indkomst per arbejder i den fattige verden i år 0? Vis at Solowmodellen, under antagelse af at såvel den rige som den fattige verden er i steady state i år 0, indebærer følgende forhold mellem indkomst per arbejder i den rige og den fattige verden: y rig y fat à = Arig A fat s rig s fat! 1 µ n fat , n rig når α sættes til 1/3 og g + δ til hos både rig og fattig. Med hvilken faktor kan forskelle i investeringskvoter i fysisk kapital forklare indkomstforskellen mellem rig og fattig ifølge denne formel? Med hvilken faktor kan forskelle i befolkningsvækstrater forklare indkomstforskellen ifølge samme formel? Med hvilken faktor kan den kombinerede

3 effekt af forskelle i investeringskvoter og forskelle i befolkningsvækstrater forklare indkomstforskellen? Hvilken faktor må herefter residualt henføres til teknologisk forskel, dvs. hvor stor må A rig antagesatværefor,atdefaktiskeindkomstforskellekommer til at passe med Solowmodellens steady state? ommentér resultaterne. Hvis den residualt bestemte faktor A rig fra spørgsmål 3 umiddelbart ser stor ud, kan det være fordi, det estimerede A rig også indeholder indflydelsen fra forskelle i vigtige, udeladte inputs. Det mest oplagte og betydningsfulde input, der ikke er medtaget i Solowmodellen, er humankapital, altså arbejdskraftens dygtighedsgrad som forårsaget af den mængde uddannelse, træning m.m., der er nedlagt i den. Der betragtes derfor en Solowmodel med humankapital, som er kendt fra pensumbogens exercise 9 til kapitel 6. Modellen består af følgende ligninger: Y t = α t (A t hl t ) 1 α h = e ψu t+1 = sy t +(1 δ) t, 0 givet L t+1 =(1+n) L t, A t+1 =(1+g) A t, L 0 givet A 0 givet. Humankapital per arbejder h er her bestemt ved en eksponentiel funktion af det antal uddannelsesår u, hver arbejder har gennemført (antages ens for alle arbejdere), hvor ψ er en given parameter i funktionen. Såvel u som ψ skal betragtes som konstanter for det enkelte land, hvor u kan afvige fra land til land, mens ψ ligesom α antages at være den samme i alle lande. Ellers er notation og model som forklaret i pensumbogen, se den nævnte exercise samt kapitel 5, afsnit 5 ( Growth accounting ). Rimelige parameterværdier er igen α omkring 1/3, samt (på årsbasis) g omkring 0.0 og δ omkring Det skal igen antages, at n + g + δ er større end nul Spørgsmål 4. Der er i pensum argumenteret for, at den eksponentielle form h = e ψu på humankapitalfunktionen og en værdi for ψ på omkring 0.1 er rimelige. Giv en redegørelse for denne argumentation. Udled en bevægelseslov for den ovenfor angivne Solowmodel med humankapital, vis at der er en veldefineret og stabil steady state, og vis at i denne steady state er indkomst per arbejder: yt s 1 α = A t e ψu, (SS) n + g + δ hvor igen A t =(1+g)A t 0, og der er set bort fra det negligible led ng. 3

4 Spørgsmål 5. Steady state-udsigelsen fra den betragtede Solow-model med humankapital ønskes underkastet en empirisk analyse på linje med den, Solow-modellen underkastedes i spørgsmål. Herunder skal følgende udføres på baggrund af datamaterialetitabeltilopgave1: Udarbejdetplotafln y i mod 0.5 [ln s i ln (n i )]+0.1u i, indtegn den ved OLS-estimation bestemte bedst fittende linje og en sammenligningslinje med hældning én og samme skæring med andenaksen. Udfør dernæst en OLS-estimation af en passende lineær regressionsligning, som udtrykker den betragtede models steady state-udsigelse, uden der er lagt bindinger på størrelserne af α og ψ. ommentérfigur og resultater og sammenlign herunder med tilsvarende resultater fra spørgsmål. Det kan igen være oplagt at samle hhv. den rige og den fattige verden til én observation og udføre en analyse for den betragtede Solowmodel med humankapital svarende til den, der udførtes for den almindelige Solowmodel i spørgsmål 3: Spørgsmål 6. Antag at såvel den (samlede) rige som den (samlede) fattige verden var i steady state i henhold til den betragtede Solowmodel med humankapital i år 0. På baggrund heraf ønskes den faktor, hvormed indkomst per arbejder i den rige verden oversteg indkomst per arbejder i den fattige verden i 0 faktoriseret ud på ét bidrag hidrørende fra forskellen i investeringskvoter i fysisk kapital, ét hidrørende fra forskellen i befolkningsvækstrater, ét fra forskellen i uddannelsesomfang samt et residualt bestemt bidrag fra forskellen i teknologisk niveau. Resultaterne ønskes kommenteret. Der er nu ud fra to forskellige modeller opstillet faktormål A rig for, hvor meget af indkomstforskellen mellem rig og fattig, der må henføres til forskelle i andre forhold eller teknologisk niveau. Det kan være vanskeligt umiddelbart at vurdere om de fundne faktorer synes plausible fortolket som udtryk for egentlige forskelle i teknologisk niveau. Til vurdering heraf er følgende metode udviklet. Det antages, at der er en world technology frontier (WTF) betegnet T t, hvis udvikling er givet ved T t+1 =(1+g)T t med en given startværdi T 0. Udviklingen i T t er et resultat af den globale forsknings- og udviklingsindsats og derfor eksogen i forhold til hvert land. Hvert land er så karakteriseret vedenparameterω, der angiver hvor mange år det pågældende lands teknologiniveau ligger efter WTF, dvs. landets teknologiniveau i år t er A t = T t ω. Rent teknisk ændres hver betragtet model, så modelrelationen A t+1 =(1+g) A t, A 0 givet, udgår og erstattes af de to relationer T t+1 =(1+g)T t, T 0 givet og A t = T t ω. Herudover er den pågældende model uændret, og i modellen er ω at betragte som en eksogent givet, landespecifik parameter. Vækstraten g for WTF kan med rimelighed sættes til 0.0. Spørgsmål 7. Redegør for, at når den beskrevne ændring indarbejdes i hver af de ovenfor betragtede modeller, bliver den eneste ændring i modellernes steady state- 4

