BOSK F2012, 1. del: Prædikatslogik

Størrelse: px
Starte visningen fra side:

Download "BOSK F2012, 1. del: Prædikatslogik"

Transkript

1 ε > 0. δ > 0. x. x a < δ f (x) L < ε February 8, 2012

2 Prædikater Vi skal lære om prædikatslogik lad os starte med prædikater. Et prædikat er et orakel der svarer ja eller nej. Eller mere præcist: Prædikater Et prædikat er en funktion fra en mængde som vi kalder prædikatets domæne til mængden af sandhedsværdier: {S, F }. Vi bruger tit mængden af naturlige tal N som domæne. Et eksempel på et prædikat med domæne N er følgende: { S hvis man som n-årig kan modtage efterløn eller pension E(n) = F hvis man ikke kan. I skrivende stund har vi eksempelvis E(60) = S og E(32) = F. Bemærk at det ikke går at spørge om E( 10) er sandt eller falsk for vi er røget ud af domænet.

3 Hotdogprædikatet og Java Hotdogprædikatet H med domæne N er tankevækkende: { S hvis der er muligt at spise n hotdogs på 10 min. P(n) = F ellers I Java vil det se omtrent sådan ud: Hotdogprædikatet i Java public static boolean hotdog(int n) { return n <= 68; } Metoden tager et argument af typen int der nogenlunde modsvarer N og returnerer en værdi af typen boolean.

4 Hotdogs eller efterløn: Universel kvantifikation Lad n N være et vilkårligt naturligt tal. Hvis n 60 har vi at E(n) holder. Hvis n 68 har vi at H(n) holder. Og da n 60 n 68 har vi at prædikatet D med domæne N givet ved D(n) = E(n) H(n) giver sandt, uanset input. Dette skriver vi n N. D(n). Universel kvantifikation For et prædikat P med domæne D skriver vi d D. P(d) og mener at P giver sand på alle elementerne i domænet. Tænk gerne maskinelt : Løb alle værdierne i domænet igennem og hvis P faktisk svarer sand til dem alle så har vi d D. P(d). Men hvis en eller flere giver falsk går den ikke, så er d D. P(d) selv falsk og d D. P(d) sand.

5 Universel kvantifikation: for og imod d D. P(d) er sand hvis P altid returnerer sand. Derfor: Den svære at bevise universel kvantifikation For at bevise d D. P(d) skal vi godtgøre at P(d) = S uanset valg af d D. Da D kan være endda overordentlig stor fører vi tit et abstrakt argument: lad d D være vilkårligt,..., P(d) er sand. Den lette at modbevise universel kvantifikation For at modbevise d D. P(d) skal vi blot hitte et vidne, det vil sige et element i D som giver falsk. Eksempelvis har vi ikke n N. E(n) H(n). Hvorfor ikke? Tag n = 1 N, vi får E(1) H(1) = F S = F. Liden tue kan vælte stort læs. Hvis man kan finde den.

6 At bevise (!) universel kvantifikation i Java Undertiden kan vi eftervise universel kvantifikation i Java. Metoden er sjældent anvendelig men giver en vis intuition. Vi vil vise at n {1, 2, 3, 4, 5}. n! n n n. Gennemløb i Java boolean result = true; for(int n = 1; n <= 5; n++) { boolean ntruth = fact(n) <= n * n * n; result = result && ntruth; } System.out.println("Udsagnet er : " + result); Output Udsagnet er : true

7 At modbevise (!!) universel kvantifikation i Java At modbevise universel kvantifikation i Java er mere realistisk. Vi lader programmet finde modeksemplet for os. Vi vil modbevise følgende, som man kunne forledes til at tro efter forrige slide: n {1, 2, 3,...}. n! n n n. Gennemløb i Java for(int n = 1; true; n++) { if(fact(n) > n*n*n) { System.out.println("n = "+n+" er modeksempel."); break; } } Output n = 6 er modeksempel.

8 Hotdogs og efterløn: Eksistentiel kvantifikation Vi så at n N. E(n) H(n) ikke gik, fordi E(1) H(1) = F. Omvendt har vi 64 N og E(64) H(64) = S S = S. Der findes altså et element i domænet som gør prædikatet sandt. Dette skriver vi n N. E(n) H(n). Eksistentiel kvantifikation For et prædikat P med domæne D skriver vi d D. P(d) og mener at P giver sand på et eller flere elementer i domænet. Tænk igen maskinelt : Løb alle værdierne i domænet igennem, hvis P svarer sand en eller flere gange, så har vi d D. P(d). Men hvis alle elementer giver falsk går den ikke, så er d D. P(d) selv falsk og d. P(d) sand.

