Størrelse: px
Starte visningen fra side:

Download "www.matematiksider.dk/perspektiv_down.html"

Transkript

1

2 Indholdsfortegnelse 1. Indledning Centralprojektionsmodellen Kort om rumgeometri Rummet og den perspektiviske plan Den perspektiviske afbildning Perspektivets egenskaber ved lodret billedplan Introduktion til Perspective Modeler Perspective Modeler: En tutorial Centralprojektionmodellens egenskaber og begrænsninger Kameraer og perspektiv Eksempler på forskellige perspektiver Appendiks A Opgaver Websites Litteratur... 71

3 Erik Vestergaard Indledning Denne note er skrevet med den hensigt at skulle udgøre hovedmaterialet i et projekt i matematik på obligatorisk niveau i emnet perspektivregning. Noten vil ikke i ret stort omfang komme ind på den historiske udvikling af teorien for linearperspektivet, selv om dette kan være aldeles interessant og relevant. Den interesserede læser må så finde materiale herom andetsteds. I stedet vil noten koncentrere sig om at definere de forskellige begreber matematisk forsvarligt, at udlede egenskaber for linearperspektivet og sætte eleverne i stand til at tegne simple figurer i perspektiv. Med Windows programmet Perspective Modeler kan eleverne eksperimentere med perspektivet. Dermed kan perspektivets egenskaber og regler udforskes uden at man behøver udføre alle tegningerne selv. Omtalte program kan downloades fra min hjemmeside på følgende sted: Selvom materialet er tiltænkt matematik på obligatorisk niveau har jeg været nødt til at introducere emner såsom vektorer og linjer i rummet, for at kunne bevise de forskellige sætninger. Rumgeometrien er dog minimeret til det absolut nødvendige og burde ikke udgøre nogen hindring for eleverne. (Opdateret ). 2. Centralprojektionsmodellen Metoder til at afbilde den tredimensionelle verden på en todimensional flade har optaget mennesket lige siden tidernes morgen. I Lascaux-grotten i Sydfrankrig har man fundet hulemalerier, som er ca år gamle billeder af kæmpetyre, heste og hjorte, afbildet på klipperne. Siden har ægypterne, grækerne og romerne på hver deres måde afbildet tredimensionelle figurer på vægge, vaser etc. Man skal dog helt frem til den italienske renæssance før man har det første kendte billede, hvor afbildningen er foretaget perspektivisk korrekt. Det skal dog ikke forlede én til at tro, at datidens folk var primitive mange af datidens værker var stor kunst, men afbildningerne var altså ikke naturtro. Det første kendte billede, som er perspektivisk korrekt, skyldes Filippo Brunellischi ( ). En anden italiener, Leone Battista Alberti ( ), var derimod den første til at udgive en bog om maleriets teori, Della Pittura. Renæssancen i Italien var netop karakteriseret ved at kunsten havde helt enestående betingelser. I starten var det at udføre malerier, skulpturer og bygge kirker blevet betragtet som simpelt håndværk, men efterhånden vandt de bedste udøvere berømmelse og blev anerkendte som store kunstnere. Vi behøver bare nævne sublime udøvere som Leonardo da Vinci ( ), Raphaello Santi eller bare Raphael ( ) og Michelangelo Buonarroti ( ). Paver og fyrster bestilte kunstværker hos de bedste udøvere for at lade sig udødeliggøre... Med introduktionen af centralprojektionsmodellen fik man endelig en metode til at afbilde en 3D figur, som vi ser den. Denne model vil blive beskrevet i det følgende.

4 6 Erik Vestergaard Lad os sige, at vi ønsker at afbilde en 3D-figur i en plan, kaldet billedplanen. Ethvert objektpunkt P fra 3D-figuren afbildes i et billedpunkt Q, som er skæringspunktet mellem billedplanen og synsstrålen. Med sidstnævnte menes linjen gennem P og øjepunktet. En sådan afbildning kaldes for en centralprojektion. Figur 1 Situationen er illustreret på figur 1. Filosofien bag centralprojektionsmodellen er den simple, at personen ikke kan se forskel på selve objektpunktet og billedpunktet, da vi kan antage, at lys bevæger sig ad rette linjer. Tænk for eksempel på, at billedplanen kan være af glas så vil 3D-figuren og dens billede se ud til at ligge oveni hinanden! På figur 1 er også tegnet en linje kaldet synsretningen, som skal forestille at stå vinkelret på billedplanen og gå igennem øjepunktet. Det er en ren teknisk betegnelse idet øjet jo ikke bare kan se punkter i en specifik retning, men modtager lys indenfor hele øjets synsfelt. Vi vil vende tilbage til denne problematik i afsnit 9. Synsretningens skæring med billedplanen kaldes hovedpunktet og betegnes med H. Alternativt kan hovedpunktet beskrives som øjepunktets vinkelrette projektion på billedplanen. Afstanden fra øjepunktet til hovedpunktet vil vi kalde for distancen og betegne med d. Figur 2 og 3 Men hvordan skal billedplanen da placeres i forhold til øjepunktet? Ja, det er i princippet helt vilkårligt, så længde billedplanen ikke indeholder øjepunktet! Figur 2 viser et tilfælde, hvor billedplanen er vippet opad, svarende til at synsretningen forløber opad

5 Erik Vestergaard 7 (frøperspektiv), mens figur 3 viser et tilfælde, hvor billedplanen er vippet nedad, svarende til en nedadgående synsretning (fugleperspektiv). Man kan endda tænke sig billedplanen drejet i sin eget plan omkring synsretningsaksen, hvilket man kan sige svarer til at observatøren hælder hovedet til siden som en pilot, der vipper den ene vinge ned for at flyve i en kurve. Figur 4 forestiller en betragter, en billedplan og en linje l. En linje, som er parallel med billedplanen, vil vi kalde for en frontlinje. Alle andre linjer vil vi betegne dybdelinjer, fordi de bevæger sig ind i dybden. Linjen l er et eksempel på en sådan. Til enhver dybdelinje vil vi knytte to punkter, nemlig linjens spor S l og linjens forsvindingspunkt F l. Førstnævnte er linjens skæring med billedplanen, mens sidstnævnte fås som skæringspunktet mellem billedplanen og den linje l 0, som er parallel med l, og som går igennem øjepunktet. Hvis vi har at gøre med et dybdelinjestykke, dvs. en del af en dybdelinje, så vil vi også tale om, at det har et spor og et forsvindingspunkt, nemlig sporet og forsvindingspunktet for forlængelsen af l. Figur 4 Selv om billedplanen som nævnt kan anbringes på mange måder, så skal vi hovedsagligt beskæftige os med det specialtilfælde, hvor billedplanen er anbragt lodret, hvormed synsretningen altså bliver vandret. En af årsagerne er, at i dette specialtilfælde bliver det nemmere at formulere perspektivets regler og bevise dem. En anden er, at de fleste kunstværker også er udført i et perspektiv med lodret billedplan. Figur 5 på næste side viser en person betragte en terning. Perspektivet er med lodret billedplan. Bemærk, at der i billedplanen er afbildet en vandret linje gennem hovedpunktet, kaldet horisonten. Man kan vise, at horisonten er forsvindingslinje for enhver vandret plan! Det perspektiviske billede af et punkt, som bevæger sig i en vandret plan og ind i dybden, vil nærme sig til et punkt på horisonten.