5 udsigelser, at det A t, der indgår i ligningerne (SS1) og (SS), nu skal sættes til (1+g) t ω T 0 (mod før til (1 + g) t A 0 ). Brug dette samt svarene på spørgsmål 3 og 6 til for hver af modellerne at estimere, hvor mange år mere den fattige verden ligger efter WTF end den rige gør, eller med andre ord, hvor stort det teknologiske implemeteringslag ω fat ω rig er i henhold til den pågældende model. ommentér resultatet specielt med henblik på, om det fundne lag for hver model synes at være af en plausibel størrelsesorden. I pensums kapitel 6 betragtes en anden Solowmodel med humankapital. I denne akkumuleres humankapital ved, at en fast andel s H af BNP lægges til den samlede humankapital i hver periode, mens andelen δ af humankapitalen forsvinder ved nedslidning. Humankapital modelleres således i disse henseender på linje med fysisk kapital, og specielt er der en investeringskvote s H for humankapital, ligesom der er én (s )forfysiskkapital. Modellen giver anledning til følgende steady state-udsigelse: yt s µ ϕ 1 α ϕ 1 α ϕ s H = A t, (SS3) n + g + δ n + g + δ hvor A t =(1+g) t A 0,ogn + g + δ igen er antaget at være større end nul. En rimelig værdi for α, elasticiteten i output mht. fysisk kapital, er fortsat omkring 1/3, mens outputelasticiteten ϕ mht. humankapital med rimelighed ligeledes kan sættes til 1/3. Rimelige værdier for g og δ på årsbasis er fortsat hhv. 0.0 og Spørgsmål 8. Underkast nu denne version af Solowmodellen med humankapital analyser svarende til dem, de to tidligere betragtede modeller er blevet underkastet i spørgsmålene, 3, 5, 6 og 7 ovenfor. ommentér overalt resultaterne. Vurdér specielt om det teknologiske implementeringslag ω fat ω rig mellem rig og fattig, der kan estimeres på basis af den nu betragtede model (passende modificeret med T t =(1+g) t T 0 og A t = T t ω ) synes af en rimelig størrelsesorden. Spørgsmål 9. Giv en vurdering af, hvor langt I/du synes man med den foretagne analyse er kommet i retning af at forstå indkomstforskellene mellem denne verdens rige og fattige lande. 5

Eksamen på Økonomistudiet 2009-I. Makro 2. Udleveres d. 14. januar kl. 10.00 A everes d. 16. januar kl.10.00

Eksamen på Økonomistudiet 2009-I. Makro 2. Udleveres d. 14. januar kl. 10.00 A everes d. 16. januar kl.10.00 Eksamen på Økonomistudiet 2009-I Makro 2 2. årsprøve Udleveres d. 14. januar kl. 10.00 A everes d. 16. januar kl.10.00 Der er fokus på at undgå tilfælde af eksamenssnyd I tilfælde af formodet eksamenssnyd,

Læs mere

Eksamen på Økonomistudiet 2006-II. Tag-Med-Hjem-Eksamen. Makroøkonomi, 2. årsprøve, Økonomien på langt sigt. Efterårssemestret 2006

Eksamen på Økonomistudiet 2006-II. Tag-Med-Hjem-Eksamen. Makroøkonomi, 2. årsprøve, Økonomien på langt sigt. Efterårssemestret 2006 Eksamen på Økonomistudiet 2006-II ag-med-hjem-eksamen Makroøkonomi, 2. årsprøve, Økonomien på langt sigt Efterårssemestret 2006 Udleveres tirsdag den 2. januar 2007, kl. 10.00 Afleveres torsdag den 4.