9 Eksistentiel kvantifikation: for og imod d D. P(d) holder hvis P er sand for mindst et element. Derfor: Den lette at bevise eksistentiel kvantifikation Vi viser d D. P(d) ved at fremvise et vidne, det vil sige et element d D så P(d) holder. I tilfældet n N. E(n) H(n) er 64 et sådant vidne. Den svære at modbevise eksistentiel kvantifikation For at modbevise d D. P(d) skal vi godtgøre P(d) = F uanset valg af d D. Vi fører hyppigt et abstrakt argument i stil med følgende: lad d D være vilkårligt,..., P(d) er falsk.

10 At bevise eksistentiel kvantifikation i Java Vi viser eksistentiel kvantifikation ved at rode rundt i domænet indtil vi (måske) finder et vidne. Til tider kan Java tage slæbet, lad os eksempelvis eftervise n N. n 2 + (n + 7) 2 = (n + 32) 2. Gennemløb i Java for(int n = 0; true; n++) { if(n*n + (n+7)*(n+7) == (n+32)*(n+32)) { System.out.println("n = " + n + " er vidne."); break; } } Output n = 65 er vidne.

11 Indlejrede kvantorer Vi kan gerne have prædikater over mere end en variabel og dermed bruge mere end en kvantor. Det ser flot ud, men man angriber bare fra venstre mod højre. Her er et eksempel: n N. m N. m 2n. Hvis du giver mig et tal, så kan jeg give dig et tal som er mindst dobbelt så stort. Eller mere formelt: Lad n N være vilkårligt. Vi skal vise m N. m 2n og prøver med m = 2n N. Vi har at m = 2n 2n så den er ok. Vi viser altså al- og eksistenskvantor som vi plejer.

12 Flere indlejrede kvantorer Mon rækkefølgen har betydning? Lad os prøve den anden version m N. n N. m 2n. Jeg kan give dig et tal som er mindst dobbelt så stort som ethvert tal du kan give mig. Så skal m være stort. Vi prøver modbevis: Lad m N være vilkårligt, vi prøver at modbevise n N. m 2n. Vi skal altså finde n N så m 2n ikke går. Vi prøver n = m + 1 og får m 2m < 2m + 2 = 2(m + 1) = 2n. Rækkefølgen har altså betydning. Før kunne vi vælge m efter n, her skal vi præstere m som det første. Og den går ikke.

13 Indlejrede kvantorer er indlejrede løkker Tænk gerne indlejrede løkker for indlejrede kvantorer. Her viser vi det første eksempel, dog med lidt mindre domæner: n {1, 2, 3,..., 10}. m {1, 2, 3,..., 20}. m 2n. Løkken er Java boolean forall, exists; forall = true; for(int n = 1; n <= 10; n++) { exists = false; for(int m = 1; m <= 20; m++) { exists = exists m >= 2*n; } forall = forall && exists; } System.out.println("Løkkelogikken siger: " + forall);

14 Nogle tal er mere lige end andre Et tal er lige hvis 2 går op i det. Eller mere præcist med kvantorer: Lig(e)heds prædikatet L : N {S, F} L(n) = m N. n = 2m. Er eksempelvis 10 lige? Ja, L(10) = S for 5 N og 10 = 2 5. Et tal er omvendt ulige hvis det er 2 gange noget plus en: Ulig(e)heds prædikatet U : N {S, F} U(n) = m N. n = 2m + 1. Er 117 ulige. Ja, U(117) = S for 58 N og 117 =

15 Efter ulighed kommer lighed Det synes rimeligt (måske ganske trivielt) at der følger et lige tal efter et ulige. Vi kan faktisk vise det præcist: Sætning: Lige tal følger ulige n N. U(n) L(n + 1). Bevis: Lad n N være vilkårligt. For at vise implikationen antager vi at U(n) er sand, altså at m N. n = 2m + 1. Vi kan altså vælge l N så n = 2l + 1. Vi vil gerne vise at L(n + 1) holder, altså at m N. n + 1 = 2m. Vi skal med andre ord finde et m N med egenskaben n + 1 = 2m. Vi prøver med l + 1 N: n + 1 = 2l = 2l + 2 = 2(l + 1).