6 8 Erik Vestergaard Figur 5 3. Kort om rumgeometri For at kunne foretage beviser for kommende sætninger vedrørende perspektivet er det hensigtsmæssigt at indføre nogle få centrale begreber fra rumgeometrien. Vi skal indføre vektorbegrebet og definere hvad en parameterfremstilling for en linje i rummet er. Som koordinatsystem i rummet benyttes det, som består af tre akser anbragt vinkelret på hinanden, som vist på figur 6. Akserne orienteres som et højresystem, der er karakteriseret ved, at hvis man befinder sig et sted på den positive del af z-aksen og kigger ind mod origo O, så skal den drejning, som sender x-aksen over i y-aksen, foregå mod uret. Hvis man vender z-aksen på figur 6 nedad, så fås et såkaldt venstresystem. Vi vil kun arbejde med højresystemer! Figur 6 og 7 Et punkt P i rummet siges at have koordinaterne ( x, y, z ), hvis punktets vinkelrette projektion ind på hver af akserne er henholdsvis x, y, og z. Situationen er vist på figur 6, hvor en illustrativ rektangulær kasse er tegnet med diagonal OP. Samtidigt viser figuren, at hvis vi anvender Pythagoras læresætning på ORQ og OQP, fås henholdsvis

7 Erik Vestergaard x + y = OQ og OQ + z = OP, hvilket tilsammen betyder, at man har følgende udtryk for længden af linjestykket OP: (1) OP = x + y + z Når man parallelforskyder en pil i rummet fås en ny pil med samme længde og retning. Samlingen af alle pile med en bestemt retning og længde vil vi betegne som én vektor. Hver pil er blot en repræsentant for vektoren. På figur 7 er tegnet en række repræsentanter for den samme vektor. Som betegnelse for en vektor benyttes ofte et bogstav med en pil over, såsom v. Som repræsentant for vektoren v kan man vælge den pil, som har begyndelsespunkt i origo. Hvis denne repræsentants endepunkt kaldes P kan man skrive v = OP og vektoren v siges at være stedvektor for punktet P. Koordinaterne til en vektor v defineres som koordinaterne til endepunktet P for den repræsentant, som har begyndelsespunkt i origo. På figur 6 har vektoren OP derfor koordinater ( x, y, z ). Den vektor, som har koordinaterne (0,0,0), betegnes nulvektoren. Længden af en vektor v betegnes med v og defineres som længden af en af dens repræsentanter. Ifølge ovenstående samt (1) fås derfor: v = OP = x + y + z. En vektor med længden 1 kaldes for en enhedsvektor. En af grundene til, at vi indfører vektorer er naturligvis, at vi ønsker at regne med dem. Vi skal definere, hvad det vil sige at addere to vektorer samt at gange en vektor med et tal. Lad u= ( x1, y1, z1) og v = ( x2, y2, z2) være to vektorer og t et tal. Da defineres vektorerne u + v og t u som vektorerne med følgende koordinater, idet koordinaterne nu alternativt skrives lodret: (2) x1+ x2 t x1 u+ v = y + y ; t u = t y z1 z 2 t z + 1 Figur 8 og 9

8 10 Erik Vestergaard Det overlades til læseren at overbevise sig om, at summen af to vektorer kan fås ved at anvende parallelogramreglen: Vælg to repræsentanter, som har samme begyndelsespunkt og tegn det plane parallelogram, som de to vektorer udspænder. Så er diagonalen en repræsentant for summen af de to vektorer, som vist på figur 8. En alternativ metode er at vælge repræsentanter for u og v, så begyndelsespunktet for sidstnævnte er lig med slutpunktet for førstnævnte. Så er den pil, som har begyndelsespunkt fælles med u s repræsentant og slutpunkt fælles med v s repræsentant, en repræsentant for vektoren u + v, som illustreret på figur 9. Vektoren t u har længden t u, og har samme retning som u, hvis t er positiv og modsat retning af u, hvis t er negativ. Dette har jeg illustreret på figur 10, hvor u er multipliceret med 3 og v er multipliceret med 1. Bemærk, at jeg har tegnet repræsentanter, som er lidt forskudt i forhold til hinanden, så man tydeligt kan se begyndelsespunktet for alle vektorerne! Man kan også trække to vektorer fra hinanden: u v defineres da ved, at det skal være vektoren u + ( v ). Så koordinaterne til differensen u v fås ved at subtrahere koordinaterne parvis. Rent geometrisk kan man få en repræsentant for u v på følgende måde: Vælg to repræsentanter for u og v, som har samme begyndelsespunkt. Da er den pil, som går fra endepunktet af u s repræsentant til endepunktet af v s repræsentant en repræsentant for u v, som illustreret på figur 11. Figur 10 og 11 og v= ( 1,3, 7). I øv- Eksempel 1 Bestem koordinaterne til vektoren 2 u 5 v, hvor u= (2, 1,4) rigt betegnes 2 u 5 v en linearkombination af u og v. Løsning: ( 1) 9 2 u 5 v = = = ( 4) Med ovenstående definitioner er vi nu klar til at indføre parameterfremstillingen for en ret linje i rummet. Et punkt P( x, y, z ) på linjen kan beskrives ved dets stedvektor OP, som kan splittes op i en sum af stedvektoren til et fast punkt P0 ( x0, y0, z 0) på linjen og

9 Erik Vestergaard 11 en vektor P0 P= t v, som er proportional med en retningsvektor v = ( v1, v2, v3) for linjen (se figur 12). Når t (parameteren) gennemløber alle reelle tal, vil alle punkter på linjen fremkomme. (3) Figur 12 x x0 v1 OP = OP0 + t v y = y0 + t v2 z z 0 v 3 Eksempel 2 a) Bestem en parameterfremstilling for linjen l, der går igennem følgende to punkter: P 1 (0;2;2,5) og P 2(1;6; 3). b) Bestem skæringspunktet mellem linjen l og den lodrette plan med ligning y= 4. Til venstre på figur 12 ses planen i en lodret projektion i xy-planen. Løsning: a) Som fast punkt på linjen vælger vi P 1. Som retningsvektor kan vi vælge v = PP 1 2 = OP2 OP1 = 6 2 = 4 3 2,5 0,5 En mulig parameterfremstilling for linjen er derfor 0 1 t OP = OP1 + t PP 1 2 = 2 + t 4 = 2+ 4t 2,5 0,5 2,5+ 0,5t b) Når t gennemløber de reelle tal, gennemløbes linjens punkter. Derfor gælder det om at finde den værdi for t, som giver y-værdien 4: y= t = 4 t= 0,5. Indsættes denne værdi i linjens ligning fås stedvektoren til skæringspunktet S: 0 1 0,5 OS = 2 + 0,5 4 = 4 2,5 0,5 2,75