Læs mere

Rettevejledning til Tag Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2005

Rettevejledning til Tag Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2005 Rettevejledning til Tag Med-Hjem-Eksamen Makroøkonomi,. Årsprøve Efterårssemestret 5 Der var to små slåfejl i opgaveteksten, som ikke skulle have givet anledning til problemer: I modellen midt på side

Læs mere

Slides til Makro 2, Forelæsning 8 24. oktober 2005 Chapter 6

Slides til Makro 2, Forelæsning 8 24. oktober 2005 Chapter 6 SOLOW-MODELLEN MED HUMAN KAPITAL Slides til Makro 2 Forelæsning 8 24 oktober 2005 Chapter 6 Y t = K α t H ϕ t (A tl t ) r t = α w t =(1 α)! α 1! ϕ Kt Ht A t L t A t L t! α Kt Ht A t L t A t L t! ϕ A t

Læs mere

Slides til Makro 2 Forelæsning 10 24. november 2003. Hans Jørgen Whitta-Jacobsen

Slides til Makro 2 Forelæsning 10 24. november 2003. Hans Jørgen Whitta-Jacobsen Slides til Makro 2 Forelæsning 10 24. november 2003 Hans Jørgen Whitta-Jacobsen 0 ENDOGEN VÆKST BASERET PÅ R&D (F&U) I alle vores vækstmodeller - dem vi har set, og den vi skal se - er roden til langsigtet

Læs mere

Slides til Makro 2, Forelæsning 5 24. september 2004 Chapter 5

Slides til Makro 2, Forelæsning 5 24. september 2004 Chapter 5 DEN GENERELLE SOLOWMODEL (SOLOW-MODELLEN) Slides til Makro 2, Forelæsning 5 24 september 2004 Chapter 5 Hans Jørgen Whitta-Jacobsen September 20, 2004 Tilbage til lukket økonomi Basal Solowmodel: Ingen

Læs mere

MAKRO 2 DEN GENERELLE SOLOWMODEL = SOLOW-MODELLEN. Tilbage til lukket økonomi. 2. årsprøve. Forelæsning 3. Kapitel 5

MAKRO 2 DEN GENERELLE SOLOWMODEL = SOLOW-MODELLEN. Tilbage til lukket økonomi. 2. årsprøve. Forelæsning 3. Kapitel 5 DEN GENERELLE SOLOWMODEL = SOLOW-MODELLEN ilbage til lukket økonomi MAKRO 2 2 årsprøve Forelæsning 3 Kapitel 5 Hans Jørgen Whitta-Jacobsen econkudk/okojacob/makro-2-f09/makro Basal Solowmodel: Ingen vækst

Læs mere

MAKRO 2 DEN FULDSTÆNDIGE SOLOW-MODEL. Y t = K α t (A t L t ) 1 α, (A t L t ) 1 α = α. r t = αk α 1. A t L t. w t =(1 α) Kt α L α. A t, 2.

MAKRO 2 DEN FULDSTÆNDIGE SOLOW-MODEL. Y t = K α t (A t L t ) 1 α, (A t L t ) 1 α = α. r t = αk α 1. A t L t. w t =(1 α) Kt α L α. A t, 2. DEN FULDSÆNDIGE SOLOW-MODEL Y t = K α t ( ) 1 α, MAKRO 2 2. årsprøve r t = αk α 1 t ( ) 1 α = α Ã Kt! α 1, Ã! α w t =(1 α) Kt α L α t A 1 α Kt t =(1 α) A t, S t = sy t, Forelæsning 4 Kapitel 5 og 6 K t+1

Læs mere

HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen (Opgave stillet i uge 9 med aflevering i uge 12)

HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen (Opgave stillet i uge 9 med aflevering i uge 12) HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen (Opgave stillet i uge 9 med aflevering i uge 12) Opgave 1. Vurdér og begrund, hvorvidt følgende udsagn er korrekte: 1.1. En provenuneutral

Læs mere

MAKRO 2 DEN BASALE SOLOW-MODEL. Y t = BK α t L 1 α. K t+1 K t = sy t δk t, L 0 givet. L t+1 =(1+n) L t, 2. årsprøve. r t = αb L t.

MAKRO 2 DEN BASALE SOLOW-MODEL. Y t = BK α t L 1 α. K t+1 K t = sy t δk t, L 0 givet. L t+1 =(1+n) L t, 2. årsprøve. r t = αb L t. DEN BASALE SOLOW-MODEL Y t = BK α t L 1 α t MAKRO 2 K t+1 K t = sy t δk t, L t+1 =(1+n) L t, K 0 givet L 0 givet 2. årsprøve Forelæsning 4 Kapitel 3 og 4 Hans Jørgen Whitta-Jacobsen econ.ku.dk/okojacob/makro-2-f07/makro

