Grafer og grafalgoritmer

Størrelse: px
Starte visningen fra side:

Download "Grafer og grafalgoritmer"

Transkript

1 Algoritmer og Datastrukturer/Datalogi C Forelæsning 15/ Henning Christiansen Grafer og grafalgoritmer Hvad mener vi med en graf? NEJ! Graf: En matematisk abstraktion over ting som er logisk forbundet med hinanden Dagens program: Terminologi og anvendelser Repræsentationer af grafer Algoritme til korteste vej Algoritme til korteste vej med vægte (=omkostninger) Kort om netværksplanlægning o Princippet o Skitser af algoritmer, topologisk sortering, kritisk vej m.v.

2 Grafer, terminologi og baggrund Udspringer af matematisk disciplin Grafteori Leonard Euler 1736: De 7 broer i Königsberg (nu Kaliningrad) Er det muligt at gå en tur, så man passerer alle broer, men ikke mere end én gang? Svaret er nej... beviset baseret på abstraktion = grafer: (Interesserede kan finde bevis på nettet eller i en bog på biblioteket) Grafteori: Stort og spændende område, mange spændende sætninger og anvendelser!

3 Terminologi: En graf består af knuder (vertices); en eller anden (abstrakt mængde) {1,2,3,4} kanter (edges), en binær relation over knuder. {(1,2), (2,3), (2,2),...} Forskellige typer grafer: Ikke-orienteret graf: Kanter uden retning, dvs. (1,2) (2,1) Orienteret graf: Kanter har retning, dvs. (1,2) (2,1), dvs. Pile Vi taler om ind-kanter og ud-kanter for given knude Vægtet graf (typisk orienteret, men også ikke-orienteret): Hver kant har en vægt ( pris omkostning...) Tætte og tynde grafer: Tæt: Alle kan se alle, dvs. antal kanter O(antal-knuder 2 ) Tynd: Hver knude har lille antal kanter til/fra dvs. antal kanter O(antal-knuder) Eksempel 2D-strukturer uden krydsende kanter

4 Fænomener i grafer: En vej (path) fra K1 til Kn: En sekvens af kanter (K1,K2),(K2,K3),...,(Kn-1,Kn). En kreds/cyklus (cycle): En vej fra K til K. Klassifikation af grafer: Acyklisk: ingen kredse Sammenhængende: For vilkårlige knuder K1, K2, altid vej fra K1 til K2 eller omvendt Skov: Aldrig mere end én vej mellem to knuder Træ: en sammenhængende skov :) o NB: et træ har altid én top-knude (burde hedde dets rod, men nu er det altså etableret)

5 Anvendelser Infrastruktur/forsyningslinjer Knuder = Byer/Forbrugere-Producenter /Computere-Servere-Printere Kanter = Veje/Lastbilsruter/Togstrækninger/Vandrør /el-ledninger/datanetforbindelser Interessante spørgsmål: Er grafen sammenhængende (ellers øer) Billigste vej mellem to knuder Billigste vej som involverer givet punktmængde Sammenhængsgrad et mål for forsyningssikkerhed: hvor mange forskellige veje mellem to vilkårlige punkter Rejseplanlægning: Knuder = stationer/stoppesteder/adresser Kanter = trafikforbindelser; pris = rejsetid Ekstra komplikation: Køreplan => ventetid Planlægning af projekter: Knuder = Produkter (=aktivitet afsluttet) Kanter = Hvilke ting forudsætter hvilke andre Hvor lang tid tager aktivitet X? Programstrukturer: Kaldegrafer: Hvilke metoder kalder hvilke? Fejlsøgning, optimering på compiletime UML: Hvilke klasser benytter hvilke og hvordan (f.eks. nedarver fra, indeholder objekter fra,...) Vedligeholdelse af programmer...

6 Repræsentation af grafer Matrice: bool [ 5][ 5] graf Lister: For hver knude, en liste over dens ud-kanter 0: [1, [3, null]] 1: [2, null] 2: null 3: [2, null] 4: [4, null] Eksempel på listerepræsentation af vægtede grafer:

7 Hvordan var det nu med java.util.linkedlist Constructors LinkedList() Constructs an empty list. boolean add(object o) Appends the specified element to the end of this list. Object Object getfirst() Returns the first element in this list. getlast() Returns the last element in this list. int indexof(object o) Returns the index in this list of the first occurrence of the specified element, or -1 if the List does not contain this element. int lastindexof(object o) Returns the index in this list of the last occurrence of the specified element, or -1 if the list does not contain this element. ListIterator Object listiterator(int index) Returns a list-iterator of the elements in this list (in proper sequence), starting at the specified position in the list. remove(int index) Removes the element at the specified position in this list. boolean remove(object o) Removes the first occurrence of the specified element in this list. Object Osv. osv. removefirst() Removes and returns the first element from this list. Object removelast() Removes and returns the last element from this list.