10 12 Erik Vestergaard Figur 13 I denne note vil vi kun beskæftige os med planer, som er lodrette og parallelle med xzplanen. I afsnit 5 skal vi anvende rumgeometrien til at udlede en formel for billedpunktets koordinater. 4. Rummet og den perspektiviske plan For at undgå at rode rundt i begreberne er det uhyre vigtigt, at man skelner mellem, hvordan genstanden i virkeligheden ser ud i rummet (3D), og hvordan dens perspektiviske billede i den perspektiviske plan ser ud. Man kan beskrive en genstand i 3D på forskellig måde. Én måde er at angive en plantegning og en eller flere opstalttegninger. Med en plantegning menes genstanden projiceret vinkelret ned i en vandret plan. Man kan eventuelt samtidigt indtegne billedplanen, øjepunktet O, samt koordinatakser på plantegningen. Situationen fra figur 5, hvor en observatør betragter en terning, er beskrevet på figur 14. Plantegningen kaldes her for Top, der er betegnelsen anvendt i programmet Perspective Modeler, som vi skal benytte senere. Da billedplanen er lodret, vil billedplanen i projektionen Top fremstå som et linjestykke. En opstalttegning er genstanden projiceret ind i en lodret plan. På figur 14 bliver opstalttegningen betegnet Left. Bemærk, at der er lagt et koordinatsystem ind, som har begyndelsespunkt i øjepunktet, og x-aksen er anbragt vandret og parallel med billedplanen, y-aksen vinkelret derpå og z-aksen lodret. Dette valg af koordinatsystem skal vi anvende i næste afsnit, så den perspektiviske afbildning får et simpelt udseende. Når vi skal til at bruge programmet Perspective Modeler er valget af koordinatsystem derimod helt vilkårligt, og her vil det måske være mere hensigtsmæssigt at lægge koordinatsystemet anderledes, for eksempel så punkter i grundplanen, hvorpå terningen står, får z-koordinat 0. Et punkts rumlige koordinater kan aflæses udfra plantegningen og opstalttegningen. Idet hvert tern repræsenterer 0,5 meter og øjepunktet befinder sig 1,70 meter over grundplanen, kan vi for ek-

11 Erik Vestergaard 13 sempel finde koordinaterne til punktet A 2. Plantegningen giver x= 0,5 og y= 4,5, mens opstalttegningen giver y= 4,5 og z= 0,7. De rumlige koordinater for punktet A 2 er dermed (0,5; 4,5; 0, 7). Den sidste tegning i figur 14 kaldet Perspective er det perspektiviske billede. I næste afsnit skal vi se, hvordan man kan beregne de perspektiviske koordinater i billedplanen. Figur 14

12 14 Erik Vestergaard 5. Den perspektiviske afbildning I det følgende vil vi igen antage, at billedplanen er lodret, samt at man lægger et koordinatsystem ind i rummet på følgende måde: i) Koordinatsystemets begyndelsespunkt anbringes i øjepunktet. ii) z-aksen skal pege lodret opad. iii) y-aksen er vandret og anbringes så den peger i synsretningens retning. iv) x-aksen anbringes vinkelret på de to andre akser, så der dannes et højresystem. Afstanden fra øjepunktet O til billedplanen er lig med d (distancen), så billedplanen har ligningen y= d. Situationen kan ses på figur 15. Punktet P 1 er et objektpunkt og linjen gennem O og P1 ( x1, y1, z 1) en synsstråle. Synsstrålens skæring med billedplanen er billedpunktet Q. Da dette punkt ligger i billedplanen med ligning y= d må anden koordinaten være lig med d. Billedpunktets koordinater er derfor på formen ( xq, d, z Q). Ved at droppe anden koordinaten får vi ( xq, z Q ), som vi vil kalde for billedpunktets koordinater i billedplanen. Billedplanens koordinatsystem er indtegnet på figur 15. Bemærk, at dette koordinatsystem har begyndelsespunkt i det, der svarer til hovedpunktet H. Figur 15 Sætning 3 En lodret billedplan er anbragt i afstanden d fra øjepunktet. Med ovenstående valg af koordinatsystem i rummet afbildes P1 ( x1, y1, z 1) i billedpunktet med koordinater: ( x, z ) = ( d x y, d z y ) Q Q

13 Erik Vestergaard 15 Bevis: Vi skal have fundet synsstrålens skæringspunkt med billedplanen. Som fast punkt på synsstrålen kan vi bruge O (0,0,0) og v = OP1 = ( x1, y1, z1 ) kan benyttes som retningsvektor. Ifølge (3) giver det anledning til følgende parameterfremstilling for synsstrålen: x 0 x1 t x1 y = 0 + t y = t y 1 1 z 0 z 1 t z 1 For at finde skæringspunktet med billedplanen finder vi først den parameterværdi for t, der betyder at 2. koordinaten bliver lig med d: y= d t y1 = d t= d y1. Indsættes denne parameterværdi i parameterfremstillingen fås: d y1 x1 d x1 y1 OQ = d = d d y z d z y hvormed ( xq, zq ) = ( d x1 y1, d z1 y1 ) som påstået. Figur 16 Eksempel 4 På figur 16 er afbildet plantegning og opstalttegning for en pyramide i rummet. Den betragtes fra øjepunktet O, som er anbragt i origo, og synsretningen er identisk med y-aksen. Betingelserne for at bruge sætning 3 er dermed opfyldt. Billedplanen er ikke anført på figuren, men det oplyses, at distancen i billedet er 20 cm.

14 16 Erik Vestergaard Det er kun nødvendigt at bestemme billedpunkterne for pyramidens hjørner, og så forbinde disse billedpunkter med rette linjestykker for at få hele det perspektiviske billede. I næste afsnit skal vi nemlig vise, at et ret linjestykke afbildes i et ret linjestykke (eller punkt)! Det er hensigtsmæssigt at lave en tabel, hvori man anfører de rumlige koordinater for de fem hjørner A, B, C, D og E. Disse koordinater kan fås udfra figur 16, idet det oplyses, at gitteret har masker på 1 gange 1 meter. I skemaets sidste to rækker anbringes billedpunkterne, som er beregnet via formlerne i sætning 3. Alle mål i tabellen er i cm. x 1 y 1 1 x = d x y zq = d z1 y1 z Q 1 1 A ,86 4,29 B ,00 3,00 C ,82 2,73 D ,00 3,75 E ,22 Herefter konstrueres et koordinatsystem for billedplanen. Det er gjort nedenfor, hvor hvert tern svarer til 1 cm. Billedpunkterne kan herefter indtegnes og forbindes med rette linjer, så billedet af pyramiden fremkommer. Origo svarer til hovedpunktet H og x Q - aksen er identisk med horisonten. Figur 17