Læs mere

Hjemmeopgave 3. Makro 1, 2. årsprøve, efteråret 2006 Hans Jørgen Whitta-Jacobsen

Hjemmeopgave 3. Makro 1, 2. årsprøve, efteråret 2006 Hans Jørgen Whitta-Jacobsen Hjemmeopgave 3 Makro 1, 2. årsprøve, efteråret 2006 Hans Jørgen Whitta-Jacobsen Opgavebesvarelse afleveres til holdlærer i uge 49. Opgave 1. Empirisk opgave Redegør for indholdet af Okun s lov. På basis

Læs mere

1. Fravær af stød. Jævn, forudsigelig udvikling i eksogene elementer. 2. Fravær af kortsigtede, nominelle prisstivheder.

1. Fravær af stød. Jævn, forudsigelig udvikling i eksogene elementer. 2. Fravær af kortsigtede, nominelle prisstivheder. MAKRO FOR DET LANGE SIGT MAKRO 2 2. årsprøve Forelæsning 1 Chapter 3 Hans Jørgen Whitta-Jacobsen econ.ku.dk/okojacob/makro-2-f09/makro FÆNOMEN: Trends - ikke fluktuationer! MODEL: 1. Fravær af stød. Jævn,

Læs mere

Hjemmeopgave 3. Makro 1, 2. årsprøve, efteråret 2007 Hans Jørgen Whitta-Jacobsen

Hjemmeopgave 3. Makro 1, 2. årsprøve, efteråret 2007 Hans Jørgen Whitta-Jacobsen Hjemmeopgave 3 Makro 1, 2. årsprøve, efteråret 2007 Hans Jørgen Whitta-Jacobsen Opgavebesvarelse afleveres til holdlærer i uge 46. Opgave 1. Empirisk opgave I det vedlagte figurbilag gælder Figur 1 og

Læs mere

MAKRO 2 ENDOGEN VÆKST BASERET PÅ R&D (F&U) OPSUMMERING:

MAKRO 2 ENDOGEN VÆKST BASERET PÅ R&D (F&U) OPSUMMERING: ENDOGEN VÆKST BASERET PÅ R&D (F&U) OPSUMMERING: MAKRO 2 2. årsprøve I alle vores vækstmodeller - dem vi har set, og den vi skal se - er roden til langsigtet vækst i indkomst pr. mand: Teknologisk udvikling

Læs mere

Denne eksamen består af Opgave 1, hvortil hører et datamateriale i form af Tabel til Opgave 1.

Denne eksamen består af Opgave 1, hvortil hører et datamateriale i form af Tabel til Opgave 1. Tag Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2003 Udleveres mandag den 5. januar, 2004, kl. 0.00 Afleveres onsdag den 7. januar, 2004, senest kl..00 på Eksamenskontoret, St. Kanikkestræde

Læs mere

UGESEDDEL 2 MAKROØKONOMI 1, Henrik Jensen Københavns Universitets Økonomiske Institut Hjemmeside:

UGESEDDEL 2 MAKROØKONOMI 1, Henrik Jensen Københavns Universitets Økonomiske Institut Hjemmeside: UGESEDDEL 2 MAKROØKONOMI 1, 2003 M-Ø Henrik Jensen Københavns Universitets Økonomiske Institut Hjemmeside: www.econ.ku.dk/personal/henrikj/makro1-e2003/ I uge 37 (9/9 og 12/9) har vi gennemgået: I.a. Fakta

Læs mere

Slides til Makro 2, Forelæsning 2 14. september 2006 Chapter 3

Slides til Makro 2, Forelæsning 2 14. september 2006 Chapter 3 MAKRO FOR DET LANGE (VS. KORTE) SIGT Slides til Makro 2, Forelæsning 2 14. september 2006 Chapter 3 Peter Birch Sørensen og Hans Jørgen Whitta-Jacobsen September 7, 2006 FÆNOMEN: Trend i vigtige, aggregerede

Læs mere

Hjemmeopgave 2. Makroøkonomi, 1. årsprøve, foråret 2003 Hans Jørgen Whitta-Jacobsen

Hjemmeopgave 2. Makroøkonomi, 1. årsprøve, foråret 2003 Hans Jørgen Whitta-Jacobsen Hjemmeopgave 2 Makroøkonomi, 1. årsprøve, foråret 2003 Hans Jørgen Whitta-Jacobsen Opgavebesvarelse afleveres til holdlærer i uge 15. Opgave 1 Vurdér og begrund kort, om hvert af følgende udsagn er korrekt,

Læs mere

Eksamen på Økonomistudiet 2009-II Makro 2, anden årsprøve Forårssemestret timers tag med-hjem-eksamen

Eksamen på Økonomistudiet 2009-II Makro 2, anden årsprøve Forårssemestret timers tag med-hjem-eksamen Eksamen på Økonomistudiet 2009-II Makro 2, anden årsprøve Forårssemestret 2009 48 timers tag med-hjem-eksamen Udleveres onsdag den 3. juni 2009, kl. 10.00 fra fagets hjemme- og Absalonside. Afleveres fredag