16 L er dominant Vi skruer lidt op: Hvordan går det med produktet af et lige og et ulige tal? Vi fornemmer lighed ja vi kan vise det helt præcist: Sætning: U er recessiv n N. m N. L(n) U(m) L(nm). Bevis: Lad n N være vilkårligt. Lad m N være vilkårligt. Vi antager L(n) U(m) altså at L(n) = S og U(m) = S. Vi kan vælge l N så n = 2l og vi kan vælge k N så m = 2k + 1. Vi skal vise at L(nm) holder, altså at j N. nm = 2j. Vi regner: nm = 2l(2k + 1) = 4lk + 2l = 2(2lk + l). Så vi kan vælge j = 2lk + 1 N og så er L(nm) vist.

17 De Morgan og kvantorerne, del I Vi modbeviser en alkvantor ved at finde et element der gør prædikatet falsk. Vi beviser en eksistenskvantor ved at finde et element der gør prædikatet sand. De er snublende ens. De Morgan negerer alkvantorer ( d D. P(d) ) d D. P(d). Venstresiden er sand netop når der findes et d D så P(d) er falsk. Og højresiden går det ligeså. Det er lidt det samme som De Morgan fra udsagnslogikken: (p q) p q.

18 De Morgan og kvantorerne, del II Vi beviser en alkvantor ved at vise at prædikatet holder for alle elementer i domænet. Vi modbeviser en eksistenskvantor ved at vise at prædikatet fejler for alle elementer i domænet. Igen er sammenhængen nærliggende: De Morgan negerer eksistenskvantorer ( d D. P(d) ) d D. P(d). Venstresiden er sand netop når P(d) er falsk for alle d D. Og højresiden går det ligeså. Igen modsvarer det De Morgan fra udsagnslogikken: (p q) p q.

19 Et prim(a) eksempel, del I 17 er primtal, det har kun de trivielle divisorer 1 og 17. På græsk: n N. ( m N. 17 = nm ) n = 1 n = er næppe et primtal. Så vi forventer at have ( n N. ( m N. 42 = nm ) ) n = 1 n = 42. Magen til suppedas skal man lede længe efter. Vi må omskrive lidt.

20 Et prim(a)) eksempel, del II Vi regner derudad, først negerer vi en alkvantor og så er det udsagnslogik resten af vejen: ( n N. ( m N. 42 = nm ) ) n = 1 n = 42 ( ( m ) ) n N. N. 42 = nm n = 1 n = 42 ( n N. ( m N. 42 = nm ) ) n = 1 n = 42 n N. ( m N. 42 = nm ) n 1 n 42. Der skal med andre ord findes en ikke-triviel divisor netop hvad man ville forvente af et sammensat tal. 7 er et godt bud her.

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

BOSK F2011, 1. del: Induktion

BOSK F2011, 1. del: Induktion P(0) ( n N. P(n) P(n + 1) ) = ( n N. P(n) ) February 15, 2011 Summa summarum Vi får et tip om at følgende kunne finde på at holde for n N: n N. n i = n(n + 1). 2 Vi husker at summation læses meget som

Læs mere

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides 01017 Diskret Matematik E12 Alle bokse fra logikdelens slides Thomas Bolander 1 Udsagnslogik 1.1 Formler og sandhedstildelinger symbol står for ikke eller og ( A And) hvis... så... hvis og kun hvis...

Læs mere

Baggrundsnote om logiske operatorer

Baggrundsnote om logiske operatorer Baggrundsnote om logiske operatorer Man kan regne på udsagn ligesom man kan regne på tal. Regneoperationerne kaldes da logiske operatorer. De tre vigtigste logiske operatorer er NOT, AND og. Den første

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931

Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931 Kommentar til 1 Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931 Denne afhandling af den 24-årige Kurt Gödel er blevet en klassiker. Det er vist den eneste

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

Integer.parseInt(args[0]) konverterer tegnstreng (f.eks. "10") til heltal (10). if (udtryk) else

Integer.parseInt(args[0]) konverterer tegnstreng (f.eks. 10) til heltal (10). if (udtryk) else Programmering 1999 Forelæsning 2, fredag 3. september 1999 Betingede ordrer: if-, if Indlejrede betingede ordrer Løkker med begrænset iteration: for Løkker med ubegrænset iteration: while Betingede ordrer,

Læs mere

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393.