15 Erik Vestergaard Perspektivets egenskaber ved lodret billedplan For at holde matematikken på et rimeligt niveau vil vi nøjes med at bevise sætninger, som vedrører perspektiv foretaget med lodret billedplan, hvilket er det samme som at sige, at synsretningen er vandret. Første sætning vil handle om frontlinjer, den næste om dybdelinjer, jævnfør definitionerne fra afsnit 2. Sætning 5 (Om frontlinjer m.m.) For den perspektiviske afbildning på lodret billedplan gælder følgende: a) Et frontlinjestykke afbildes i et linjestykke. b) Et lodret linjestykke afbildes i et lodret linjestykke. c) Et vandret frontlinjestykke afbildes i et vandret linjestykke. d) Et objekt, som befinder sig i en plan parallel med billedplanen, afbildes i et objekt, som er ligedannet med det originale objekt. Alle afstande og vinkler er dermed bevaret ved den perspektiviske afbildning. Det bør nævnes, at a) og d) også gælder selv om billedplanen ikke er lodret. Før vi beviser sætningen, vil vi illustrere nogle af udsagnene i sætningen. Betragt figur 14 fra afsnit 4. Linjestykket A1 A 2 er i virkeligheden lodret, og som vi ser, afbildes linjestykket også lodret i billedplanen (Perspective). Linjestykket A2 D 2 er en af de forreste vandrette kanter på terningen. Det er vandret og parallel med billedplanen. Linjestykket er altså et vandret frontlinjestykke og skal afbildes vandret i den perspektiviske plan. Dette konstateres også i feltet Perspective. Den forreste lodrette side i terningen opfylder betingelsen i d) og skal derfor afbildes som et kvadrat i billedplanen. Bevis for sætning 5: Vi antager, at det rumlige koordinatsystem er indlagt som i afsnit 5, så vi kan bruge sætning 3. a) Betragt figur 18: Endepunkterne af linjen l betegnes A og B. Billedet af l fås da som skæringen mellem den plane trekant ABO og billedplanen, hvilket giver et linjestykke l '. Dog må vi forudsætte, at linjen l ikke befinder sig i xzplanen, i hvilket tilfælde linjen ikke har noget billede (Overvej!). b) De rumlige koordinater for punkterne på en lodret linje vil alle have samme x- og y-koordinat. Af sætning 3 fås derfor, at alle linjens billedpunkter vil have den samme xq -koordinat, da xq = d x1 y1. Med andre ord: Billedet af linjen vil være lodret. c) Alle punkter på en vandret frontlinje vil have samme y- og z- koordinat. Da zq = d z1 y1 vil alle punkter på billedet derfor have samme zq -koordinat, hvilket betyder, at billedet af linjen er vandret. d) Situationen er illustreret med eksemplet på figur 19, som viser at billedet af en husfacade er en formindsket udgave af den originale husfacade. Påstanden i d) kan også forklares via billedpunktets koordinater: Alle punkter ( x1, y1, z 1) i objektet har samme 2. koordinat y 1. Det betyder, at vi i udtrykket for billedpunkterne kan sætte y 1 udenfor som en konstant: ( xq, zq ) = ( d x1 y1, d z1 y1) = d y1 ( x1, z1). Så ethvert objektpunkt beskrevet ved x 1 og z 1 i den lodrette plan y= y1 afbildes i billedplanen i et punkt med koordinater, som er et fast tal d y 1 gange ( x1, z 1). Dette viser det ønskede.

16 18 Erik Vestergaard Figur 18 Figur 19 Sætning 6 (Om dybdelinjer) For den perspektiviske afbildning på lodret billedplan gælder følgende: a) En dybdelinje, som passerer igennem øjepunktet, afbildes i et punkt, som er identisk med linjens spor og forsvindingspunkt. b) En dybdelinje, som ikke passerer igennem øjepunktet, afbildes i den linje, som går gennem forsvindingspunktet F l og sporet S l. Selve forsvindingspunktet kan dog ikke forekomme som billedpunkt! Når man bevæger sig på linjen ind i dybden, vil billedpunktet nærme sig til linjens forsvindingspunkt. c) Parallelle dybdelinjer har samme forsvindingspunkt. d) En vandret dybdelinje, som danner vinklen v med synsretningen, har et forsvindingspunkt, som ligger på horisonten stykket d tan( v) fra hovedpunktet H. Til højre for H, hvis dybdelinjen bevæger sig mod højre på vej ind i dybden, og til venstre for H, hvis det modsatte er tilfældet.

17 Erik Vestergaard 19 Det bør nævnes, at a), b) og c) også gælder selv om billedplanen ikke er lodret. Før vi beviser sætningen, vil vi illustrere nogle af udsagnene i sætningen. Betragt figur 14 fra afsnit 4. Lad os se på linjestykket A2 B 2. Det er åbenlyst parallel med synsretningen og ifølge definitionen af forsvindingspunkt i afsnit 2, har det derfor et forsvindingspunkt, som findes på følgende måde (se figur 4): Man ser på den linje l 0, som går igennem øjepunktet og er parallel med linjestykket A2 B 2. l 0 bliver i dette tilfælde identisk med synsretningen. Denne linjes skæringspunkt med billedplanen er forsvindingspunktet, og det bliver derfor i dette tilfælde lig med hovedpunktet H. Vi ser da også i feltet Perspective, at linjestykket skal afbildes, så det nærmer sig til hovedpunktet. Hovedpunktet er også forsvindingspunkt for andre kanter i terningen, for eksempel C2D 2, som jo er parallel med kanten A2 B 2. Vi er nu klar til at bevise sætningen. Bevis for sætning 6: a) Følger direkte af, at linjen er sammenfaldende med synsstrålen for ethvert punkt på linjen (se figur 1). Desuden er l og l 0 sammenfaldende og dermed F l og S l også sammenfaldende. b) Hvis linjen ikke passerer igennem øjepunktet har vi en situation som på figur 20. Figur 20 Husk definitionen af forsvindingspunkt fra afsnit 2: Forsvindingspunktet F l for en dybdelinje l fås ved at betragte den linje l 0, som er parallel med l og som går gennem øjepunktet, og bestemme denne linjes skæringspunkt med billedplanen. Billedpunkterne for ethvert punkt på l må ligge i planen, som indeholder l samt øjepunktet O. Da skæringen mellem denne plan og billedplanen er den linje, som passerer igennem F l og S l, må alle billedpunkterne ligge på denne linje. Alle punkter på linjen gennem F l og S l kan forekomme som billedpunkter, bortset fra F l selv (Overvej!). Figur 20 antyder

18 20 Erik Vestergaard også, at hvis et punkt P bevæger sig ud af linjen l, så vil dets billedpunkt Q konvergere mod forsvindingspunktet F l. Dette er illustreret ved at se på to punkter P 1 og P 2 og deres respektive billedpunkter Q 1 og Q 2. I appendiks A vil der blive givet et matematisk bevis for denne påstand. c) Følger direkte af, at parallelle linjer har samme linje l 0. d) En plantegning af situationen ser ud som på figur 21. Påstanden fås umiddelbart ved at regne på den retvinklede OHFl. Figur Introduktion til Perspective Modeler I dette afsnit skal vi introducere programmet Perspective Modeler, som kan downloades fra hjemmesiden angivet i notens indledning. Programmet kan benyttes til at fremstille perspektivisk korrekte tegninger. Programmet er velegnet til undervisningsbrug til at afprøve nogle af perspektivets egenskaber fra de forrige afsnit samt til at lade elever eksperimentere på egen hånd. Lad os se på programmets hovedstruktur. Programmet er indrettet, så brugeren skal beskrive et objekt i rummet, samt beskrive hvorfra det ses foruden billedplanens placering, hvorefter programmet automatisk vil beregne det perspektiviske billede. Sidstnævnte kan ses i feltet Perspective nede til højre (se figur 22). Man kan frembringe forskellige objekter linjer, rektangler, kasser og mere generelle kurver via værktøj i værktøjslinjen. Når et værktøj er valgt kan man frembringe objektet i en af de tre projektionsplaner af rummet kaldet Top, Front og Left. Top viser scenen projiceret ned i xy-planen (plantegning), Front viser situationen projiceret ind i xz-planen (opstalt) og Left viser situationen projiceret ind i yz-planen (opstalt). Efter et objekt er dannet, kan man redigere, strække, flytte, rotere, kopiere samt slette det. Ude til højre i vinduet har vi den såkaldte Object Manager, som er en træstruktur, som holder styr på de enkelte objekter og delobjekter. Det næste vigtige punkt er, hvordan objektet betragtes. Her skal øjepunktet specificeres og en synsretning samt en distance ( d). Øjepunkt og synsretning kan tilpasses interaktivt via den lille synspil, som befinder sig i hver af de tre projektionsplaner. I enderne af synspilen er der et stort og et lille rødt punkt. Det store angiver øjepunktets placering. Synspilens retning angiver synsretningen. Disse to størrelser kan også specificeres manuelt ved koordinater i Edit Perspective