Læs mere

Test for strukturelle ændringer i investeringsadfærden

Test for strukturelle ændringer i investeringsadfærden d. 6.10.2016 De Økonomiske Råds Sekretariat Test for strukturelle ændringer i investeringsadfærden Dette notat redegør for de stabilitetstest af forskellige tidsserier vedrørende investeringsadfærden i

Læs mere

Eksempel på logistisk vækst med TI-Nspire CAS

Eksempel på logistisk vækst med TI-Nspire CAS Eksempel på logistisk vækst med TI-Nspire CAS Tabellen herunder viser udviklingen af USA's befolkning fra 1850-1910 hvor befolkningstallet er angivet i millioner: Vi har tidligere redegjort for at antallet

Læs mere

Phillipskurven: Inflation og arbejdsløshed

Phillipskurven: Inflation og arbejdsløshed Phillipskurven: Inflation og arbejdsløshed Vores udgangspunkt er AS-kurven, dvs. relationen mellem prisniveau og output så der er ligevægt på arbejdsmarkedet, og der har følgende form P = ( + µ) P e F

Læs mere

Forbrugsfunktionen i BOF5

Forbrugsfunktionen i BOF5 Danmarks Statistik MODELGRUPPEN Arbejdspapir* Henrik Christian Olesen 9. februar 1999 Forbrugsfunktionen i BOF5 Resumé: Papiret gennemgår forbrugsfunktionen i BOF5 (Bank of Finland). Baseret på et discussion

Læs mere

Opgavebesvarelse - Øvelse 3

Opgavebesvarelse - Øvelse 3 Opgavebesvarelse - Øvelse 3 Opgave 3.2 Lad økonomien være karakteriseret ved følgende adfærdsligninger: a) Løs for ligevægts BNP: derved at vi bruger ligningen. b) Løs for den disponible indkomst: c) Løs

Læs mere

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Projekt 4.6 Løsning af differentialligninger ved separation af de variable Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses

Læs mere

Øvelse 11 - Opsummering af den lukkede økonomi

Øvelse 11 - Opsummering af den lukkede økonomi Øvelse 11 - Opsummering af den lukkede økonomi Tobias Markeprand 18. november 2008 X3 Opgave 1 C = 275 + 0, 75(Y T ) (Privat forbrug) I = 75 6, 25i (Investeringer) G = 350 (Offentligt forbrug) T = 387,

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

ØKONOMISKE PRINCIPPER I

ØKONOMISKE PRINCIPPER I ØKONOMISKE PRINCIPPER I 1. årsprøve, 1. semester Forelæsning 14 Pensum: Mankiw & Taylor kapitel 13 Claus Thustrup Kreiner www.econ.ku.dk/ctk/principperi Introduktion Kapitel 13-17: Virksomhedsadfærd og

Læs mere

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2 Økonometri 1 Afslutningsforelæsning 19. maj 2003 Økonometri 1: Afslutningsforelæsning 1 Evalueringer Kun 23 har udfyldt evalueringsskemaerne ud af ca. 120 tilmeldte til eksamen Resultatet kan ses på hjemmesiden

Læs mere

Regneark til bestemmelse af CDS- regn

Regneark til bestemmelse af CDS- regn Regneark til bestemmelse af CDS- regn Teknisk dokumentation og brugervejledning Version 2.0 Henrik Madsen August 2002 Miljø & Ressourcer DTU Danmark Tekniske Universitet Dette er en netpublikation, der

Læs mere

MAKRO 2 ENDOGEN VÆKST

MAKRO 2 ENDOGEN VÆKST ENDOGEN VÆKST MAKRO 2 2. årsprøve Forelæsning 7 Kapiel 8 Hans Jørgen Whia-Jacobsen econ.ku.dk/okojacob/makro-2-f09/makro I modeller med endogen væks er den langsigede væksrae i oupu pr. mand endogen besem.

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression ! ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression Eksempel 1 AT OPSTILLE EN SIMPEL LINEÆR REGRESSIONSMODEL - GENNEMGÅS AF JAKOB Et stort lager måler løbende sine

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

ØKONOMISKE PRINCIPPER I

ØKONOMISKE PRINCIPPER I ØKONOMISKE PRINCIPPER I 1. årsprøve, 1. semester Forelæsning 14 Pensum: Mankiw & Taylor kapitel 13 Claus Thustrup Kreiner www.econ.ku.dk/ctk/principperi Introduktion Kapitel 13-17: Virksomhedsadfærd og

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Bilag 1: Prisudvikling, generelt effektiviseringskrav og robusthedsanalyser FORSYNINGSSEKRETARIATET AUGUST 2014 VERSION 3

Bilag 1: Prisudvikling, generelt effektiviseringskrav og robusthedsanalyser FORSYNINGSSEKRETARIATET AUGUST 2014 VERSION 3 Bilag 1: Prisudvikling, generelt effektiviseringskrav og robusthedsanalyser FORSYNINGSSEKRETARIATET AUGUST 2014 VERSION 3 Indholdsfortegnelse Indledning Prisudvikling 2.1 Prisudviklingen fra 2014 til