8 Repræsentation med lister benytte i lærebogen (her renset for diverse ekstrainformation og fejlcheck ved indlæsning) Attributter har her tekstlige navne som benyttes ved indlæs og udskriv class Edge // start vertex given by position in list (below) {public Vertex dest; // Second vertex in Edge public double cost; // Edge cost public Edge( Vertex d, double c ) {dest = d; cost = c;}} class Vertex { public String name; // Vertex name public List adj; // Adjacent vertices //liste over ud-kanter public Vertex(String nm){name=nm;adj=new LinkedList( );}} public class Graph {private Map vertexmap = new HashMap( ); // String to Vertex private Vertex getvertex( String vertexname ) {Vertex v = (Vertex) vertexmap.get( vertexname ); if(v==null) {v=new Vertex(vertexName); vertexmap.put(vertexname,v);} return v;} public void addedge( String sourcename, String destname, double cost) {Vertex v=getvertex(sourcename); Vertex w=getvertex(destname); v.adj.add( new Edge( w, cost ) );}

9 public static void main( String [ ] args ) {Graph g = new Graph( ); FileReader fin = new FileReader( args[0] ); //file name BufferedReader graphfile = new BufferedReader( fin ); // Read the edges and insert String line; while( ( line = graphfile.readline( ) )!= null ) {StringTokenizer st = new StringTokenizer( line ); String source = st.nexttoken( ); String dest = st.nexttoken( ); int cost = Integer.parseInt( st.nexttoken( ) ); g.addedge( source, dest, cost );}; System.out.println( "File read..." ); System.out.println( g.vertexmap.size( ) + " vertices" );... }

10 Korteste vej mellem to knuder beregner korteste veje fra startknude til alle andre knuder a la princippet i dynamisk programmering; vi har måske brug for at gå via andre knuder Version 1: Orienterede grafer uden vægte; vejlængde = antal kanter. Datastruktur: hver knude tilføjes hjælpevariable: double dist; //hidtil bedst fundne afstand fra start; init=infinity Vertex previous; // Previous vertex on shortest path; init=null Metode clearall, som initialiserer alle hjælpevariable i graf global kø q over knuder som skal besøges. Princip i algoritme: Givet knude kalde start. Først besøges start; Så besøges alle knuder i afstand 1 fra start dvs. alle som kan nås via én kant fra start Dernæst alle knuder i afstand 2 fra start; dvs. alle som kan nås via én kant fra dem i forrige skridt, dog ikke dem som allerede har været besøgt! osv.

11

12 Implementation i Java public void unweighted( String startname ) { clearall( ); Vertex start = (Vertex) vertexmap.get( startname ); LinkedList q = new LinkedList( ); q.addlast( start ); start.dist = 0; while(!q.isempty( ) ) { Vertex v = (Vertex) q.removefirst( ); for( Iterator itr = v.adj.iterator( ); itr.hasnext( ); ) { Edge e = (Edge) itr.next( ); Vertex w = e.dest; if( w.dist == INFINITY ) { w.dist = v.dist + 1; w.prev = v; q.addlast( w );}}}} Sluttilstand: Alle knuder med påskrevet afstand fra start. Incl. dem som ikke kan nås fra start: INFINITY

13 Korteste vej med vægte, Dijkstras algoritme Princip, som før men ekstra komplikation i og med ikke nok med besøgt/ikke besøgt vægt for knude kan tælles ned flere gange Vi skelner mellem færdigbehandlede knuder ( visited ) ufærdige naboer til færdigbehandlede knuder ( unseen ) For at generalisere algoritmen fra før bruger vi en prioritetskø, som indeholder den sidste slags. Alle knuder tildeles fra start afstand fra startknude = uendelig. Abstrakt algoritme: indsæt start-knude med afstand=0 i kø; while( der-er-flere-kø ) { lad v = knuden i køen med mindst afstand... v fjernes fra køen; for alle v s naboer w, som ikke allerede er færdigbehandlede, { hvis v.afstand + længde(v--> w) < w.afstand så { w.afstand= v.afstand + længde(v--> w); sæt w i kø (hvis den ikke allerede er der; } notér v som færdigbehandlet }}

14 Hvorfor virker den? Lad os formulere et matematisk induktionsbevis over antal gennemløb af while-løkken: Hypotesen: Afstand for alle færdigbehandlede er korrekt, og Afstand for ufærdige nabo w = lgd. af korteste vej i delgraf som udover w kun indeholder færdigbehandlede. Induktionsstart, lad os vælge når startknuden er færdigbehandlet: c1 c1 start 0 c2 c2 c4 c3 c3 OK! c4 Antag nu at algoritmen har kørt korrekt op til skridt k: v Skridt k+1: Lad v være hvid knude med mindst vægt: v s naboers vægte justeres (måske) v forfremmes til færdigbehandlet

15 1. Redegøre for at v s afstand D er den mindst mulige. Men kan der være en anden vej fra start til v, som er billigere? Per induktionshypotese del 2, kan der ikke være en anden vej grå->grå->...->grå->v. Ergo må en sådan vej P være af formen... -> hvid -> grå. Kald denne hvide v1 og dens noterede afstand D1. Udfra valget af v må vi have D1 D. Kan længden af P = D1 + noget-positivt så være mindre end D?? Nej vel? Modstrid! 2. Redegøre for at de nye afstande for v s naboer er korteste vej i delgrafen bestående af de grå nu udvidet med v. Hvis en sådan nabo w får talt sin vægt ned, så er det netop fordi ny vej via v er kortere end tidligere grå->grå->...->grå-> w. Q.E.D.