19 Erik Vestergaard 21 dialogboksen, som kan frembringes via menuen View > Edit Perspective... eller ved blot at klikke på knappen med øjet i værktøjslinjen. Her kan distancen i afbildningen også sættes. Dette er hovedingredienserne i programmet. Det vil føre for vidt at gennemgå alle funktioner i detaljer. I stedet vil læseren blive ledt igennem vigtige dele af programmet i et eksempel (en tutorial) i næste afsnit. Figur Perspective Modeler: En tutorial Frem for at gennemgå Perspective Modelers funktioner én efter én vil det være mere hensigtsmæssigt at se på en konkret opgave, og så vise læseren skridt for skridt hvordan denne opgave løses. Det betegnes en tutorial. Lad os sige, at vi ønsker at skabe en terning og betragte den fra forskellige positioner for at undersøge, hvordan det perspektiviske billede tager sig ud. Tastaturgenveje skrives i parentes. Husk, at hvis du kommer til at gøre noget forkert kan du altid klikke på fortryde-værktøjet (Undo) i værktøjslinjen. a) Bemærk, at feltet Top øverst til venstre er omkredset af en rød ramme. Det betyder, at feltet er aktiveret og klar til at arbejde i. Prøv for sjov skyld at klikke et sted i feltet Front og se at det nu bliver aktiveret. Hvis du herefter højreklikker i feltet vises en forstørret udgave af feltet. Højreklikkes igen i feltet er man tilbage. Det samme kan gøres i de andre felter... En anden mulighed for at zoome ind er at anvende F2-tasten og trække et felt ud. F3-tasten bringer én tilbage igen...

20 22 Erik Vestergaard b) Der er allerede et objekt i rummet, nemlig et hus. Aktiver feltet Top og marker huset ved at klikke et sted i nærheden af huset. Når det er markeret, vises huset nu i rødt. Tryk på Delete-tasten på tastaturet, hvorefter huset forsvinder. c) Du kan se scenens dimensioner via menuen View > Rulers (Ctrl+R). Ved at kigge i de forskellige felter kan man se, at defaultdimensionerne af scenen er 20 x 20, 20 y 20 og 20 z 20. Du kan vedtage med dig selv, at det er meter. Skulle scenens dimensioner ikke være tilfredsstillende kan de ændres i dialogboksen Scene Properties, som kan nås fra menuen View > Scene Properties... (F6). Her kan du også ændre linjernes tykkelser og farver og ændre på gitteret m.m. Men som situationen er her stiller vi os tilfreds med default værdierne. Bemærk, at en fornyet brug af Ctrl+R vil fjerne linealerne igen. d) Vi er nu klar til at lave terningen. Klik på Box Tool (ikke Rectangle Tool!!) i værktøjslinjen og bemærk, at cursoren skifter udseende! Kasseværktøjets virkemåde er lidt specielt, idet man skal frembringe en tredimensional figur i et felt, som er todimensionalt. Dette lader sig gøre ved at man i feltet Top først trækker et rektangel ud i xy-planen og når man slipper venstre museknap er objektet endnu ikke færdigt. Kig nemlig i de to øvrige felter Front og Left og bemærk, at højden endnu ikke er dannet. Når du bevæger cursoren op eller ned vil højden nemlig ændres i disse felter. Når du har placeret cursoren, så en tilfredsstillende højde er opnået, foretager du et sidste venstreklik, hvorefter kassen endelig er færdig. Lad os sige, at vi ønsker at lave en terning med sidelængden 5 meter. Da gitterlinjerne har afstanden 1 meter skal vi altså lave en kasse på 5 gange 5 gange 5 enheder. Hvis du holder Shifttasten nede samtidigt med at du frembringer kassen, vil programmet udføre Snap to Grid, dvs. kassen vil holde sig til gitterlinjerne! Vær ikke så bekymret for hvor du anbringer kassen. Under punkt e) vil vi alligevel flytte kassen! Figur 23

Indholdsfortegnelse. T1. IndledningT... 5. T2. CentralprojektionsmodellenT... 5. T3. Kort om rumgeometrit... 8

Indholdsfortegnelse. T1. IndledningT... 5. T2. CentralprojektionsmodellenT... 5. T3. Kort om rumgeometrit... 8 ... Indholdsfortegnelse T1. IndledningT... 5 T2. CentralprojektionsmodellenT... 5 T3. Kort om rumgeometrit... 8 T4. Rummet og den perspektiviske plant... 12 T5. Den perspektiviske afbildningt... 14 T6.

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

1. Formål og rettigheder

1. Formål og rettigheder Indholdsfortegnelse 1. Formål og rettigheder...3 2. Begreber og opbygning...3 3. Scenen og projektionerne...7 4. Objekterne...8 5. Perspektivet...12 6. Gemme, åbne, lukke, udskrive, eksportere m.m....15

Læs mere

Arbejde med 3D track motion

Arbejde med 3D track motion Arbejde med 3D track motion Gary Rebholz I sidste måneds Tech Tip artikel gennemgik jeg det grundlæggende i track motion. Selv om vi ikke gennemgår alle værktøjer i Track Motion dialog box vil du alligevel

Læs mere

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

Bacheloruddannelsen 1. år E15

Bacheloruddannelsen 1. år E15 Bacheloruddannelsen 1. år E15 2 v/jan Fugl 3 Projektionstegning Projek tion -en, -er (lat.pro jectio, til pro jicere-, kaste frem, af pro frem + jacere kaste; jf. Projekt, projektil, projektion) afbildning

Læs mere

Perspektiv. At illustrerer rumligt. Forsvindingspunkt Horisont

Perspektiv. At illustrerer rumligt. Forsvindingspunkt Horisont Rumlig afbildning For at illustrere en bygning eller et Rum, i et sprog der er til at forstå, for ikke byggefolk, kan det være en fordel at lave en gengivelse af virkeligheden. Perspektiv At illustrerer

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

GeoGebra 3.0.0.0 Quickstart. det grundlæggende

GeoGebra 3.0.0.0 Quickstart. det grundlæggende GeoGebra 3.0.0.0 Quickstart det grundlæggende Grete Ridder Ebbesen frit efter GeoGebra Quickstart af Markus Hohenwarter Virum, 28. februar 2009 Introduktion GeoGebra er et gratis og meget brugervenligt

Læs mere

Opgaver om koordinater

Opgaver om koordinater Opgaver om koordinater Formålet med disse opgaver er dels at træne noget matematik, dels at give oplysninger om og træning i brug af Mathcad: Matematik: Øge grundlæggende indsigt vedrørende koordinater

Læs mere

Matematikken bag Parallel- og centralprojektion

Matematikken bag Parallel- og centralprojektion Matematikken bag parallel- og centralojektion 1 Matematikken bag Parallel- og centralojektion Dette er et redigeret uddrag af lærebogen: Programmering med Delphi fra 2003 (570 sider). Delphi ophørte med

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Excel tutorial om indekstal og samfundsfag 2008

Excel tutorial om indekstal og samfundsfag 2008 Excel tutorial om indekstal og samfundsfag 2008 I denne note skal vi behandle data fra CD-rommen Samfundsstatistik 2008, som indeholder en mængde data, som er relevant i samfundsfag. Vi skal specielt analysere

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Microsoft Word 2003 - fremgangsmåde til Blomsterhuset Side 1 af 11

Microsoft Word 2003 - fremgangsmåde til Blomsterhuset Side 1 af 11 Microsoft Word 2003 - fremgangsmåde til Blomsterhuset Side 1 af 11 Åbn Word 2003 Skriv: Blomsterhuset A/S - tryk enter en gang Skriv: Blomster for alle - tryk enter 5 gange Skriv: I anledning af at - tryk

Læs mere

Analytisk Geometri. Frank Nasser. 11. juli 2011

Analytisk Geometri. Frank Nasser. 11. juli 2011 Analytisk Geometri Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN MODELSÆT ; MATEMATIK TIL LÆREREKSAMEN Forberedende materiale Den individuelle skriftlige røve i matematik vil tage udgangsunkt i følgende materiale:. En diskette med to regnearks-filer og en MathCad-fil..