Læs mere

MAKROØKONOMI ØKONOMIEN PÅ LANGT SIGT. Mankiw kap. 3, 6, 7 & årsprøve, 2. semester

MAKROØKONOMI ØKONOMIEN PÅ LANGT SIGT. Mankiw kap. 3, 6, 7 & årsprøve, 2. semester MAKROØKONOMI 1. årsprøve, 2. semester Forelæsning 2 Pensum: Mankiw kapitel 3 ØKONOMIEN PÅ LANGT SIGT Mankiw kap. 3, 6, 7 & 8. Husk grundlæggende forudsætning vedr. langt sigt: Priserne er fleksible. Statiske

Læs mere

Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven

Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven 2014-0522 1stx141-MAT-B - eksemplarisk besvarelse Bemærk, at i opgaverne uden hjælpemidler er Maple blot benyttet som tekstbehandling. Til eksamen skal besvarelsen laves med papir og blyant. Opgavetksten

Læs mere

MAKRO 2 MAKRO FOR DET LANGE SIGT FÆNOMEN: MODEL: 2. årsprøve. Forelæsning 2. Chapter 3. Hans Jørgen Whitta-Jacobsen

MAKRO 2 MAKRO FOR DET LANGE SIGT FÆNOMEN: MODEL: 2. årsprøve. Forelæsning 2. Chapter 3. Hans Jørgen Whitta-Jacobsen MAKRO FOR DET LANGE SIGT FÆNOMEN: MAKRO 2 2. årsprøve Forelæsning 2 Chapter 3 Hans Jørgen Whitta-Jacobsen econ.ku.dk/okojacob/makro-2-f07/makro Trend i vigtige, aggregerede økonomiske variable. Fx...?

Læs mere

ENLYNOVERSIGT ØKONOMI 1 (MAKRO DELEN)

ENLYNOVERSIGT ØKONOMI 1 (MAKRO DELEN) ØKONOMI 1 (MAKRO DELEN) ENLYNOVERSIGT Carl-Johan Dalgaard Økonomisk Institut, Københavns Universitet KURSETSFORMÅLIENFIGUR 10,5 10 9,5 9 lngdp 8,5 8 7,5 7 1901 1911 1921 1931 1941 1951 1961 1971 1981 1991

Læs mere

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)

Læs mere

Fagplan for statistik, efteråret 2015

Fagplan for statistik, efteråret 2015 Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

MAKROØKONOMI FRAKAPITEL9:LANGTSIGTVSKORTSIGT. Forskel i antagelser? Implikation for AS-AD diagram? 1. årsprøve, 2. semester.

MAKROØKONOMI FRAKAPITEL9:LANGTSIGTVSKORTSIGT. Forskel i antagelser? Implikation for AS-AD diagram? 1. årsprøve, 2. semester. FRAKAPITEL9:LANGTSIGTVSKORTSIGT MAKROØKONOMI Forskel i antagelser? Implikation for AS-AD diagram? 1. årsprøve, 2. semester Forelæsning 8 Aggregeret efterspørgsel I Pensum: Mankiw kapitel 10 Claus Thustrup

Læs mere

MAKROØKONOMI FRA KAPITEL 10-11: IS-LM-MODELLEN

MAKROØKONOMI FRA KAPITEL 10-11: IS-LM-MODELLEN FRA KAPITEL 10-11: IS-LM-MODELLEN MAKROØKONOMI 1. årsprøve, 2. semester Forelæsning 10 Åben økonomi på kortsigt Pensum: Mankiw kapitel 12 Claus Thustrup Kreiner www.econ.ku.dk/cth/makro.htm Har udledt

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression ! ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression Eksempel 1 AT OPSTILLE EN SIMPEL LINEÆR REGRESSIONSMODEL - GENNEMGÅS AF JAKOB Et stort lager måler løbende sine

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Morten Frydenberg 14. marts 2006

Morten Frydenberg 14. marts 2006 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen

Læs mere

Opgaverne dækkede et bredt udsnit af de faglige mål og centralt kernestof i sociologi, økonomi, politik og international politik.

Opgaverne dækkede et bredt udsnit af de faglige mål og centralt kernestof i sociologi, økonomi, politik og international politik. 02.10.2014 NYT FRA FAGKONSULENTEN I SAMFUNDSFAG, NYHEDSBREV NR. 24 SKRIFTLIG PRØVE I SAMFUNDSFAG 2014 1. Karakteristik af eksamenssæt Der blev stillet fire sæt til skriftlig prøve i samfundsfag 2014: 26.

Læs mere

Det Teknisk-Naturvidenskabelige Basisår Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik E-OPG 3

Det Teknisk-Naturvidenskabelige Basisår Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik E-OPG 3 Det Teknisk-Naturvidenskabelige Basisår 2003-2004 Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik 1 Introduktion E-OPG 3 Dette er den tredje store opgave, som skal danne grundlag

Læs mere

Statistiske Modeller 1: Kontingenstabeller i SAS

Statistiske Modeller 1: Kontingenstabeller i SAS Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, 2005 1 Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel.