16 Bogens algoritme i Java: Prioritetskøen implementeres lidt snusket med BinaryHeap... (NB: ikke i Javas std. pakker) BinaryHeap er en datastruktur, med underligt navn, hvis indmad vi ikke kender men som implementerer metoderne insert(comparable x) Comparable deletemin( ) hvor Min er bestemt ved objekternes compareto. Problem ved denne BinaryHeap: Objekternes rækkefølge bestemmes på indsættelsestidspunktet. Dvs. hvis objekt ændres undervejs, så det påvirker resultat af compareto, opfører deletemin sig ikke korrekt!!! Teknik (læs: hæsligt bøjet søm): I algoritmen ændres knudernes afstand altid nedad Vi vælger altid knude med mindst afstand Når knude er valgt, sættes den scratch felt = 1 (init=0). Hvis en knude med scratch =1 fremkommer ved deletemin, ignoreres den. Følgende Path objekter indsættes i BinaryHeap en_ class Path implements Comparable { public Vertex dest; // w public double cost; // d(w) public Path( Vertex d, double c ) {dest = d; cost = c;} public int compareto( Object rhs ) { double othercost = ((Path)rhs).cost; return cost < othercost? -1 : cost > othercost? 1 : 0;}}

17 Dijkstras algoritme for korteste vej i vægtede grafer ved brug af BinaryHeap : public void dijkstra( String startname ) { PriorityQueue pq = new BinaryHeap( ); Vertex start = (Vertex) vertexmap.get( startname ); clearall( ); pq.insert( new Path( start, 0 ) ); start.dist = 0; int nodesseen = 0; while(!pq.isempty( ) && nodesseen < vertexmap.size( ) ) {Path vrec = (Path) pq.deletemin( ); Vertex v = vrec.dest; if( v.scratch!= 0 ) continue; // already processed v v.scratch = 1; nodesseen++; for( Iterator itr = v.adj.iterator( ); itr.hasnext( ); ) { Edge e = (Edge) itr.next( ); Vertex w = e.dest; double cvw = e.cost; if( w.dist > v.dist + cvw ) { w.dist = v.dist +cvw; w.prev = v; pq.insert( new Path( w, w.dist ) );}}}}

18 Acykliske grafer Typisk anvendelse: Planlægning : tagspær 1: lægter 2: tagsten 3: rejsegilde A --> B: A forudsætter B Acykliske grafer nemmere at programmere om: man kommer aldrig tilbage til samme sted! Eksempel: Topologisk sortering at ordne knuderne i en graf i rækkefølge, så afhængigheder er overholdt. tagspærene skal på før lægterne hvorvidt du sætter vinduer i før eller efter tagstenene er ligegyldigt Algoritme som udskriver knuderne i topologisk sorteret rækkefølge G = vor graf; while(flere-knuder-tilbage) { find knude V med nul indgående kanter; //findes fordi G acyklisk udskriv V; fjern v og alle dens udgående kanter fra G; }

19 Bogens algoritme i Java (udsnit af fig ) (fig blander top.sort. med en kortestevej algoritme) Princip: hver knudes scratch benyttes som tæller for antal ind-kanter der bruges en kø til at holde de knuder som på givet tidspunkt har 0 ind-kanter LinkedList q = new LinkedList( ); // Compute the indegrees Collection vertexset = vertexmap.values( ); for( Iterator vsitr = vertexset.iterator( ); vsitr.hasnext( ); { Vertex v = (Vertex) vsitr.next( ); for( Iterator witr = v.adj.iterator( ); witr.hasnext( ); ) ( (Edge) witr.next( ) ).dest.scratch++;} // Enqueue vertices INITIALLY of indegree zero for( Iterator vsitr = vertexset.iterator( ); vsitr.hasnext( ); ) { Vertex v = (Vertex) vsitr.next( ); if( v.scratch == 0 ) {q.addlast( v ); UDSKRIV v; } ; // Loop: Remove 0-nodes from queue and count down in-degrees while(!q.isempty( )) { Vertex v = (Vertex) q.removefirst( ); for( Iterator itr = v.adj.iterator( ); itr.hasnext( ); ) { Edge e = (Edge) itr.next( ); Vertex w = e.dest; if( --w.scratch == 0 ) {q.addlast( w );; UDSKRIV v; }}}

20 Eksempel fra bogen

21 Korteste vej for acykliske grafer Tricket: Knuderne besøges i rækkefølge svarende til topologisk sortering Dvs. når en knude besøges, er alle dens forgængere besøgt (og med garanti ikke ændrer sin korteste vej) Algoritmen for topologisk sortering med 4 ekstra linjer i stedet for udskrift: LinkedList q = new LinkedList( ); // Compute the indegrees Collection vertexset = vertexmap.values( ); for( Iterator vsitr = vertexset.iterator( ); vsitr.hasnext( ); { Vertex v = (Vertex) vsitr.next( ); for( Iterator witr = v.adj.iterator( ); witr.hasnext( ); ) ( (Edge) witr.next( ) ).dest.scratch++;} // Enqueue vertices INITIALLY of indegree zero for( Iterator vsitr = vertexset.iterator( ); vsitr.hasnext( ); ) { Vertex v = (Vertex) vsitr.next( ); if( v.scratch == 0 ) q.addlast( v ) ; // Loop: Remove 0-nodes from queue and count down in-degrees while(!q.isempty( )) { Vertex v = (Vertex) q.removefirst( ); for( Iterator itr = v.adj.iterator( ); itr.hasnext( ); ) { Edge e = (Edge) itr.next( ); Vertex w = e.dest; if( --w.scratch == 0 ) q.addlast( w ); if( v.dist == INFINITY ) continue; // on island ; avoid overflow if( w.dist > v.dist + cvw ) { w.dist = v.dist + cvw; w.prev = v;}}}

22 Skitse af netværksplanlægning Udgangspunkt: En aktivitetsgraf Knuder: Aktivitet m. forventet tidsforbrug Kanter: Forudsætningsforhold Obs: Omkostninger på knuder passer ikke ind i vores hidtidige model. I stedet: En begivenhedsgraf: Knuder: aktivitet-start, aktivitet-slut Kanter. Forudsætningsforhold, Aktivitet m. tidsforbrug Hvor lang tid tager projektet hvis arbejdet planlægges optimalt? Kritiske vej = længste vej fra start til slut