Læs mere

En lille vejledning i at bruge Paint Win 98 og Win XP Indhold

En lille vejledning i at bruge Paint Win 98 og Win XP Indhold 1 En lille vejledning i at bruge Paint Win 98 og Win XP Indhold Indhold...2 1. Åbn Paint...3 2. Vælg en baggrundsfarve og en forgrundsfarve...3 3. Tegn et billede...4 4. Ny, fortryd og gentag...4 5. Andre

Læs mere

Kom hurtigt i gang. med. FloorPlan 3D. FloorPlan 3D er et program med mange anvendelsesmuligheder!

Kom hurtigt i gang. med. FloorPlan 3D. FloorPlan 3D er et program med mange anvendelsesmuligheder! Kom hurtigt i gang med FloorPlan 3D FloorPlan 3D er et program med mange anvendelsesmuligheder! Formålet med denne guide, er at give et overblik over de grundlæggende funktioner i FloorPlan 3D og at få

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Filtyper, filformat og skabelon. Tabel. Tekstombrydning. Demo Fremstil, gem og brug en skabelon. Øvelser Fremstil, gem og brug en skabelon

Filtyper, filformat og skabelon. Tabel. Tekstombrydning. Demo Fremstil, gem og brug en skabelon. Øvelser Fremstil, gem og brug en skabelon Disposition for kursus i Word 2007 Filtyper, filformat og skabelon Demo Fremstil, gem og brug en skabelon Øvelser Fremstil, gem og brug en skabelon Tabel Demo Opret en tabel ud fra en tekst Øvelser Opret

Læs mere

Opsætte f.eks. en rejsebeskrivelse med tekst og billede i Draw side 1

Opsætte f.eks. en rejsebeskrivelse med tekst og billede i Draw side 1 side 1 Hvis man vil lave en opsætning af rejsebeskrivelse og billeder, kan man også gøre det i DRAW. Denne vejledning vil vise hvordan man indsætter hjælpelinjer så man laver en pæn opstilling med billede

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE.

DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE. Geogebra. DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE. (dvs. det er ikke alle emner i SYMBOLLINIEN, der beskrives). Navnet GEOGEBRA er en

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Word-5: Tabeller (2007)

Word-5: Tabeller (2007) Word-5: Tabeller (2007) Tabel-funktionen i Word laver en slags skemaer. Word er jo et amerikansk program og på deres sprog hedder skema: table. Det er nok sådan udtrykket er opstået, da programmet blev

Læs mere

Word-5: Tabeller og hængende indrykning

Word-5: Tabeller og hængende indrykning Word-5: Tabeller og hængende indrykning Tabel-funktionen i Word laver en slags skemaer. Word er jo et amerikansk program og på deres sprog hedder skema: table. Det er nok sådan udtrykket er opstået, da

Læs mere

Geogebra Begynder Ku rsus

Geogebra Begynder Ku rsus Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Introduktion til GeoGebra

Introduktion til GeoGebra Introduktion til GeoGebra Om navne Ib Michelsen Herover ses GeoGebra's brugerflade. 1 I øverste linje finder du navnet GeoGebra og ikoner til at minimere vinduet, ændre til fuldskærm og lukke I næste linje

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

Sådan gør du i GeoGebra.

Sådan gør du i GeoGebra. Sådan gør du i GeoGebra. Det første vi skal prøve er at tegne matematiske figurer. Tegne: Lad os tegne en trekant. Klik på trekant knappen Klik på punktet ved (1,1), (4,1) (4,5) og til sidst igen på (1,1)

Læs mere

Alle vandrette linjer, der er vinkelrette med synslinjen, er parallelle med horisonten.

Alle vandrette linjer, der er vinkelrette med synslinjen, er parallelle med horisonten. Perspektiv tegning Hjælp til perspektivtegning. Illustrationerne er købt fra Perspektivtegning - Matematik i Billedkunst, billedkunst i matematik. - en kopimappe som er lavet af Jørgen Skourup og Ole Stærkjær.

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Introducerende undervisningsmateriale til Geogebra

Introducerende undervisningsmateriale til Geogebra Klaus Frederiksen & Christine Hansen Introducerende undervisningsmateriale til Geogebra - Dynamisk geometriundervisning www.bricksite.com/ckgeogebra 01-03-2012 Indhold 1. Intro til programmets udseende...

Læs mere

Vejledning til Photofiltre nr. 108 Side 1. Lave visitkort i dankort størelse med eget foto

Vejledning til Photofiltre nr. 108 Side 1. Lave visitkort i dankort størelse med eget foto Side 1 I denne vejledning vises hvordan man kan lave visitkort, på samme måde som der blev lavet bordkort. Vi vil her som baggrund bruge et af vores egne foto. Opsætningen foregår i LibreOffice Draw og

Læs mere

Athena DIMENSION Tværsnit 2

Athena DIMENSION Tværsnit 2 Athena DIMENSION Tværsnit 2 Januar 2002 Indhold 1 Introduktion.................................. 2 2 Programmets opbygning........................... 2 2.1 Menuer og værktøjslinier............................

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

SPAM-mails. ERFA & Søren Noah s A4-Ark 2010. Køber varer via spam-mails. Læser spam-mails. Modtager over 40 spam-mails pr. dag. Modtager spam hver dag

SPAM-mails. ERFA & Søren Noah s A4-Ark 2010. Køber varer via spam-mails. Læser spam-mails. Modtager over 40 spam-mails pr. dag. Modtager spam hver dag SPAM-mails Køber varer via spam-mails Læser spam-mails Modtager over 40 spam-mails pr. dag Modtager spam hver dag 0 10 20 30 40 50 60 70 80 90 ERFA & Søren Noah s A4-Ark 2010 Datapræsentation: lav flotte

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

Animationer med TI-Nspire CAS

Animationer med TI-Nspire CAS Animationer med TI-Nspire CAS Geometrinoter til TI-Nspire CAS version 2.0 Brian Olesen & Bjørn Felsager Midtsjællands Gymnasieskoler Marts 2010 Indholdsfortegnelse: Indledning side 1 Eksempel 1: Pythagoras

Læs mere

Afstandsformlen og Cirklens Ligning

Afstandsformlen og Cirklens Ligning Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.

Læs mere

8A IKON BETEGNELSE INDLAGT SKAL TILFØJES

8A IKON BETEGNELSE INDLAGT SKAL TILFØJES EasyDraw EasyDraw er den tegnemetode man kan bruge når man tegner enkle blokke. Denne blyant og papir metode gør det muligt at tegne streger og buer, inddele i firkanter og rektangler. Linjerne må tegnes,

Læs mere

Den måde, maleren bygger sit billede op på, kaldes billedets komposition.

Den måde, maleren bygger sit billede op på, kaldes billedets komposition. Komposition - om at bygge et billede op Hvis du har prøvet at bygge et korthus, ved du, hvor vigtigt det er, at hvert kort bliver anbragt helt præcist i forhold til de andre. Ellers braser det hele sammen.