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Broer, skak og netværk Side 1 af 6 Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Eksempler på praktiske anvendelser af matematik og nogle uløste problemer Indledning Figur

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Induktive og rekursive definitioner

Induktive og rekursive definitioner Induktive og rekursive definitioner Denne note omhandler matematiske objekter, som formelt er opbygget fra et antal basale byggesten, kaldet basistilfælde eller blot basis, ved gentagen brug af et antal

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9?

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9? Tip til 1. runde af Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal er deleligt med et andet. Derfor spiller primtallene en helt central rolle i talteori, hvilket vi skal se

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

RSA Kryptosystemet. Kryptologi ved Datalogisk Institut, Aarhus Universitet

RSA Kryptosystemet. Kryptologi ved Datalogisk Institut, Aarhus Universitet RSA Kryptosystemet Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Kryptering med RSA Her følger først en kort opridsning af RSA kryptosystemet, som vi senere skal bruge til at lave digitale signaturer.

Læs mere

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling Om brugen af matematiske tegn og objekter i en god matematisk fremstilling af Petur Birgir Petersen Et særpræg ved matematik som videnskab er den udstrakte brug af symboler. Det er vigtigt at symbolerne

Læs mere

Version 8 Outlookintegration

Version 8 Outlookintegration Version 8 Outlookintegration - Synkroniser din C&B Kalender med Outlook Med C&B Outlook-integration kan du få synkroniseret dine aftaler, så din C&B Kalender matcher din Outlook-kalender og omvendt. Integrationen

Læs mere

Appendiks 6: Universet som en matematisk struktur

Appendiks 6: Universet som en matematisk struktur Appendiks 6: Universet som en matematisk struktur En matematisk struktur er et meget abstrakt dyr, der kan defineres på følgende måde: En mængde, S, af elementer {s 1, s 2,,s n }, mellem hvilke der findes

Læs mere

Opgave 1 Regning med rest

Opgave 1 Regning med rest Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan

Læs mere

Kursus i OOP og Java. Kursus i Objektorienteret programmering i Java

Kursus i OOP og Java. Kursus i Objektorienteret programmering i Java Kursus i OOP og Java Kursus i Objektorienteret programmering i Java Åben Dokumentlicens Dette foredragsmateriale er under Åben Dokumentlicens (ÅDL) Du har derfor lov til frit at kopiere dette værk Bruger

Læs mere

Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version

Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version Note til Programmeringsteknologi Akademiuddannelsen i Informationsteknologi Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version Finn Nordbjerg 1/9 Indledning I det følgende introduceres et par abstrakte

Læs mere

Kontraktbaseret Programmering Anker Mørk Thomsen 1. udgave ISBN: 978-87-40-41315-1

Kontraktbaseret Programmering Anker Mørk Thomsen 1. udgave ISBN: 978-87-40-41315-1 -1 Kontraktbaseret Programmering Anker Mørk Thomsen 1. udgave ISBN: 978-87-40-41315-1 Forord Denne bog er blevet til gennem undervisning i faget Kontraktbaseret Udvikling på bacheloruddannelsen i Softwareudvikling.

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Grundlæggende regneteknik

Grundlæggende regneteknik Grundlæggende regneteknik Anne Ryelund, Mads Friis og Anders Friis 13. november 2014 Indhold Forord Indledning iii iv 1 Regning med brøker 1 1.1 Faktorisering i primtal.............................. 3

Læs mere

1 Sætninger om hovedidealområder (PID) og faktorielle

1 Sætninger om hovedidealområder (PID) og faktorielle 1 Sætninger om hovedidealområder (PID) og faktorielle ringe (UFD) 1. Introducér ideal, hovedideal 2. I kommutativt integritetsområde R introduceres primelement, irreducibelt element, association 3. Begrebet

Læs mere

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

OM BEVISER. Poul Printz

OM BEVISER. Poul Printz OM BEVISER Poul Printz Enhver, der har stiftet bekendtskab med matematik selv å et relativt beskedent niveau, er klar over, at matematiske beviser udgør et meget væsentligt element af matematikken. De

Læs mere

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er Ugens emner FA minimering [.-.] MyHill-Nerode-sætningen en algoritme til minimering af FA er En karakteristik af de regulære sprog Et sprog L er regulært hvis og kun hvis L beskrives af et regulært udtryk

Læs mere

Bogfunktionen eller Slægtsbogen i FTM

Bogfunktionen eller Slægtsbogen i FTM Bogfunktionen eller Slægtsbogen i FTM En blandt mange af Family Tree Maker s styrker er evnen til at præsentere data på mange forskellige måder, og i dette skrift vil bogfunktionen blive gennemgået. Funktionen

Læs mere

Grundlæggende Programmering ITU, Efterår 1999. Skriftlig eksamen i Grundlæggende Programmering

Grundlæggende Programmering ITU, Efterår 1999. Skriftlig eksamen i Grundlæggende Programmering Skriftlig eksamen i Grundlæggende Programmering ITU, 20. januar 2000 Alle hjælpemidler tilladt, dog ikke datamat. Eksamen er skriftlig, fire timer, og bedømmes efter 13-skalaen. Opgavesættet består af

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Figur: Terminologi: n = V, m = E (eller V og E (mis)bruges som V og E ).

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010

Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010 Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010 Computere er uvurderlige redskaber for personer der ønsker at arbejde med matematiske modeller

Læs mere

SAX Simple API for XML.

SAX Simple API for XML. SAX Simple API for XML. En API (Application Programming Interface) et bibliotek eller et sæt af funktioner eller metoder. SAX er et sådant bibliotek af abstrakte metoder som f. eks. startdocument() eller

Læs mere

En forståelsesramme for de reelle tal med kompositioner.

En forståelsesramme for de reelle tal med kompositioner. 1 En forståelsesramme for de reelle tal med kompositioner. af Ulrich Christiansen, sem.lekt. KDAS. Den traditionelle tallinjemodel, hvor tallene svarer til punkter langs tallinjen, dækker fornuftigt (R,

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard RSA-kryptosystemet RSA-kryptosystemet Erik Vestergaard Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 007. Billeder: Forside: istock.com/demo10 Erik Vestergaard www.matematikfysik.dk 3 1. Indledning

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

+ "&"' +,! ")& - )'.** /, )'.** 1 2 "&"' +,! 3 *4 5

+ &' +,! )& - )'.** /, )'.** 1 2 &' +,! 3 *4 5 !"#!"# $&'( # $ "&"' ( )* =NUTIDSVÆRDI(B8;B12:K12)-B4 ")&# + "&"' +,! ")& - )'.** / 0, )'.** 1 2 "&"' +,! 3 *4 64 " *7)*7 '7 )87 )'.**!"# 9 )( )"* $ 3 (!" 3 :: 3 :"*;8: 3 Range( A1:A10 ).Cells(3)

Læs mere

Poster design. Meningen med en poster

Poster design. Meningen med en poster Poster design At præsentere et naturvidenskabelig emne er ikke altid lige nemt. Derfor bruges ofte plakater, såkaldte posters, til at fremvise forskning på fx messer eller konferencer. Her kan du finde

Læs mere

Løsningsforslag til Tal, algebra og funktioner 1.-6. klasse

Løsningsforslag til Tal, algebra og funktioner 1.-6. klasse 1 Løsningsforslag til Tal, algebra og funktioner 1.-6. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien

Læs mere

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Start på Arduino og programmering

Start på Arduino og programmering Programmering for begyndere Brug af Arduino Start på Arduino og programmering EDR Hillerød Knud Krogsgaard Jensen / OZ1QK 1 Start på Arduino og programmering Sidste gang (Introduktion) Programmeringssproget

Læs mere

Rente, lån og opsparing

Rente, lån og opsparing Rente, lån og opsparing Simpel rente og sammensat rente... 107 Nogle vigtige begreber omkring lån og opsparing... 109 Serielån... 110 Annuitetslån... 111 Opsparing... 115 Rente, lån og opsparing Side 106

Læs mere

Om binære søgetræer i Java

Om binære søgetræer i Java Om binære søgetræer i Java Mads Rosendahl 7. november 2002 Resumé En fix måde at gemme data på er i en træstruktur. Måden er nyttig hvis man får noget data ind og man gerne vil have at det gemt i en sorteret

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer

Læs mere

Komplekse tal og rækker

Komplekse tal og rækker Komplekse tal og rækker John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal og rækker. Noterne er beregnet til at blive brugt sammen med foredraget. I afsnit 2 bliver

Læs mere

Kapitel 9. Optimering i Microsoft Excel 97/2000

Kapitel 9. Optimering i Microsoft Excel 97/2000 Kapitel 9 Optimering i Microsoft Excel 97/2000 9.1 Indledning... 164 9.2 Numerisk løsning af ligninger... 164 9.3 Optimering under bibetingelser... 164 9.4 Modelformulering... 165 9.5 Gode råd ommodellering...

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Introduktion: Vi vil nu se på et konkret eksempel på hvordan man i praksis fordeler mandaterne i et repræsentativt demokrati,

Læs mere

Metoder og erkendelsesteori

Metoder og erkendelsesteori Metoder og erkendelsesteori Af Ole Bjerg Inden for folkesundhedsvidenskabelig forskning finder vi to forskellige metodiske tilgange: det kvantitative og det kvalitative. Ser vi på disse, kan vi konstatere

Læs mere

Programmering i C. Kurt Nørmark 2005 Institut for Datalogi, Aalborg Universitet. Sammendrag

Programmering i C. Kurt Nørmark 2005 Institut for Datalogi, Aalborg Universitet. Sammendrag Programmering i C Kurt Nørmark 2005 Institut for Datalogi, Aalborg Universitet Sammendrag Dette er et undervisningsmateriale om introducerende programmering i et imperativt sprog. Mere konkret er det et

Læs mere

Rekursion C#-version

Rekursion C#-version Note til Programmeringsteknologi Akademiuddannn i Informationsteknologi Rekursion C#-version Finn Nordbjerg 1 Rekursion Rekursionsbegrebet bygger på, at man beskriver noget ved "sig selv". Fx. kan tallet

Læs mere

Kontraktbaseret Design. Anker Mørk Thomsen

Kontraktbaseret Design. Anker Mørk Thomsen Kontraktbaseret Design Anker Mørk Thomsen 5. marts 2014 -2 Kontraktbaseret Design Anker Mørk Thomsen 1. udgave ISBN: 9788740491500 Forord Bogen er blevet til gennem undervisning i faget Kontraktbaseret

Læs mere

Martin Geisler Mersenne primtal. Marin Mersenne

Martin Geisler Mersenne primtal. Marin Mersenne Martin Geisler Mersenne primtal Marin Mersenne 3. årsopgave Aalborghus Gymnasium 22. 29. januar 2001 Forord Denne opgave skal handle om Mersenne primtal, men kommer også ind på meget andet. Da de forskellige

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Indledning: I B-bogen har vi i studieretningskapitlet i B-bogen om matematik-fsik set på parallelkoblinger af resistanser

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Lille Georgs julekalender 07. 1. december. Hvor mange løbere kan der opstilles på et skakbræt uden at de truer hinanden?

Lille Georgs julekalender 07. 1. december. Hvor mange løbere kan der opstilles på et skakbræt uden at de truer hinanden? 1. december Hvor mange løbere kan der opstilles på et skakbræt uden at de truer hinanden? Svar: 14 Forklaring: Der kan godt stå 14, f.eks. sådan: Men kunne der stå flere hvis man stillede dem endnu snedigere

Læs mere

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber Produktsystemer, substitutions-permutations-net samt lineær og differentiel kryptoanalyse Kryptologi, fredag den 10. februar 2006 Nils Andersen (Stinson 3., afsnit 2.7 3.4 samt side 95) Produkt af kryptosystemer

Læs mere

Med TI-89 / TI-92 Plus kan du også sammenligne eller manipulere binære tal bit for bit.

Med TI-89 / TI-92 Plus kan du også sammenligne eller manipulere binære tal bit for bit. Kapitel 20: Talsystemer 20 Resumé af talsystemer... 344 Indtastning og omregning af talsystemer... 345 Udførelse af matematiske beregninger med hexadecimale og binære tal... 346 Sammenligning eller manipulation

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul Bogstavregning En indledning for stx og hf 2008 Karsten Juul Dette hæfte træner elever i den mest grundlæggende bogstavregning (som omtrent springes over i lærebøger for stx og hf). Når elever har lært

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende

Læs mere

DM502. Peter Schneider-Kamp (petersk@imada.sdu.dk) http://imada.sdu.dk/~petersk/dm502/

DM502. Peter Schneider-Kamp (petersk@imada.sdu.dk) http://imada.sdu.dk/~petersk/dm502/ DM502 Peter Schneider-Kamp (petersk@imada.sdu.dk) http://imada.sdu.dk/~petersk/dm502/ 1 DM502 Bog, ugesedler og noter De første øvelser Let for nogen, svært for andre Kom til øvelserne! Lav opgaverne!

Læs mere

Proposition I Hvis jeg har samme chance for at få a eller b, er det for mig lige så meget værd som a + b

Proposition I Hvis jeg har samme chance for at få a eller b, er det for mig lige så meget værd som a + b vil have samme chance for at få eller 7 skilling i et retmæssigt spil, som det senere vil blive vist. Proposition I Hvis jeg har samme chance for at få a eller b, er det for mig lige så meget værd som

Læs mere

Start af nyt schematic projekt i Quartus II

Start af nyt schematic projekt i Quartus II Start af nyt schematic projekt i Quartus II Det følgende er ikke fremstillet som en brugsanvisning der gennemgår alle de muligheder der er omkring oprettelse af et Schematic projekt i Quartus II men kun

Læs mere

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet Sikre Beregninger Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Introduktion I denne note skal vi kigge på hvordan man kan regne på data med maksimal sikkerhed, dvs. uden at kigge på de tal

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Svingninger. Erik Vestergaard

Svingninger. Erik Vestergaard Svingninger Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2009. Billeder: Forside: Bearbejdet billede af istock.com/-m-i-s-h-a- Desuden egne illustrationer. Erik Vestergaard

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Programmering. Udvidet Programmering. Kurserne. Kurset: programmering i sproget Java. Lærerne: Morten Larsen og Peter Sestoft

Programmering. Udvidet Programmering. Kurserne. Kurset: programmering i sproget Java. Lærerne: Morten Larsen og Peter Sestoft Kurserne Kurset: programmering i sproget Java Programmering og Udvidet Programmering Lærerne: Morten Larsen og Peter Sestoft Kursusmål: I skal lære at skrive interessante programmer i Java Forudsætninger:

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

Rapport: Kredshjemmesider i Danske Baptisters Spejderkorps. Jan 2012

Rapport: Kredshjemmesider i Danske Baptisters Spejderkorps. Jan 2012 Rapport: Kredshjemmesider i Danske Baptisters Spejderkorps Jan 2012 Af Henrik Andersen og Kenneth Yrke Jørgensen Danske Baptisters Spejderkorps IT-udvalg Kredshjemmesider i Danske Baptisters Spejderkorps

Læs mere

! " # $% &'!& & ' '" & # ' "&()(*& + + +,-' "&( # &(! (! " )(!# &!! (!&!! * (! +& (!!! & " " & & / & & (!

!  # $% &'!& & ' ' & # ' &()(*& + + +,-' &( # &(! (!  )(!# &!! (!&!! * (! +& (!!! &   & & / & & (! !" #$ "%!"&! " # $% &'!& & ' '" & # ' "&()(*& + + +,-' "&( # &(! (! " )(!# &!! (!&!! * (! +& (!!! & Workbooks( MedarbUndersøgelse ),-.", & & Worksheets( Data )& Charts( DisplayData )&& )& " " & & / & &

Læs mere

- stammebeskrivelser ET UNDERVISNINGSMATERIALE FRA

- stammebeskrivelser ET UNDERVISNINGSMATERIALE FRA - stammebeskrivelser ET UNDERVISNINGSMATERIALE FRA Hvid stamme MOTTO: Det er Solgudens vilje, at du skal gøre hvad jeg siger STIKORD: Præster, bestemmer, rige Da Solguden straffede menneskerne, troede

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING MANDATFORDELING Dette materiale er lavet som supplement til Erik Vestergaards hjemmeside om samme emne. 1 http://www.matematiksider.dk/mandatfordelinger.html I dette materiale er en række øvelser der knytter

Læs mere

Programmering I Java/C#

Programmering I Java/C# Programmering I Java/C# Dit første projekt Datatekniker Intro to C# C# (C Sharp) Et enkelt, moderne, generelt anvendeligt, objektorienteret programmeringssprog Udviklet af Microsoft, ledet af danskeren

Læs mere

MÅL. Guide. Drøm om fremtiden og kom i. 1sid0er. Styrk dit liv med Chris MacDonald. November 2013 - Se flere guider på bt.dk/plus og b.

MÅL. Guide. Drøm om fremtiden og kom i. 1sid0er. Styrk dit liv med Chris MacDonald. November 2013 - Se flere guider på bt.dk/plus og b. Foto: Scanpix Guide November 2013 - Se flere guider på bt.dk/plus og b.dk/plus Drøm om fremtiden og kom i 1sid0er MÅL Styrk dit liv med Chris MacDonald Drøm om fremtiden og kom i mål Vi er de eneste levende

Læs mere

Dit barns intelligenstype

Dit barns intelligenstype Dit barns intelligenstype Både lærere, psykologer og børneforældre vil til enhver tid skrive under på, at vores unger har forskellige evner og talenter. De er dygtige på hver deres vis, for intelligens

Læs mere

Undervisning i Dansk Palliativ Database

Undervisning i Dansk Palliativ Database Undervisning i Dansk Palliativ Database - AnalysePortalen og mulighederne for at anvende egne data Undervisning i Dansk Palliativ Database - AnalysePortalen og mulighederne for at anvende egne data Dagens

Læs mere

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Programmering Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Oversigt Undervisningen Hvad er programmering Hvordan er et program organiseret? Programmering og fysik Nobelprisen

Læs mere

Programmering i Javascript

Programmering i Javascript Programmering i Javascript 1. Introduktion HTML er et fortrinligt værktøj til at strukturere og præsentere information, men hvis web siderne skal være interaktive, så der kan reageres på brugerens handlinger,

Læs mere

Klasser. Grundlæggende Programmering med Projekt. Peter Sestoft Tirsdag 2. september 2008. (Tak til Jakob Bardram for nogle slides) Dagens begreber

Klasser. Grundlæggende Programmering med Projekt. Peter Sestoft Tirsdag 2. september 2008. (Tak til Jakob Bardram for nogle slides) Dagens begreber Klasser Grundlæggende Programmering med Projekt Peter Sestoft Tirsdag 2. september 2008 (Tak til Jakob Bardram for nogle slides) Dagens begreber Felt (field) Metode (method) Parameter (parameter) Sætning,

Læs mere

Har du en strategi for dit liv?

Har du en strategi for dit liv? Har du en strategi for dit liv? Det vigtigste i livet For nogle år siden arbejdede jeg med en topleder, der på det tidspunkt var tæt på de 60 år. Lars havde haft succes. Han havde skabt vækst i den virksomhed,

Læs mere

Vejledning: Flytning af egne udviklede ØS LDV rapporter i Reporting services fra en server til en anden server. Målgruppe: Rapportadministrator

Vejledning: Flytning af egne udviklede ØS LDV rapporter i Reporting services fra en server til en anden server. Målgruppe: Rapportadministrator Vejledning: Flytning af egne udviklede ØS LDV rapporter i Reporting services fra en server til en anden server Målgruppe: Rapportadministrator April 2011 Indholdsfortegnelse Indholdsfortegnelse...2 1 Indledning

Læs mere

POWER GRID SPILLEREGLER

POWER GRID SPILLEREGLER POWER GRID SPILLEREGLER FORMÅL Hver spiller repræsenterer et energiselskab som leverer elektricitet til et antal byer. I løbet af spillet køber hver spiller et antal kraftværker i konkurrence med andre

Læs mere

Spil Master Mind. Indledning.

Spil Master Mind. Indledning. side 1 af 16 Indledning. Spillet som denne rapport beskriver, indgår i et større program, der er lavet som projekt i valgfaget programmering C på HTX i perioden 9/11-98 til 12/1-99. Spillet skal give de

Læs mere

4 ledtråde til at hjælpe dig i arbejdet med dit Solar Plexus

4 ledtråde til at hjælpe dig i arbejdet med dit Solar Plexus 4 ledtråde til at hjælpe dig i arbejdet med dit Solar Plexus Jes Dietrich Dette er et lille udsnit fra min bog Hjertet og Solar Plexus. Nogle steder vil der være henvisninger til andre dele af bogen, og

Læs mere

IMADAs Fagråd. Evalueringsrapport. Matematik & Datalogi. 2. juni 2011. Kontaktpersoner

IMADAs Fagråd. Evalueringsrapport. Matematik & Datalogi. 2. juni 2011. Kontaktpersoner Evalueringsrapport Matematik & Datalogi 2. juni 2011 Kontaktpersoner Christian Kudahl - chkud08@student.sdu.dk Maria Buhl Hansen - marih09@student.sdu.dk Indhold Indhold 2 1 Indledning 4 1.1 Matematik-økonomi.......................

Læs mere

"# $%$ " # $ % $ $ " & ( ) *+!,! Sum_Cost >= 5000SirName = Beltov Continue = %!- + ( ( - True) Continue *! If Antal <= 20 Then EnhedsOmk = 1.

# $%$  # $ % $ $  & ( ) *+!,! Sum_Cost >= 5000SirName = Beltov Continue = %!- + ( ( - True) Continue *! If Antal <= 20 Then EnhedsOmk = 1. "# $$ " # $ && & ' $ $ " & ) *+, Sum_Cost >= 5000SirName = Beltov Continue = True) Continue *, + If Antal

Læs mere