23 Algoritmer a la korteste vej kan tilpasses længste vej for hver aktivitet, tidligst mulige slutpunkt Yderligere algoritmer til: Senest mulige starttidspunkt Tidligts mulige sluttidspunkt Hvor meget der kan slækkes Yderligere forfining af modellen med ressourcer: Aktivitet A kræver 1 gravko m. fører, 1 rendegraver m. fører Aktivitet E kræver 1 rendegraver m. fører, 1 bobcat, 5 gartnere, 3 river, 2 skovle Vi har ialt følgende ressourcer: 1 gravko, 2 rendegraver, 1 byggekran,... Alt dette kan behandles med algoritmer små forbedringer = store penge heuristikker til at behandle usikkerheder, robusthed for forudset og uforudsete ændringer

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Figur: Terminologi: n = V, m = E (eller V og E (mis)bruges som V og E ).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter side 1 af 9 sider Skriftlig eksamen i Datalogi Modul 1 Vinter 1999/2000 Opgavesættet består af 6 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 5% Opgave 2

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

Førsteårsprojekt F2008. Nogle algoritmer på grafer

Førsteårsprojekt F2008. Nogle algoritmer på grafer Førsteårsprojekt F2008 Nogle algoritmer på grafer Peter Sestoft 2008-02-19 Oversigt for i dag Definition: graf og orienteret graf Repræsentation ved kantlister Bredde-først gennemløb Dybde-først gennemløb

Læs mere

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt

Læs mere

Om binære søgetræer i Java

Om binære søgetræer i Java Om binære søgetræer i Java Mads Rosendahl 7. november 2002 Resumé En fix måde at gemme data på er i en træstruktur. Måden er nyttig hvis man får noget data ind og man gerne vil have at det gemt i en sorteret

Læs mere

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 2

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 2 DM502 Forelæsning 2 Repetition Kompilere og køre Java program javac HelloWorld.java java HeloWorld.java Debugge Java program javac -g HelloWorld.java jswat Det basale Java program public class HelloWorld

Læs mere

DATALOGI 0GB. Skriftlig eksamen tirsdag den 6. januar 2004

DATALOGI 0GB. Skriftlig eksamen tirsdag den 6. januar 2004 Københavns Universitet bacheloruddannelsen i datalogi side 1 af 6 DATALOGI 0GB Skriftlig eksamen tirsdag den 6. januar 2004 Dette opgavesæt består af 6 nummererede sider. Eksamensdeltagerne bør straks

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Grafer / Otto Knudsen 20-11-06

Grafer / Otto Knudsen 20-11-06 Grafer / Otto Knudsen -- Grafer Definition En graf er pr. definition et par G = (V, E). Grafen består af en mængde knuder V (eng: vertices) og en mængde kanter E (eng: edges), som forbinder knuderne. A

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Abstrakte datatyper C#-version

Abstrakte datatyper C#-version Note til Programmeringsteknologi Akademiuddannelsen i Informationsteknologi Abstrakte datatyper C#-version Finn Nordbjerg 1/9 Abstrakte Datatyper Denne note introducerer kort begrebet abstrakt datatype

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter Skriftlig eksamen i Datalogi Modul 1 Sommer 1999 Opgavesættet består af 5 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 15% Opgave 2 15% Opgave 3 8% Opgave

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

DM502. Peter Schneider-Kamp (petersk@imada.sdu.dk) http://imada.sdu.dk/~petersk/dm502/

DM502. Peter Schneider-Kamp (petersk@imada.sdu.dk) http://imada.sdu.dk/~petersk/dm502/ DM502 Peter Schneider-Kamp (petersk@imada.sdu.dk) http://imada.sdu.dk/~petersk/dm502/ 1 DM502 Bog, ugesedler og noter De første øvelser Let for nogen, svært for andre Kom til øvelserne! Lav opgaverne!

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter Skriftlig eksamen i Datalogi Modul 1 Vinter 1998/99 Opgavesættet består af 5 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 16% Opgave 2 12% Opgave 3 10% Opgave

Læs mere

Datalogi OB, Efterår 2002 OH er, forelæsning 3/9-2002 - forstå datastrukturer og algoritmer (teoretisk forståelse og intuition)

Datalogi OB, Efterår 2002 OH er, forelæsning 3/9-2002 - forstå datastrukturer og algoritmer (teoretisk forståelse og intuition) Datalogi OB, Efterår 2002 OH er, forelæsning 3/9-2002 Datastrukturer og algoritmer Henning Christiansen henning@ruc.dk http://www.ruc.dk/~henning Formål: at kunne - forstå datastrukturer og algoritmer

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2015 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 3. marts, 2015 Dette projekt udleveres i to dele. Hver del har sin deadline, således

Læs mere

DATALOGI 0GB. Skriftlig eksamen mandag den 7. juni 2004

DATALOGI 0GB. Skriftlig eksamen mandag den 7. juni 2004 Københavns Universitet bacheloruddannelsen i datalogi side 1 af 6 DATALOGI 0GB Skriftlig eksamen mandag den 7. juni 2004 Dette opgavesæt består af 6 nummererede sider. Eksamensdeltagerne bør straks sikre

Læs mere

Datalogi OB, Efterår 2002 OH er, forelæsning 10/ Klasser og nedarvning

Datalogi OB, Efterår 2002 OH er, forelæsning 10/ Klasser og nedarvning Datalogi OB, Efterår 2002 OH er, forelæsning 10/9-2002 Klasser og nedarvning Hvad er formålet? Typer, generisk kode, typeparameterisering Kritisk kig på, hvordan man gør i Java. Eftermiddagens opgave:

Læs mere

AAU, Programmering i Java Intern skriftlig prøve 18. maj 2007

AAU, Programmering i Java Intern skriftlig prøve 18. maj 2007 AAU, Programmering i Java Intern skriftlig prøve 18. maj 2007 Opgavebesvarelsen skal afleveres som enten en printerudskrift eller som et passende dokument sendt via email til fjj@noea.dk. Besvarelsen skal

Læs mere

Hashing og hashtabeller

Hashing og hashtabeller Datastrukturer & Algoritmer, Datalogi C Forelæsning 16/11-2004 Hashing og hashtabeller Teknik til at repræsentere mængder Konstant tid for finde og indsætte men ingen sortering af elementerne Specielt

Læs mere

DM01 DM01. 4. Obl. Afl. Jacob Christiansen, 130282, jacob.ch@mail.tdcadsl.dk. D12, Elias 13/5-2003. Side 1 af 7

DM01 DM01. 4. Obl. Afl. Jacob Christiansen, 130282, jacob.ch@mail.tdcadsl.dk. D12, Elias 13/5-2003. Side 1 af 7 DM01 DM01 4. Obl. Afl. Jacob Christiansen, 130282, jacob.ch@mail.tdcadsl.dk D12, Elias 13/5-2003 Side 1 af 7 DM01 Indholdsfortegnelse: BILAG:...2 1 FORMÅL:...3 2 KLASSER:...4 2.1 DNA2:...4 2.1.1 METODER:...4

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille Nærmeste naboer. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[] og satellitdata data[]. operationer. PREDECESSOR(k): returner element med største nøgle k.

Læs mere

BRP 6.9.2006 Kursusintroduktion og Java-oversigt

BRP 6.9.2006 Kursusintroduktion og Java-oversigt BRP 6.9.2006 Kursusintroduktion og Java-oversigt 1. Kursusintroduktion 2. Java-oversigt (A): Opgave P4.4 3. Java-oversigt (B): Ny omvendings -opgave 4. Introduktion til næste kursusgang Kursusintroduktion:

Læs mere

University of Southern Denmark Syddansk Universitet. DM503 Forelæsning 11

University of Southern Denmark Syddansk Universitet. DM503 Forelæsning 11 DM503 Forelæsning 11 Generics Pakker Exceptions Indhold Generics Nedarvning og Generics Generics Nedarvning og Generics Husk Box fra sidst Generics public class Box {! private T object;! public void

Læs mere

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Læs mere

Jacob Christiansen, Institut for MAtematik og DAtalogi, Syddansk Universitet, Odense

Jacob Christiansen, Institut for MAtematik og DAtalogi, Syddansk Universitet, Odense 7 DM -. Obligatoriske Opgave Løsning af ligningssystem vha. fipunktmetoden Jacob Christiansen, 8 moffe@imada.sdu.dk Institut for MAtematik og DAtalogi, Syddansk Universitet, Odense. Opgaven Der skal implementeres

Læs mere

Hashing og hashtabeller

Hashing og hashtabeller Datastrukturer & Algoritmer, Datalogi C Forelæsning 12/11-2002 Hashing og hashtabeller Teknik til at repræsentere mængder Konstant tid for finde og indsætte men ingen sortering af elementerne Specielt

Læs mere

Programmeringscamp. Implementer funktionerne én for én og test hele tiden.

Programmeringscamp. Implementer funktionerne én for én og test hele tiden. Programmeringscamp De to opgaver træner begge i at lave moduler som tilbyder services der kan bruges af andre, samt i at implementere services efter en abstrakt forskrift. Opgave 1 beder jer om at implementere

Læs mere

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor

Læs mere

DMG Bachelor Maj/Juni 2002

DMG Bachelor Maj/Juni 2002 Indholdsfortegnelse 1 INDLEDNING... 2 1.1 PROBLEMFORMULERING... 2 1.2 FORMÅL... 2 1.3 MÅL... 2 2 PROBLEMANALYSE... 3 2.1 INDLEDNING... 3 2.2 TRANSPARENTE BROER I COMPUTERNETVÆRK... 3 2.3 ROUTERE I COMPUTERNETVÆRK...

Læs mere

Forelæsning Uge 6 Mandag

Forelæsning Uge 6 Mandag Forelæsning Uge 6 Mandag Tingene i denne forelæsning er ikke eksamenspensum Forelæsningen afrunder kurset, og forklarer nogle af de begreber, som I har mødt under kurset uden at få detaljeret forklaring

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Sekvenser af længde mellem 1 og 4 ord repræsenteres ved en klasse Segment, som uden grundlæggende ser således ud:

Sekvenser af længde mellem 1 og 4 ord repræsenteres ved en klasse Segment, som uden grundlæggende ser således ud: Besvarelse af opgave til formuleret til øvelserne 10. september 2002 Datastrukturer og algoritmer Henning Christiansen 22/9-2002 Følgende er ikke en eksakt besvarelse af opgaven, idet den benytter hashtabeller

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er en unik simpel vej mellem ethvert par af punkter i

Læs mere

Kursus i OOP og Java. Kursus i Objektorienteret programmering i Java

Kursus i OOP og Java. Kursus i Objektorienteret programmering i Java Kursus i OOP og Java Kursus i Objektorienteret programmering i Java Åben Dokumentlicens Dette foredragsmateriale er under Åben Dokumentlicens (ÅDL) Du har derfor lov til frit at kopiere dette værk Bruger

Læs mere

Tabelbegrebet. Klassediagrammer (III) Oversigt. Anvendelse af Tabeller. Tabeller og qualified associations

Tabelbegrebet. Klassediagrammer (III) Oversigt. Anvendelse af Tabeller. Tabeller og qualified associations Tabelbegrebet Klassediagrammer (III) Tabeller og qualified associations originally by Michael R. Hansen modified/extended by Anne E. Haxthausen Informatics and Mathematical Modelling Technical University

Læs mere

Kursusarbejde 3 Grundlæggende Programmering

Kursusarbejde 3 Grundlæggende Programmering Kursusarbejde 3 Grundlæggende Programmering Arne Jørgensen, 300473-2919 klasse dm032-1a 21. november 2003 Indhold 1. Kode 2 1.1. forestillinger.h............................................. 2 1.2. forestillinger.cc.............................................

Læs mere

Databaseadgang fra Java

Databaseadgang fra Java Databaseadgang fra Java Grundlæggende Programmering med Projekt Peter Sestoft Fredag 2007-11-23 Relationsdatabasesystemer Der er mange databaseservere Microsoft Access del af Microsoft Office MySQL god,

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version

Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version Note til Programmeringsteknologi Akademiuddannelsen i Informationsteknologi Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version Finn Nordbjerg 1/9 Indledning I det følgende introduceres et par abstrakte

Læs mere

Eksempel: Skat i år 2000

Eksempel: Skat i år 2000 Kursus 02199: Programmering afsnit 2.1-2.7 Anne Haxthausen IMM, DTU 1. Værdier og typer (bl.a. char, boolean, int, double) (afsnit 2.4) 2. Variable og konstanter (afsnit 2.3) 3. Sætninger (bl.a. assignments)

Læs mere

Løsning af skyline-problemet

Løsning af skyline-problemet Løsning af skyline-problemet Keld Helsgaun RUC, oktober 1999 Efter at have overvejet problemet en stund er min første indskydelse, at jeg kan opnå en løsning ved at tilføje en bygning til den aktuelle

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, F side af sider anmarks Tekniske Universitet Skriftlig prøve, den 9. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Eksempel: et ordresystem note 5 Lagdeling s. 1

Eksempel: et ordresystem note 5 Lagdeling s. 1 Eksempel: et ordresystem note 5 Lagdeling s. 1 Eksempel: et ordre-system NiceHair er et firma, som sælger udstyr, inventar og frisørartikler til frisørsaloner over hele landet. Det er ejet af et ægtepar

Læs mere

dintprog Manual Revision: 731 September 30, 2009 1 Introduktion 3 1.1 Notation... 3 I Begreber 4 2 Grundbegreber om programmering 4

dintprog Manual Revision: 731 September 30, 2009 1 Introduktion 3 1.1 Notation... 3 I Begreber 4 2 Grundbegreber om programmering 4 dintprog Manual Revision: 731 September 30, 2009 Indhold 1 Introduktion 3 1.1 Notation................................. 3 I Begreber 4 2 Grundbegreber om programmering 4 3 Grundbegreber om modellering

Læs mere

Sommeren 2001, opgave 1

Sommeren 2001, opgave 1 Sommeren 2001, opgave 1 Vi antager at k 3, da det ellers er uklart hvordan trekanterne kan sættes sammen i en kreds. Vi ser nu at for hver trekant er der en knude i kredsen, og en spids. Derfor er n =

Læs mere

Tabeller (I) Tabeller

Tabeller (I) Tabeller Tabeller (I) Klassediagrammer (III) Tabeller og qualified associations Michael R. Hansen mrh@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark En tabel fra en mængde A til

Læs mere

P2-projektforslag Kombinatorik: grafteori og optimering.

P2-projektforslag Kombinatorik: grafteori og optimering. P2-projektforslag Kombinatorik: grafteori og optimering. Vejledere: Leif K. Jørgensen, Diego Ruano 1. februar 2013 1 Indledning Temaet for projekter på 2. semester af matematik-studiet og matematikøkonomi-studiet

Læs mere

Øvelse 9. Klasser, objekter og sql-tabeller insert code here

Øvelse 9. Klasser, objekter og sql-tabeller insert code here Øvelse 9. Klasser, objekter og sql-tabeller Denne opgave handler om hvordan man opbevarer data fra databasekald på en struktureret måde. Den skal samtidig give jer erfaringer med objekter, der kommer til

Læs mere

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer: Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus

Læs mere

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomielt tid Optimeringsproblemer kan ikke altid verificeres i polynomiel

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomielt tid Optimeringsproblemer kan ikke altid verificeres i polynomiel I dag Løsning af NP -hårde optimeringsproblemer Repetition: branch-and-bound Flere begreber Konkret eksempel: TSP Lagrange relaxering Parallel branch-and-bound 1 Opsummering Løsning af NP -hårde optimeringsproblemer

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 15. juni, 2015. Kl. 9-13. Nærværende eksamenssæt består af 12 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives. Type Expr = Sumèplus, minus, times, div: Args, const: Int, name: Textè

Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives. Type Expr = Sumèplus, minus, times, div: Args, const: Int, name: Textè Opgave 1 è20èè Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives af fçlgende rekursive Trine-type: Type Expr = Sumèplus, minus, times, div: rgs, const: Int, name: Textè Type

Læs mere

dintprog Manual Revision: 1241 August 24, 2010 I Introduktion 3 1 Notation 3 II Begreber 4 2 Grundbegreber om programmering 4

dintprog Manual Revision: 1241 August 24, 2010 I Introduktion 3 1 Notation 3 II Begreber 4 2 Grundbegreber om programmering 4 dintprog Manual Revision: 1241 August 24, 2010 Indhold I Introduktion 3 1 Notation 3 II Begreber 4 2 Grundbegreber om programmering 4 3 Grundbegreber om modellering 4 III Sprogkonstruktioner 5 4 Klasser

Læs mere

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312 Flugtveje [1] A312 Jens Stokholm Høngaard Kristian Pilegaard Jensen Thomas Birch Mogensen Niels Asger Aunsborg Nicolai Vesterholt Søndergaard Daniel Agerskov Heidemann Jensen 25. maj 2010 I II Det Teknisk-Naturvidenskabelige

Læs mere

Introduktion til ActionScript

Introduktion til ActionScript Introduktion til ActionScript Kaspar Rosengreen Nielsen kaspar@interactivespaces.net i n t e r a c t i v e s p a c e s. n e t Kaspar Nielsen, kaspar@interactivespaces.net 1 Dagens program Opsamling på

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen lukket kreds af kanter

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille er. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key og satellitdata x.data. operationer. PREDECESSOR(k): returner element x med største nøgle k. SUCCESSOR(k):

Læs mere

Software Construction 1 semester (SWC) Spørgsmål 1

Software Construction 1 semester (SWC) Spørgsmål 1 Spørgsmål 1 Objekter #1 Giv en kort præsentation af begrebet objekt, samt hvorledes du erklærer(declare), opretter(create) og bruger objekter Du kan beskrive o Datatyper o Variable / Instans variable /

Læs mere

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312 Flugtveje [1] A312 Jens Stokholm Høngaard Kristian Pilegaard Jensen Thomas Birch Mogensen Niels Asger Aunsborg Nicolai Vesterholt Søndergaard Daniel Agerskov Heidemann Jensen 26. maj 2010 I II Det Teknisk-Naturvidenskabelige

Læs mere

Kursusarbejde 2 Grundlæggende Programmering

Kursusarbejde 2 Grundlæggende Programmering Kursusarbejde 2 Grundlæggende Programmering Arne Jørgensen, 300473-2919 klasse dm032-1a 31. oktober 2003 Indhold 1. Kode 2 1.1. hotel.h.................................................... 2 1.2. hotel.cc...................................................

Læs mere

Synkronisering af datastrukturer i et opgavestyrings system

Synkronisering af datastrukturer i et opgavestyrings system Synkronisering af datastrukturer i et opgavestyrings system I samarbejde med Terma A/S af Kasper Friis Kjærhus, s971400 Danmarks Tekniske Universitet Institut for Informatik og Matematisk Modelering Eksamensprojekt

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 10

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 10 DM502 Forelæsning 10 Rekursion Fakultet n! Fibonaccitallene 2. projektopgave Opgaven Formalia Indhold Rekursion Rekursion Prøv at definere en liste af tal uden at bruge ordet liste Rekursion Prøv at definere

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer

Læs mere

Datastrukturer. Datastruktur = data + operationer herpå

Datastrukturer. Datastruktur = data + operationer herpå Prioritetskøer Prioritetskøer? Datastrukturer Datastruktur = data + operationer herpå Datastrukturer Data: Datastruktur = data + operationer herpå Ofte en ID + associeret data. ID kaldes også en nøgle

Læs mere

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel:

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen skridt for skridt ved hele tiden af vælge lige

Læs mere

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312 Flugtveje [1] A312 Jens Stokholm Høngaard Kristian Pilegaard Jensen Thomas Birch Mogensen Niels Asger Aunsborg Nicolai Vesterholt Søndergaard Daniel Agerskov Heidemann Jensen 18. maj 2010 I II Det Teknisk-Naturvidenskabelige

Læs mere

DM01 DM01. 3. Obl. Afl. Jacob Christiansen, 130282, jacob.ch@mail.tdcadsl.dk. D12, Elias 18/3-2003. Side 1 af 11

DM01 DM01. 3. Obl. Afl. Jacob Christiansen, 130282, jacob.ch@mail.tdcadsl.dk. D12, Elias 18/3-2003. Side 1 af 11 DM01 DM01 3. Obl. Afl. Jacob Christiansen, 130282, jacob.ch@mail.tdcadsl.dk D12, Elias 18/3-2003 Side 1 af 11 DM01 Indholdsfortegnelse: BILAG:...2 1 FORMÅL:...3 2 KLASSER:...4 2.1 DILEMMA:...4 2.1.1 METODER:...4

Læs mere

Bevisteknikker (relevant både ved design og verifikation)

Bevisteknikker (relevant både ved design og verifikation) Bevisteknikker 1 Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Virkefeltsregler i Java

Virkefeltsregler i Java Virkefeltsregler i Java int i; int k; Sequence s; int j; What s in a name? Brian spillede blændende i søndags! Skolen ligger i Viby Ring til Kirsten og sig at... Et navn fortolkes i en kontekst og konteksten

Læs mere

UNION-FIND. UNION-FIND-problemet. Forbundethed kan være svær at afgøre (især for en computer) Eksempel på udførelse

UNION-FIND. UNION-FIND-problemet. Forbundethed kan være svær at afgøre (især for en computer) Eksempel på udførelse UNION-FIND-problemet UNION-FIND inddata: en følge af heltalspar (p, q); betydning: p er forbundet med q uddata: intet, hvis p og q er forbundet, ellers (p, q) Eksempel på anvendelse: Forbindelser i computernetværk

Læs mere

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312 Flugtveje [?] A312 Jens Stokholm Høngaard Kristian Pilegaard Jensen Thomas Birch Mogensen Niels Asger Aunsborg Nicolai Vesterholt Søndergaard Daniel Agerskov Heidemann Jensen 22. maj 2010 I II Det Teknisk-Naturvidenskabelige

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 29. april, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312 Flugtveje [?] A312 Jens Stokholm Høngaard Kristian Pilegaard Jensen Thomas Birch Mogensen Niels Asger Aunsborg Nicolai Vesterholt Søndergaard Daniel Agerskov Heidemann Jensen 23. maj 2010 I II Det Teknisk-Naturvidenskabelige

Læs mere

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393.

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Broer, skak og netværk Side 1 af 6 Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Eksempler på praktiske anvendelser af matematik og nogle uløste problemer Indledning Figur

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Streng = sekvens x 1 x 2 x 3... x n af tegn fra et alfabet: helloworld

Læs mere

Definition (Pseudo-graf): En pseudo-graf G = (V, E) består af V, en ikke-tom mængde hvis elementer kaldes punkter, en mængde E samt en funktion f : E

Definition (Pseudo-graf): En pseudo-graf G = (V, E) består af V, en ikke-tom mængde hvis elementer kaldes punkter, en mængde E samt en funktion f : E Grafteori Definition (Simpel graf): En simpel graf G = (V, E) består af V, en mængde hvis elementer kaldes punkter, og E, en mængde af uordnede par af forskellige elementer fra V. Et element fra E kaldes

Læs mere

Kursusarbejde 1 Grundlæggende Programmering. Arne Jørgensen, 300473-2919 klasse dm032-1a

Kursusarbejde 1 Grundlæggende Programmering. Arne Jørgensen, 300473-2919 klasse dm032-1a Kursusarbejde 1 Grundlæggende Programmering Arne Jørgensen, 300473-2919 klasse dm032-1a 3. oktober 2003 Kode //File Name: kaalhovede.cc //Author: Arne Jørgensen //Email Address: arne@arnested.dk, arnjor@niels.brock.dk

Læs mere

Kursus navn: Indledende programmering Kursus nr. 02101

Kursus navn: Indledende programmering Kursus nr. 02101 Danmarks Tekniske Universitet Side 1 af 8 sider Skriftlig prøve, den 15. december 2007 Kursus navn: Indledende programmering Kursus nr. 02101 Tilladte hjælpemidler: Alle skriftlige hjælpemidler Vægtning

Læs mere

Hvordan virker en rejseplanner?

Hvordan virker en rejseplanner? 29. September 2004 Hvordan virker en rejseplanner? Henning Christiansen professor i datalogi, ph.d. http://www.ruc.dk/~henning Datalogiafdelingen, hus 42.1 Roskilde Universitetscenter Universitetsvej 1

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

Udvikling af DOTNET applikationer til MicroStation i C#

Udvikling af DOTNET applikationer til MicroStation i C# Udvikling af DOTNET applikationer til MicroStation i C# Praktiske tips for at komme i gang. Gunnar Jul Jensen, Cowi Hvorfor nu det? Mdl og Vba kan det hele Fordelene er : udviklingsmiljøet er eksternt

Læs mere

Test af It-komponent

Test af It-komponent Test af It-komponent I programmeringssproget Java Programmet Login service Elev: Mads Funch Klasse 2.4 Mat, It, Programmering Skole: Roskilde Tekniske Gymnasium HTX Underviser: Karl Dato: 31-08-2016 Side

Læs mere

Aritmetiske Forelæsning Pr ogrammering operatorer tir 1999 sda præcedens september 1999 Logiske Sammenligningsoperatorer operatorer præcedens

Aritmetiske Forelæsning Pr ogrammering operatorer tir 1999 sda præcedens september 1999 Logiske Sammenligningsoperatorer operatorer præcedens Programmering 1999 Forelæsning 3, tirsdag 7. september 1999 Aritmetiske og logiske operatorer, præcedens Den indbyggede klasse String: tegnstrenge Metoder i klasser Metoder: returtype eller void Metoder:

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Easy Guide i GallupPC

Easy Guide i GallupPC Easy Guide i GallupPC Version. 6.00.00 Gallup A/S Masnedøgade 22-26 DK 2100 København Ø Telefon 39 27 27 27 Fax 39 27 50 80 Indhold SÅDAN KOMMER DU I GANG MED AT ANVENDE GALLUPPC... 2 TILFØJELSE AF UNDERSØGELSER

Læs mere

Objektorienteret Programmering

Objektorienteret Programmering Objektorienteret Programmering Struktureret Systemudvikling Jan Bendtsen Automation and Control Indhold Lidt om programmeringssprog Klasser i Java Klasser i C++ Oversættelse og kørsel af kode Et eksempel:

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træ

Læs mere

Regulære udtryk og endelige automater

Regulære udtryk og endelige automater Regulære udtryk og endelige automater Regulære udtryk: deklarative dvs. ofte velegnede til at specificere regulære sprog Endelige automater: operationelle dvs. bedre egnet til at afgøre om en given streng

Læs mere

Induktive og rekursive definitioner

Induktive og rekursive definitioner Induktive og rekursive definitioner Denne note omhandler matematiske objekter, som formelt er opbygget fra et antal basale byggesten, kaldet basistilfælde eller blot basis, ved gentagen brug af et antal

Læs mere