Læs mere

Vektorer i planen. Et oplæg Karsten Juul

Vektorer i planen. Et oplæg Karsten Juul Vektorer i planen Et oplæg 3 4 4 2 2007 Karsten Juul Dette hæfte er tænkt brugt som et oplæg der skal gennemgås før man begynder på en lærebogs fremstilling af emnet vektorer. Formålet med øvelserne er

Læs mere

AutoCAD 2012. 2D øvelser til bygningstegning. Frede Uhrskov

AutoCAD 2012. 2D øvelser til bygningstegning. Frede Uhrskov AutoCAD 2012 2D øvelser til bygningstegning Frede Uhrskov Forord Øvelserne er opbygget som detaljerede indtastningsøvelser, og som indlæring kan de ikke stå alene, men da det også er vigtigt at få succes

Læs mere

Start SketchUp vælg File Open og åben filen Milimeters.skp under Templates

Start SketchUp vælg File Open og åben filen Milimeters.skp under Templates For at få SketchUp til at virke skal programmet først sættes op Start SketchUp vælg File Open og åben filen Milimeters.skp under Templates Herefter vælges Window -> Entity Info Kontroller at units er i

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydningsloven Når en bølge, fx en lysbølge, rammer en grænseflade mellem to stoffer, vil bølgen normalt blive spaltet i to: Noget af bølgen kastes tilbage (spejling), hvor udfaldsvinklen u

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau)

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Matematik i WordMat En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Indholdsfortegnelse 1. Introduktion... 3 2. Beregning... 4 3. Beregning med brøker...

Læs mere

Afstandsformlerne i Rummet

Afstandsformlerne i Rummet Afstandsformlerne i Rummet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

Større skriftlige opgaver i Microsoft Word 2007 Indhold

Større skriftlige opgaver i Microsoft Word 2007 Indhold Større skriftlige opgaver i Microsoft Word 2007 Indhold Større skriftlige opgaver i Microsoft Word 2007... 1 Inddeling i afsnit... 2 Sideskift... 2 Sidetal og Sektionsskift... 3 Indholdsfortegnelse...

Læs mere

Rumlig afbildning. af Torsten Gjøl Jacobsen, bygningskonstruktør og Lasse Bengtsson, arkitekt m.a.a. Københavns Erhvervsakademi, Byggeri/Produktion

Rumlig afbildning. af Torsten Gjøl Jacobsen, bygningskonstruktør og Lasse Bengtsson, arkitekt m.a.a. Københavns Erhvervsakademi, Byggeri/Produktion Rumlig afbildning af Torsten Gjøl Jacobsen, bygningskonstruktør og Lasse Bengtsson, arkitekt m.a.a. Københavns Erhvervsakademi, Byggeri/Produktion Den traditionelle bygningstegning, med sin plan, snit

Læs mere

Selv om websites er yderst forskellige i deres fremtræden, så kan de stort set alle sammen passes ind i den skabelon som er illustreret herunder:

Selv om websites er yderst forskellige i deres fremtræden, så kan de stort set alle sammen passes ind i den skabelon som er illustreret herunder: Design en praktisk guide. Et design udtrykker dit websites grafiske udseende, lige fra hvilke skrifttyper der anvendes op til hvor navigationen er placeret og hvilke interaktive elementer der skal benyttes.

Læs mere

Prepress Serigrafi Grafisk Tekniker Grundforløb. Opgave: Klistermærker i flere farver

Prepress Serigrafi Grafisk Tekniker Grundforløb. Opgave: Klistermærker i flere farver Grafisk Tekniker Grundforløb Opgave: Klistermærker i flere farver I denne opgave skal der skabes et antal klistermærker i flere farver. Temaet er frit. Husk at der i serigrafi skal laves ramme for hver

Læs mere

Bevægelses analyse med SkillSpector. Version 1.0 Sidste opdatering: 14/05-2008

Bevægelses analyse med SkillSpector. Version 1.0 Sidste opdatering: 14/05-2008 Bevægelses analyse med SkillSpector Version 1.0 Sidste opdatering: 14/05-2008 Hvad er SkillSpector SkillSpector er software program til video baseret bevægelses analyse. Der er følgende muligheder med

Læs mere

Vejledning til Photofiltre nr. 105 Side 1

Vejledning til Photofiltre nr. 105 Side 1 Side 1 Denne vejledning er et smalt grafikbillede man kan bruge i toppen af en mail lavet i PhotoFiltre 7 hvor man nu kan arbejde i lag. Med PhotoFiltre 7 er det nu endnu nemmere at sammensætte grafik

Læs mere

På min hjemmeside under Libre Draw finder du nederst en skabelon Skabelon med 2 spalter. Det er den vi skal bruge i dette eksempel.

På min hjemmeside under Libre Draw finder du nederst en skabelon Skabelon med 2 spalter. Det er den vi skal bruge i dette eksempel. Side 1 Mange kender programmet Microsoft Publisher hvor man sætte forskellige ting op i, blade, skrivelser, sange m.m. Libre Office Draw der er en del af den gratis LibreOffice pakke kan noget i samme

Læs mere

INTRODUKTION TIL DIAGRAMFUNKTIONER I EXCEL

INTRODUKTION TIL DIAGRAMFUNKTIONER I EXCEL INTRODUKTION TIL DIAGRAMFUNKTIONER I EXCEL I denne og yderligere at par artikler vil jeg se nærmere på diagramfunktionerne i Excel, men der er desværre ikke plads at gennemgå disse i alle detaljer, dertil

Læs mere

1. Opbygning af et regneark

1. Opbygning af et regneark 1. Opbygning af et regneark Et regneark er et skema. Vandrette rækker og lodrette kolonner danner celler, hvori man kan indtaste tal, tekst, datoer og formler. De indtastede tal og data kan bearbejdes

Læs mere

Sætte et nyhedsbrev eller julebrev op i Draw Hvor du også bruger Photofiltre 7 side 1

Sætte et nyhedsbrev eller julebrev op i Draw Hvor du også bruger Photofiltre 7 side 1 side 1 Denne vejledning skal vise hvordan man kan lave et julebrev - det kan også være et nyhedsbrev. Fremgangsmåden er den samme Opsætningen foregår i LibreOffice Draw Men hvor man også bruger Photofiltre

Læs mere

Kom hurtigt i gang med FloorPlan 3D

Kom hurtigt i gang med FloorPlan 3D Kom hurtigt i gang med FloorPlan 3D Vejledning for FloorPlan 3D version 11.2 Formålet med denne lille guide er, at give et overblik over de grundlæggende funktioner i FloorPlan 3D og at få dig hurtigt

Læs mere

Introduktion til Rhinoceros 3d

Introduktion til Rhinoceros 3d Introduktion til Rhinoceros 3d September 2012, ruben.borup@aarch.dk, Arkitektskolen Aarhus Interfacets opbygning B A C D F E G H I a) Den øverst menu (alle kommandoer, kategoriseret browse) b) Kommandoprompt

Læs mere

Solid Edge 2D Drafting

Solid Edge 2D Drafting Solid Edge 2D version 106 - tutorial: Solid edge 2d er et gratis tegneprogram, der er genialt til Teknologi. Det kan bruges til at tegne maskintegninger med mål, til at tegne skitser til fysik-afleveringer,