Læs mere

Boligmodellens tilpasningstid til en stationær tilstand

Boligmodellens tilpasningstid til en stationær tilstand Danmarks Statistik MODELGRUPPEN Arbejdspapir* Lena Larsen 10. april 1997 Boligmodellens tilpasningstid til en stationær tilstand Resumé: Papiret tager sit udgangspunkt i de multiplikator eksperimenter,

Læs mere

MAKROØKONOMI PENSUM. N. Gregory Mankiw: Macroeconomics, 5. udg. Worth Publishers, New York, årsprøve, 2. semester

MAKROØKONOMI PENSUM. N. Gregory Mankiw: Macroeconomics, 5. udg. Worth Publishers, New York, årsprøve, 2. semester MAKROØKONOMI 1. årsprøve, 2. semester PENSUM N. Gregory Mankiw: Macroeconomics, 5. udg. Worth Publishers, New York, 2003. Forelæsning 1 Pensum: Mankiw kapitel 1 & 2 + Hansen afsnit 1 & 2 C. Thustrup Hansen:

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde...

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde... Modul 13: Exercises 13.1 Substrat.......................... 1 13.2 Polynomiel regression.................. 3 13.3 Biomasse.......................... 4 13.4 Kreatinin.......................... 7 13.5 Læsefærdighed......................

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2016 Institution Videndjurs - Handelsgymnasium Grenaa Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2011 Institution Vejle Handelsskole Uddannelse Fag og niveau HHX Matematik C Lærer(e) LSP ( Liselotte

Læs mere

UGESEDDEL 4 MAKROØKONOMI 1, 2003. Henrik Jensen Københavns Universitets Økonomiske Institut Hjemmeside: www.econ.ku.dk/personal/henrikj/makro1-e2003/

UGESEDDEL 4 MAKROØKONOMI 1, 2003. Henrik Jensen Københavns Universitets Økonomiske Institut Hjemmeside: www.econ.ku.dk/personal/henrikj/makro1-e2003/ UGESEDDEL 4 MAKROØKONOMI 1, 2003 M -Ø Henrik Jensen Københavns Universitets Økonomiske Institut Hjemmeside: www.econ.ku.dk/personal/henrikj/makro1-e2003/ I uge 39 (23/9 og 26/9) har vi gennemgået: I.b.

Læs mere

Øvelse 10. Tobias Markeprand. 11. november 2008

Øvelse 10. Tobias Markeprand. 11. november 2008 Øvelse 10 Tobias Markeprand 11. november 2008 Kapitel 10 i Blanchard omhandler vækst, dvs. økonomien på det lange sigt. For at kunne foretage analyser af vækst og dets årsager må man kunne sammenligne

Læs mere

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde...

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde... Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 13: Exercises 13.1 Substrat........................................ 1 13.2 Polynomiel regression................................

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx103-mat/b-10122010 Fredag den 10. december 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Effekten af indvandring på indfødte danskeres løn og beskæftigelse

Effekten af indvandring på indfødte danskeres løn og beskæftigelse d. 22.05.2017 Brian Krogh Graversen (DØRS) Effekten af indvandring på indfødte danskeres løn og beskæftigelse I kapitlet Udenlandsk arbejdskraft i Dansk Økonomi, forår 2017 analyseres det, hvordan indvandringen

Læs mere

Lighed fremmer tilliden for både rige og fattige

Lighed fremmer tilliden for både rige og fattige Lighed fremmer tilliden for både rige og fattige Hvis man lever i et land med lav ulighed, har man generelt mere tillid til andre mennesker, end hvis man lever i et land med høj ulighed. Dette gælder,

Læs mere

Bemærkninger til den mundtlige årsprøve i matematik

Bemærkninger til den mundtlige årsprøve i matematik Spørgsmål til årsprøve 1v Ma 2008 side 1/5 Steen Toft Jørgensen Bemærkninger til den mundtlige årsprøve i matematik IT-værktøjer Jeg forventer, at I er fortrolige med lommeregner TI-89 og programmerne

Læs mere

Den personlige skattepligtige indkomst

Den personlige skattepligtige indkomst Danmarks Statistik MODELGRUPPEN Arbejdspapir Birgitte A. Mathiesen 10. marts 1994 Den personlige skattepligtige indkomst Resumé: Formålet med dette papir er at reestimere relationen for skattepligtig indkomst.

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK NOVEMBER 008 MATEMATIK A-NIVEAU g Prøve november 008 1. delprøve: 1 time med formelsamling samt. delprøve: timer med alle hjælpemidler Alle delspørgsmål indenfor hver af

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh101-mat/a-27052010 Torsdag den 27. maj 2010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

SOLOW MODELLEN Carl-Johan Dalgaard. Økonomisk Institut, Københavns Universitet. September 2003

SOLOW MODELLEN Carl-Johan Dalgaard. Økonomisk Institut, Københavns Universitet. September 2003 SOLOW MODELLEN Carl-Johan Dalgaard Økonomisk Institut, Københavns Universitet September 2003 1. DISPOSITION 1. Den økonomiske ramme (a) Ramme antagelser og modellens ligninger (b) Modellens løsning 2 1.

Læs mere

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl?

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl? Module 6: Exercises 6.1 To laboranter....................... 2 6.2 Nicotamid i piller..................... 3 6.3 Karakterer......................... 5 6.4 Blodtryk hos kvinder................... 6 6.5

Læs mere

6 Matematisk udledning af prisafsætningsfunktionen

6 Matematisk udledning af prisafsætningsfunktionen 6 Matematisk udledning af prisafsætningsfunktionen 6. Udledning af prisfunktionen ud fra forskellige oplysninger I sidste kapitel gennemgik vi, hvad du forståelsesmæssigt skal vide om omsætningsfunktioner.

Læs mere

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december Kl HFE083-MAB

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december Kl HFE083-MAB HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU Fredag den 12. december 2008 Kl. 09.00 13.00 HFE083-MAB Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med

Læs mere

Uddybende beregninger til Produktivitetskommissionen

Uddybende beregninger til Produktivitetskommissionen David Tønners Uddybende beregninger til Produktivitetskommissionen I forlængelse af mødet i Produktivitetskommissionen og i anledning af e-mail fra Produktivitetskommissionen med ønske om ekstra analyser

Læs mere

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen torsdag den 3. juni 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1 Lineær regression Lad x 1,..., x n være udfald af stokastiske variable X 1,..., X n og betragt modellen M 2 : X i N(α + βt i, σ 2 ) hvor t i, i = 1,..., n, er kendte tal. Konkret analyseres (en del af)

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

Teori og opgaver med udgangspunkt i udvalgte områder i Køge Bugt regionen

Teori og opgaver med udgangspunkt i udvalgte områder i Køge Bugt regionen Modeller af befolkningsudvikling Teori og opgaver med udgangspunkt i udvalgte områder i Køge Bugt regionen Af Mikkel Rønne, Brøndby Gymnasium Forord. Data er udtrukket fra Danmarks Statistiks interaktive

Læs mere

MAKRO 2 SOLOW-MODELLEN FOR (LILLE) ÅBEN ØKONOMI. I lukket økonomi:

MAKRO 2 SOLOW-MODELLEN FOR (LILLE) ÅBEN ØKONOMI. I lukket økonomi: SOLOW-MODELLEN FOR (LILLE) ÅBEN ØKONOMI I lukket økonomi: MAKRO 2 2. årsprøve S t = I t S t I t =0. Eneste kilde til national investering og kapital er national opsparing. God approksimation, hvis internationale

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh121-mat/b-04062012 Mandag den 4. juni 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2014 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Lene Thygesen

Læs mere

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A)

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A) Økonometri 1 Forår 2003 Ugeseddel 13 Program for øvelserne: Gruppearbejde Opsamling af gruppearbejdet og introduktion af SAS SAS-øvelser i computerkælderen Øvelsesopgave 6: Hvem består første årsprøve

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx111-MAT/B-18052011 Onsdag den 18. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

De rigeste er mere tilfredse med livet i lige lande

De rigeste er mere tilfredse med livet i lige lande De rigeste er mere tilfredse med livet i lige lande I de mere lige lande er befolkningen gennemsnitligt mere tilfredse med livet som helhed. Dette skyldes ikke alene, at de fattigste har det bedre i de

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

MAKRO årsprøve. Forelæsning 9. Pensum: Mankiw kapitel 11. Peter Birch Sørensen.

MAKRO årsprøve. Forelæsning 9. Pensum: Mankiw kapitel 11. Peter Birch Sørensen. MAKRO 1 2. årsprøve Forelæsning 9 Pensum: Mankiw kapitel 11 Peter Birch Sørensen www.econ.ku.dk/pbs/courses.htm IS-LM-MODELLEN, BAGGRUND 1. Klassiske modeller: BNP bestemt fra udbudssiden alay = AF ( K,

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Øvelse 17 - Åbne økonomier

Øvelse 17 - Åbne økonomier Øvelse 17 - Åbne økonomier Tobias Markeprand 20. januar 2009 Opgave 21.2 Betragt et land, der opererer under faste valutakurser, med den samlede efterspørgsel og udbud givet ved ligninger (21.1) og (21.2)

Læs mere

Projekt 6.1 Rygtespredning - modellering af logistisk vækst

Projekt 6.1 Rygtespredning - modellering af logistisk vækst Projekt 6.1 Rygtespredning - modellering af logistisk vækst (Projektet anvender værktøjsprogrammet TI Nspire) Alle de tilstedeværende i klassen tildeles et nummer, så med 28 elever i klassen uddeles numrene

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2 Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition

Læs mere