Læs mere

Brug af Word til matematik

Brug af Word til matematik Flex på KVUC, matematik C Brug af Word til matematik Word er et af de gængse tekstbehandlingssystemer der slipper bedst fra det at skrive matematiske formler. Selvfølgelig findes der andre systemer der

Læs mere

TINKERCAD - VEJLEDNING. af Mette Lynnerup & Peter Søgaard. VIA Center for Undervisningsmidler - Tinkercad Vejledning. Side 1/9

TINKERCAD - VEJLEDNING. af Mette Lynnerup & Peter Søgaard. VIA Center for Undervisningsmidler - Tinkercad Vejledning. Side 1/9 TINKERCAD - VEJLEDNING af Mette Lynnerup & Peter Søgaard Side 1/9 Tinkercad - Vejledning Videovejledning http://youtu.be/hmfpkviif6u NB! Vejledningen tager udgangspunkt i anvendelse af Tinkercad på PC

Læs mere

Edb-tekstbehandling, præsentation mm

Edb-tekstbehandling, præsentation mm Edb-tekstbehandling, præsentation mm I denne lektion skal du: - hente kopier et skærmbillede og sætte det ind i et dokument - beskære billedet, så det passer til dit dokument Der findes specielle programmer

Læs mere

How to do in rows and columns 8

How to do in rows and columns 8 INTRODUKTION TIL REGNEARK Denne artikel handler generelt om, hvad regneark egentlig er, og hvordan det bruges på et principielt plan. Indholdet bør derfor kunne anvendes uden hensyn til, hvilken version

Læs mere

Ved brug af computer handler det derfor mest om, hvordan man får teksten til at stå på papiret og på skærmen.

Ved brug af computer handler det derfor mest om, hvordan man får teksten til at stå på papiret og på skærmen. Side 1 af 21 I dette materiale skal du prøve at arbejde med tekster og billeder. Tekster er bogstaver, der er sammensat til ord. Ord er igen sat sammen, så de danner sætninger. Sætninger kan udtrykke en

Læs mere

Kom i gang med Course Tool 1.2

Kom i gang med Course Tool 1.2 Kom i gang med Course Tool 1.2 Indhold Indledning...2 Pris beregning...2 Anvendelse...2 Open Source...2 Anbefalinger...2 Installation...3 USB-Pen...3 Download Libre Office (Draw)...3 Indstil makrosikkerhed...4

Læs mere

Trekanter. Frank Villa. 8. november 2012

Trekanter. Frank Villa. 8. november 2012 Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1

Læs mere

Kursusmappen Kommuniker: På Tryk 2 (med ordforslag fra CD-ORD)

Kursusmappen Kommuniker: På Tryk 2 (med ordforslag fra CD-ORD) Kursusmappen Kommuniker: På Tryk 2 (med ordforslag fra CD-ORD) Øvelser Indhold Indhold... 2 Øvelse 1... 3 Start Kommuniker: På Tryk 2 og åbn nogle af de medfølgende dokumenter... 3 Øvelse 2... 4 Grundfunktioner

Læs mere

Billeder og tegninger i Writer Indhold

Billeder og tegninger i Writer Indhold Billeder og tegninger i Writer Indhold Indhold...1 Introduktion...2 Indsætte billeder...2 Formater billedet...3 Layout...3 Beskære billedet...4 Størrelse...5 Streger/ramme...6 Skygge...7 Justering af billedet...8

Læs mere

Adobe InDesign 1.5. Service & Kommunikation HTX / Viby

Adobe InDesign 1.5. Service & Kommunikation HTX / Viby Adobe InDesign 1.5 1 Adobe InDesign 1.5 2 Adobe InDesign 1.5 - Index Folderteori.............................. 3 Placering.............................. 4 Farver og tekst........................... 5 Skriftsnit

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

Beskæring af et billede med Vegas Pro

Beskæring af et billede med Vegas Pro Beskæring af et billede med Vegas Pro Gary Rebholz Event Pan / Crop værktøj, som du finder på alle video begivenhed i dit projekt giver dig masser af power til at justere udseendet af din video. Du har

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel system lov retning højre nedad finde t system rod orden nøjagtig præcis

Læs mere

Kom godt i gang. Værktøjspaletten. Pensler. 4 www.mikrov.dk

Kom godt i gang. Værktøjspaletten. Pensler. 4 www.mikrov.dk Forord Fresko er et spændende, nyskabende program til faget Billedkunst men med de mange maleteknikker og effekter er det en kreativ udfordring for alle med lyst til at male. Du kan male akvarel, male

Læs mere

praktiskegrunde Regression og geometrisk data analyse (2. del) Ulf Brinkkjær

praktiskegrunde Regression og geometrisk data analyse (2. del) Ulf Brinkkjær praktiskegrunde Praktiske Grunde. Nordisk tidsskrift for kultur- og samfundsvidenskab Nr. 3 / 2010. ISSN 1902-2271. www.hexis.dk Regression og geometrisk data analyse (2. del) Ulf Brinkkjær Introduktion

Læs mere

Nero Cover designer. 1. Opstart og justering af Printer første gang! Brug af Nero til at lave labler-indlægmm. til CD/DVD skiver af egenproduktion.

Nero Cover designer. 1. Opstart og justering af Printer første gang! Brug af Nero til at lave labler-indlægmm. til CD/DVD skiver af egenproduktion. Nero Cover designer. Brug af Nero til at lave labler-indlægmm. til CD/DVD skiver af egenproduktion. 1. Opstart og justering af Printer første gang! Start Nero og vælg i sidepanelet til venstre(åbnes ved

Læs mere

VEKTORGEOMETRI del 2 Skæringer Projektioner Vinkler Afstande

VEKTORGEOMETRI del 2 Skæringer Projektioner Vinkler Afstande VEKTORGEOMETRI del Skæringer Projektioner Vinkler Afstande x-klasserne Gammel Hellerup Gymnasium 1 Indhold OVERSIGT... 3 SKÆRINGSPUNKTER OG RØRINGSPUNKTER... 4 Skæring med koordinatakser- og planer...

Læs mere

Udskriv kort. Før udskrivning af et kort kan du eventuelt vælge at indtegne et/flere udskriftsområder. (I PLUS versionen kun ét).

Udskriv kort. Før udskrivning af et kort kan du eventuelt vælge at indtegne et/flere udskriftsområder. (I PLUS versionen kun ét). . Generelt Ved udskrivning af kort kan du vælge at udskrive det der er vist på skærmen. Du kan også vælge at udskrive et eller flere kortudsnit. Før du udskriver, vil programmet altid åbne en dialog, som

Læs mere

FastStone Image Viewer Indhold

FastStone Image Viewer Indhold FastStone Image Viewer Indhold FastStone Image Viewer...1 Indhold...1 Introduktion...2 Oversigt...3 Indstilling...3 Hente billeder, der skal vises og redigeres...4 Ændre visning af billeder i Billedgalleriet...5

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

Projekt 2.5 Brændpunkt og ledelinje

Projekt 2.5 Brændpunkt og ledelinje Projekter. Kapitel. Projekt.5 Brændpunkt og ledelinje Projekt.5 Brændpunkt og ledelinje En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen

Læs mere

Opstilling af festsange med overskrift og vers.

Opstilling af festsange med overskrift og vers. Side 1 af 12 Opstilling af festsange med overskrift og vers. Spalter 1. Skriv overskrift og vers på normal måde. Lad os sige, at der er 7 vers, hvor de 6 skal stå i 2 spalter. Det sidste skal stå alene

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere