Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Størrelse: px
Starte visningen fra side:

Download "Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering"

Transkript

1 Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen om topologioptimering Opgave 5 Opgaver og links, der knytter sig til artiklen om spilteori Opgave 6 Opgave 1 Opgaven knytter sig til artiklen om solsikker Vi ser i det følgende kun på brøker med positive hele tal i tæller og nævner. a. Vis at hvis file:///e /inet/perspektiv/perspektiv/per/ma/05ma/opgaver/alle.html (1 af 11) :45:38

2 b. To brøker og kaldes naboer, hvis. Vis at er nabo til både og, hvis og er naboer. c. Vis at en brøk i intervallet mellem to naboer og vil have en nævner, der er større eller lig med både b og d. d. Gør rede for, at er den brøk med mindst mulig nævner, der ligger i intervallet mellem to naboer og. e. Vis for eksempel ved induktion, at to på hinanden følgende brøker i rækken er naboer. (1) f. Betragt Fibonaccifølgen f(n), hvor f(1) = f(2) = 1 og f(n+1) = f(n) - f(n-1) for alle naturlige tal n større end 1. Altså følgen 1, 1, 2, 3, 5, 8, 13, Antag at brøkerne har grænseværdien Φ, når n går mod uendelig. Gør rede for, at Φ må være løsning til ligningen, og beregn den løsning, der er større end 1. g. Vis at rækken (1) må gå mod, når n går mod uendelig (med samme forudsætninger som i opgave f ) h. Forklar hvorfor spiralerne med for eksempel antallet 21 drejer modsat dem med antallet 34. Opgave 2 Opgaven knytter sig til artiklen om solsikker file:///e /inet/perspektiv/perspektiv/per/ma/05ma/opgaver/alle.html (2 af 11) :45:38

3 Ananassens frugt er dækket af frøbærende skæl, der sidder i spiraler. Antallet af spiraler, der drejer den ene vej, er oftest 8, mens antallet, der drejer den anden vej, er 13. Vi vil se på en dynamisk model for, hvordan disse skæl dannes og vokser; en model, som forklarer, hvorfor det netop er tallene 8 og 13, der fremkommer. Overfladen opfattes som en cylinder, og centrum for et skæl svarer til et punkt på denne overflade. Den cirkel, der udgør cylinderens bund kaldes grundcirklen. En følge af punkter P 0, P 1, P 2,... dannes og bevæger sig efter følgende regler: 1. Ethvert af punkterne dannes på grundcirklen og bevæger sig derefter lodret med konstant fart. 2. Afstanden mellem de to steder, hvor to på hinanden følgende punkter dannes, er konstant. 3. Afstanden i tid mellem de to tidspunkter, hvor to på hinanden følgende punkter dannes, er konstant. 4. Hvert nyt punkt dannes på det sted på grundcirklen, hvor der er mest plads. Det er ikke umiddelbart klart, at alle regler kan blive opfyldt samtidigt, men det vil vi antage i det følgende. Man kan præcisere reglerne ved at folde cylinderens overflade ud som et rektangel, og lægge et koordinatsystem således at de to nederste hjørner i rektanglet får koordinaterne (-0,5, 0) og (0,5, 0). file:///e /inet/perspektiv/perspektiv/per/ma/05ma/opgaver/alle.html (3 af 11) :45:38

4 At et nyt punkt dannes på det sted på grundcirklen, hvor der er mest plads, betyder, at punktet dannes, hvor der er størst mulig afstand til det nærmeste af de foregående punkter. Bemærk, at man for at vurdere afstanden mellem to punkter, der ligger tæt på hinanden men på hver sin side af den linie, der skærer cylinderen op, kan se på tre kopier af den udfoldede cylinder lagt i forlængelse af hinanden. På denne måde kan man også sige, at centrum for den største halvcirkel, der kan lægges uden at have nogen af de forgående punkter i sit indre, er det sted, hvor der er mest plads. Hvis P 0 ligger på randen af den cirkel, der på denne måde kan laves ved dannelsen af P n, siger man, at P 0 har indflydelse på P n. a) Forskellen mellem x- og y-koordinaten til P 0 og P 1 kaldes henholdsvis α og β. Når β er tilstrækkelig stor vil kun have indflydelse på P 1, og α vil være 0,5. Efterhånden som β bliver mindre vil P 0 få indflydelse på flere af de efterfølgende. Antag at. Koordinatsystemet lægges så ligger på x - aksen, og har førstekoordinaten 0. Da er Vi vil se på en situation, hvor P 0 har indflydelse på P 5 ; da gælder specielt: file:///e /inet/perspektiv/perspektiv/per/ma/05ma/opgaver/alle.html (4 af 11) :45:39

5 (2) a. Vis ved hjælp af (2) at (α, β ) opfattet som et punkt ligger på en cirkel med centrum (13/21, 0) og radius 1/21; og dermed specielt at b. Overvej, hvordan denne situation kan generaliseres, og formuler den sammenhæng mellem tallene i Fibonacci-følgen, der gør, at man ovenfor kommer fra tallene 3 og 5 til 21. Litteratur og URL'er: Asmus Schmidt: Kædebrøker. Gyldendal Opgave 3 Opgaven knytter sit til artiklen om bobler Vi vil se på en dobbeltboble med samme rumfang i de to kamre; væggen mellem kamrene er så en cirkelskive. file:///e /inet/perspektiv/perspektiv/per/ma/05ma/opgaver/alle.html (5 af 11) :45:39

6 Med betegnelser som på figuren sættes og. For en afskåret kugle med radius r og højde h gælder følgende formler for rumfanget V og den krumme overflade O: og Vi vil nu holde rumfanget i de to kamre fast, men minimere den samlede overflade i dobbeltboblen ved at ændre på r og h. Den samlede overflade, der består af de to krumme overflader og cirkelskivens areal, vil være en funktion af h, som betegnes f(h). a. Opstil en forskrift for f. b. Find ved differentiation et udtryk for sammenhængen mellem h og V, når f(h) er mindst mulig. c. Vis at h =1,5 r, når f(h) er mindst mulig. d. Vis at den stumpe vinkel mellem tangentplanerne i B til de to kugler er 120 grader, når den samlede overflade er mindst mulig. e. Vis den ovennævnte formel for rumfang af afskåret kugle ved at beregne rumfanget af et omdrejningslegeme ved integralregning (se eventuelt opgave i Vejledende eksempler på eksamensopgaver i matematik, 3- årigt forløb til A-niveau). Den ovennævnte formel for den krumme overflade af afskåret kugle kan udledes ved at benytte følgende formel for overfladen af et omdrejningslegeme: f. Begrund denne formel og brug den til at udlede formlen for den krumme overflade af afskåret kugle. Opgave 4 Opgaven knytter sit til artiklen om bobler a. Find (og dermed krumningen i 0 for en parabel) når file:///e /inet/perspektiv/perspektiv/per/ma/05ma/opgaver/alle.html (6 af 11) :45:39

7 b. Opstil forskriften for den funktion, hvis graf er den nedre halvdel af en cirkel med centrum ( 0, r ) og radius r, og beregn. c. Vis at cirklen med radius 0,5 og centrum ( 0, 0,5 ) er den størst mulige cirkel med centrum på y-aksens positive del, der har netop ét punkt fælles med parablen med ligningen y = x 2. Litteratur og URL'er: C.V. Boys, Sæbebobler og de kræfter, der danner dem. Gyldendals kvantebøger (1962). F. Morgan, Proof of the Double Bubble Conjecture, Amer. Math. Monthly, March (2001) NASA Microgravity Experiments: Normalsnittets krumning: Denne indeholder blandt andet bevis for, at middelkrumningen ikke afhænger af, hvordan de ortogonale snit lægges. Opgave 5 Opgaven knytter sig til artiklen om topologioptimering I topologioptimering ser man på funktioner af mange variable, men i denne opgave nøjes vi med at se på en funktion i to variable: Afsat i et 3-dimensionalt koordinatsystem vil punkterne af formen udgøre en flade. Vi begrænser os til x - og y -værdier mellem 0 og 20 og kan sammenligne fladen med et bjerglandskab. På figuren er vist nogle niveaukurver for fladen. file:///e /inet/perspektiv/perspektiv/per/ma/05ma/opgaver/alle.html (7 af 11) :45:39

8 Vi forestiller os, at vi står på ski i dette landskab og befinder os i (0,0). Vi vil gerne nedad til det laveste punkt så hurtigt som muligt, men kan kun se en meter i hver retning. Man kan undersøge, i hvilken retning det går mest nedad ved at se på, hvordan højden varierer over punkter, der ligger på en cirkel med centrum i (0,0) og radius 1. Punktets position afhænger af vinklen v, som vist på figuren: Man kan altså undersøge funktionen. a) Tegn grafen for g på lommeregneren og find den vinkel, der giver den laveste højde. Sammenlign med niveaukurverne. b) Overvej, hvordan man på tilsvarende måde trinvist kan komme til bunden. Hvordan bliver ruten i store træk? Hvis man har differentialregning til rådighed kan minimumspunktet bestemmes direkte ved at finde ud af, hvor tangentplanen er vandret. Hertil skal man bruge de partielle afledede i et vilkårligt fast punkt : den partielle file:///e /inet/perspektiv/perspektiv/per/ma/05ma/opgaver/alle.html (8 af 11) :45:39

9 afledede med hensyn til x fås ved at differentiere med x som variabel og y som konstant. Hvis tangentplanen i kaldes α, og planen med ligningen kaldes β vil være lig med hældningen af skæringen mellem α og β. Tilsvarende med. c) Bestem koordinaterne til minimumspunktet for f ved at løse ligningssystemet Litteratur og URL'er: N. Olhoff: Design af optimale konstruktioner. Naturens Verden, 32, O. Sigmund: Design af ekstreme materialer og mikrorobotter - Anvendelser af Topologioptimering. Naturens Verden, 32, På forklares de matematiske metoder i topologioptimeringen og der ligger et program, hvor man kan få løst små optimeringsproblemer, som man selv stiller. Opgave 6 Opgaven knytter sig til artiklen om spilteori Vi ser på et straffespark i fodbold og laver følgende model: Spilleren kan vælge én af to muligheder: S: at skyde ude i en af siderne i målet M: at skyde midt i målet Målmanden kan vælge én af to muligheder: S: at kaste sig til en af siderne i målet M: at blive stående midt i målet Sandsynligheden for, at spilleren scorer, afhænger af hvilke af ovenstående muligheder, der vælges og er angivet i tabellen nedenfor: file:///e /inet/perspektiv/perspektiv/per/ma/05ma/opgaver/alle.html (9 af 11) :45:39

10 Spiller Målmand Sandsynlighed S S 0,75 S M 1 M S 1 M M 0 Hvis for eksempel spilleren skyder midt i målet og målmanden bliver stående, klarer målmanden altså skuddet. Vi forestiller os nu, at både spiller og målmand inden sparket hver for sig trækker lod om, hvad de vil gøre. De har hver en kasse med 100 lodder, hvor der enten står S eller M. Vi sætter p = sandsynligheden for, at spilleren trækker et S q = sandsynligheden for, at målmanden trækker et S Inden de trækker, vælger de to aktører strategi, hvilket vil sige, at spilleren bestemmer størrelsen af p, og målmanden bestemmer størrelsen af q. De vælger altså, hvor mange lodder af type S og M, der skal ligge i deres kasse. Sandsynligheden for en scoring, der afhænger af p og q, kaldes S(p,q). For at finde en formel for S(p,q) må vi kende for eksempel sandsynligheden for, at spilleren trækker S, samtidig med at målmanden trækker S. a. Gør rede for, at der gælder Spiller Målmand Sandsynlighed S S p q S M p (1 - q) M S q (1 - p) M M (1 - p) (1 - q) b. Vis at S(p,q) = p + q - 1,25 p q Vi forestiller os nu, at målmanden kender spillerens strategi, altså at målmanden kender p, i det øjeblik han skal vælge q. c. Find det bedst mulige valg af q, når p er henholdsvis 1 og 0,6. d. Beregn den værdi af p, for hvilken alle q er lige gode. Vi forestiller os nu, at spilleren også kender målmandens strategi, altså at spilleren kender q, i det øjeblik han skal vælge p. e. Angiv en Nash-ligevægt for dette spil, det vil sige, find et par, således at er det bedste valg for målmanden givet, og er det bedste valg for spilleren givet. file:///e /inet/perspektiv/perspektiv/per/ma/05ma/opgaver/alle.html (10 af 11) :45:39

11 file:///e /inet/perspektiv/perspektiv/per/ma/05ma/opgaver/alle.html (11 af 11) :45:39

12 Matematik Opgave 4 Opgaven knytter sit til artiklen om bobler a. Find (og dermed krumningen i 0 for en parabel) når b. Opstil forskriften for den funktion, hvis graf er den nedre halvdel af en cirkel med centrum ( 0, r ) og radius r, og beregn. c. Vis at cirklen med radius 0,5 og centrum ( 0, 0,5 ) er den størst mulige cirkel med centrum på y-aksens positive del, der har netop ét punkt fælles med parablen med ligningen y = x 2. Litteratur og URL'er: C.V. Boys, Sæbebobler og de kræfter, der danner dem. Gyldendals kvantebøger (1962). F. Morgan, Proof of the Double Bubble Conjecture, Amer. Math. Monthly, March (2001) NASA Microgravity Experiments: Normalsnittets krumning: Denne indeholder blandt andet bevis for, at middelkrumningen ikke afhænger af, hvordan de ortogonale snit lægges. file:///e /inet/perspektiv/perspektiv/per/ma/05ma/opgaver/opgave_4.html :45:53

13 Matematik Opgave 5 Opgaven knytter sig til artiklen om topologioptimering I topologioptimering ser man på funktioner af mange variable, men i denne opgave nøjes vi med at se på en funktion i to variable: Afsat i et 3-dimensionalt koordinatsystem vil punkterne af formen udgøre en flade. Vi begrænser os til x - og y -værdier mellem 0 og 20 og kan sammenligne fladen med et bjerglandskab. På figuren er vist nogle niveaukurver for fladen. Vi forestiller os, at vi står på ski i dette landskab og befinder os i (0,0). Vi vil gerne nedad til det laveste punkt så hurtigt som muligt, men kan kun se en meter i hver retning. Man kan undersøge, i hvilken retning det går mest nedad ved at se på, hvordan højden varierer over punkter, der ligger på en cirkel med centrum i (0,0) og radius 1. Punktets position afhænger af vinklen v, som vist på figuren: file:///e /inet/perspektiv/perspektiv/per/ma/05ma/opgaver/opgave_5.html (1 af 2) :46:40

14 Matematik Man kan altså undersøge funktionen. a) Tegn grafen for g på lommeregneren og find den vinkel, der giver den laveste højde. Sammenlign med niveaukurverne. b) Overvej, hvordan man på tilsvarende måde trinvist kan komme til bunden. Hvordan bliver ruten i store træk? Hvis man har differentialregning til rådighed kan minimumspunktet bestemmes direkte ved at finde ud af, hvor tangentplanen er vandret. Hertil skal man bruge de partielle afledede i et vilkårligt fast punkt : den partielle afledede med hensyn til x fås ved at differentiere med x som variabel og y som konstant. Hvis tangentplanen i kaldes α, og planen med ligningen kaldes β vil være lig med hældningen af skæringen mellem α og β. Tilsvarende med. c) Bestem koordinaterne til minimumspunktet for f ved at løse ligningssystemet Litteratur og URL'er: N. Olhoff: Design af optimale konstruktioner. Naturens Verden, 32, O. Sigmund: Design af ekstreme materialer og mikrorobotter - Anvendelser af Topologioptimering. Naturens Verden, 32, På forklares de matematiske metoder i topologioptimeringen og der ligger et program, hvor man kan få løst små optimeringsproblemer, som man selv stiller. file:///e /inet/perspektiv/perspektiv/per/ma/05ma/opgaver/opgave_5.html (2 af 2) :46:40

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor Rumfang af en cylinder På illustrationen til øjre er indtegnet en lineær funktion indenfor et afgrænset interval, vor 0;. Funktionen () kan skrives på formen: = (vor a er en konstant) Det markerede grå

Læs mere

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU Mandag den 11. maj 2009 Kl. 09.00 14.00 STX091-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1)

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1) Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant. a) Beregn konstanten b således,

Læs mere

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA STUDENTEREKSAMEN GUX MAJ 007 014 MATEMATIK A-NIVEAU Prøveform b 014 Kl. 9.00 14.00 GUX-MAA Matematik A Prøvens varighed er 5 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Vejledende Matematik A

Vejledende Matematik A Vejledende Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og 10D skal kun én opgave afleveres til bedømmelse. Hvis flere end én opgave afleveres, bedømmes

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx123-mat/a-07122012 Fredag den 7. december 2012 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Opgaver om koordinater

Opgaver om koordinater Opgaver om koordinater Formålet med disse opgaver er dels at træne noget matematik, dels at give oplysninger om og træning i brug af Mathcad: Matematik: Øge grundlæggende indsigt vedrørende koordinater

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet st131-matn/a-6513 Mandag den 6 maj 13 Forberedelsesmateriale til st A Net MATEMATIK Der skal

Læs mere

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale STUDENTEREKSAMEN SOMMERTERMIN 13 MATEMATIK A-NIVEAU-Net Forberedelsesmateriale 6 timer med vejledning Forberedelsesmateriale til de skriftlige prøver sommertermin 13 st131-matn/a-6513 Forberedelsesmateriale

Læs mere

Matematik B-niveau STX 7. december 2012 Delprøve 1

Matematik B-niveau STX 7. december 2012 Delprøve 1 Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

MATEMATIK A. Indhold. 92 videoer.

MATEMATIK A. Indhold. 92 videoer. MATEMATIK A Indhold Differentialligninger... 2 Differentialregning... 3 Eksamen... 3 Hvorfor Matematik?... 3 Integralregning... 3 Regression... 4 Statistik... 5 Trigonometriske funktioner... 5 Vektorer

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin august 2015 maj 2016 Institution Rybners Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik A Steffen Podlech 3F Oversigt over gennemførte undervisningsforløb Titel 1

Læs mere

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2 GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse. Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx101-MAT/B-26052010 Onsdag den 26. maj 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A studentereksamen

Matematik A studentereksamen Xxxx Side 1 af 11 Opgave 7 Jeg aflæser af boksplottet for personbeskatningen i 2007 medianen til. Første og anden kvartil aflæser jeg til hhv. og. Den mindst observerede personbeskatning i år 2007 var

Læs mere

Vejledende besvarelse

Vejledende besvarelse Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer

Læs mere

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex ADGANGSKURSUS AALBORG UNIVERSITET Formelsamling Brush-up Flex 2016 Indholdsfortegnelse 1. Brøkregning... 2 2. Parenteser... 3 3. Kvadratsætningerne:... 3 4. Potensregneregler... 4 5. Andengradsligninger...

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a gl. Matematik A Studentereksamen gl-stx142-mat/a-14082014 Torsdag den 14. august 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

Kasteparabler i din idræt øvelse 1

Kasteparabler i din idræt øvelse 1 Kasteparabler i din idræt øvelse 1 Vi vil i denne første øvelse arbejde med skrå kast i din idræt. Du skal lave en optagelse af et hop, kast, spark eller slag af en person eller genstand. Herefter skal

Læs mere

STUDENTEREKSAMEN DECEMBER 2008 MATEMATIK A-NIVEAU. Fredag den 12. december 2008. Kl. 09.00 14.00 STX083-MAA

STUDENTEREKSAMEN DECEMBER 2008 MATEMATIK A-NIVEAU. Fredag den 12. december 2008. Kl. 09.00 14.00 STX083-MAA STUDENTEREKSAMEN DECEMBER 2008 MATEMATIK A-NIVEAU Fredag den 12. december 2008 Kl. 09.00 14.00 STX083-MAA Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål.

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

16 opgaver, hvor arbejdet med funktionsbegrebet er centralt og hvor det er oplagt at inddrage it

16 opgaver, hvor arbejdet med funktionsbegrebet er centralt og hvor det er oplagt at inddrage it 16 opgaver, hvor arbejdet med funktionsbegrebet er centralt og hvor det er oplagt at inddrage it Tanker bag opgaverne Det er min erfaring, at elever umiddelbart vælger at bruge det implicitte funktionsbegreb,

Læs mere

STUDENTEREKSAMEN AUGUST 2009 MATEMATIK A-NIVEAU. Onsdag den 12. august 2009. Kl. 09.00 14.00 STX092-MAA. Undervisningsministeriet

STUDENTEREKSAMEN AUGUST 2009 MATEMATIK A-NIVEAU. Onsdag den 12. august 2009. Kl. 09.00 14.00 STX092-MAA. Undervisningsministeriet STUDENTEREKSAMEN AUGUST 009 MATEMATIK A-NIVEAU Onsdag den 1. august 009 Kl. 09.00 14.00 STX09-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

gl. Matematik A Studentereksamen Torsdag den 22. maj 2014 kl gl-1stx141-mat/a

gl. Matematik A Studentereksamen Torsdag den 22. maj 2014 kl gl-1stx141-mat/a gl. Matematik A Studentereksamen gl-1st141-mat/a-05014 Torsdag den. maj 014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

GUX. Matematik. A-Niveau. August 2015. Kl. 9.00-14.00. Prøveform a GUX152 - MAA

GUX. Matematik. A-Niveau. August 2015. Kl. 9.00-14.00. Prøveform a GUX152 - MAA GUX Matematik A-Niveau August 05 Kl. 9.00-4.00 Prøveform a GUX5 - MAA Matematik A Prøvens varighed er 5 timer. Prøven består af opgaverne til 0 med i alt 5 spørgsmål. De 5 spørgsmål indgår med lige vægt

Læs mere

sammenhänge for C-niveau i stx 2013 Karsten Juul

sammenhänge for C-niveau i stx 2013 Karsten Juul LineÄre sammenhänge for C-niveau i stx y 0,5x 2,5 203 Karsten Juul : OplÄg om lineäre sammenhänge 2 Ligning for lineär sammenhäng 2 3 Graf for lineär sammenhäng 2 4 Bestem y når vi kender x 3 5 Bestem

Læs mere

MATEMATIK A-NIVEAU. Terminsprøve 2010. Kl. 09.00 14.00. STX0310-MAA-net

MATEMATIK A-NIVEAU. Terminsprøve 2010. Kl. 09.00 14.00. STX0310-MAA-net NETADGANGSFORSØGET STUDENTEREKSAMEN I MATEMATIK TERMINSPRØVE MAJ 2007 2010 MATEMATIK A-NIVEAU Terminsprøve 2010 Kl. 09.00 14.00 STX0310-MAA-net Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2016 Institution Uddannelse Fag og niveau Lærer(e) Hold Hansenberg Gymnasium htx Matematik A Thomas Voergaard.

Læs mere

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 Demo-udgave 2003 by bernitt-matematik.dk Kopiering og udskrift af denne bog er

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

GU HHX MAJ 2009 MATEMATIK A. Onsdag den 13. maj 2009. Kl. 9.00 14.00 GL091-MAA. Undervisningsministeriet

GU HHX MAJ 2009 MATEMATIK A. Onsdag den 13. maj 2009. Kl. 9.00 14.00 GL091-MAA. Undervisningsministeriet GU HHX MAJ 2009 MATEMATIK A Onsdag den 13. maj 2009 Kl. 9.00 14.00 Undervisningsministeriet GL091-MAA Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007. Matematik Niveau A

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007. Matematik Niveau A Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007 07-0-4 Matematik Niveau A Dette opgavesæt består af 7 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB GUX Matematik B-Niveau Fredag den 29. maj 2015 Kl. 9.00-13.00 Prøveform b GUX151 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

MATEMATIK A-NIVEAU-Net

MATEMATIK A-NIVEAU-Net STUDENTEREKSAMEN STUDENTEREKSAMEN PRØVESÆT MAJ 22007 2010/2011 MATEMATIK A-NIVEAU-Net Prøvesæt 2 2010/2011 Kl. 09.00 14.00 Prøvesæt 2 2010/2011 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret

Læs mere

Some like it HOT: Højere Ordens Tænkning med CAS

Some like it HOT: Højere Ordens Tænkning med CAS Some like it HOT: Højere Ordens Tænkning med CAS Bjørn Felsager, Haslev Gymnasium & HF, 2001 I år er det første år, hvor CAS-forsøget er et standardforsøg og alle studentereksamensopgaverne derfor foreligger

Læs mere

Undervisningsplan Side 1 af 9

Undervisningsplan Side 1 af 9 Undervisningsplan Side 1 af 9 Lektionsantal: 12 UV lektioner pr. uge I alt ca. 220 lektioner. Fordelt mellem underviserne således: Erik Kyster (EK) 9 lektioner pr. uge og Regnar Andersen (RA) 3 lektioner

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Matematik A Vejledende opgaver 5 timers prøven

Matematik A Vejledende opgaver 5 timers prøven Højere Teknisk Eksamen 007 Matematik A Vejledende opgaver 5 timers prøven Undervisningsministeriet Prøvens varighed er 5 timer. Opgavebesvarelsen skal dokumenteres/begrundes. Opgavebesvarelsen skal udformes

Læs mere

Bevægelsens Geometri

Bevægelsens Geometri Bevægelsens Geometri Vi vil betragte bevægelsen af et punkt. Dette punkt kan f.eks. være tyngdepunktet af en flue, et menneske, et molekyle, en galakse eller hvad man nu ellers har lyst til at beskrive.

Læs mere

Teorien. solkompasset

Teorien. solkompasset Teorien bag solkompasset Preben M. Henriksen 31. juli 2007 Indhold 1 Indledning 2 2 Koordinatsystemer 2 3 Solens deklination 4 4 Horisontalsystemet 5 5 Solkompasset 9 6 Appendiks 11 6.1 Diverse formler..............................

Læs mere

Matematik A-niveau Delprøve 1

Matematik A-niveau Delprøve 1 Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±

Læs mere

Variabelsammenhænge og grafer

Variabelsammenhænge og grafer Variabelsammenhænge og grafer Indhold Variable... 1 Funktion... 1 Grafen for en funktion... 2 Proportionalitet... 4 Ligefrem proportional eller blot proportional... 4 Omvendt proportionalitet... 4 Intervaller...

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af ligninger og formler... 39 To ligninger med to ubekendte... 44 Formler, ligninger, funktioner og grafer Side 38 Omskrivning af ligninger og formler

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012. MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen st10-mat/b-108010 Torsdag den 1. august 010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Vejledning om besvarelse af skriftlige opgaver i matematik på htx. - med særlig henblik på anvendelse af IT.

Vejledning om besvarelse af skriftlige opgaver i matematik på htx. - med særlig henblik på anvendelse af IT. Vejledning om besvarelse af skriftlige opgaver i matematik på ht. - med særlig henblik på anvendelse af IT. Baggrund Ved anvendelse af diverse matematikprogrammer i forbindelse med de skriftlige prøver

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2013 HTX Vibenhus

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Jørgen Erichsen På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Hvad er en fraktal? Noget forenklet kan man sige, at en fraktal er en geometrisk figur, der udmærker sig ved

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj-juni 2015 HTX Vibenhus

Læs mere

Kort om Eksponentielle Sammenhænge

Kort om Eksponentielle Sammenhænge Øvelser til hæftet Kort om Eksponentielle Sammenhænge 2011 Karsten Juul Dette hæfte indeholder bl.a. mange småspørgsmål der gør det nemmere for elever at arbejde effektivt på at få kendskab til emnet.

Læs mere

STUDENTEREKSAMEN GUX MAJ MATEMATIK A-NIVEAU. Prøveform a. Kl GUX-MAA

STUDENTEREKSAMEN GUX MAJ MATEMATIK A-NIVEAU. Prøveform a. Kl GUX-MAA STUDENTEREKSAMEN GUX MAJ 007 014 MATEMATIK A-NIVEAU Prøveform a 014 Kl. 9.00 14.00 GUX-MAA Matematik A Prøvens varighed er 5 timer. Prøven består af opgaverne 1 til 10 med i alt 5 spørgsmål. De 5 spørgsmål

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj 2013 HTX Vibenhus

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber: INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Matematik A, vejledende opgave 2, ny ordning. Vejledende løsninger, Peter B. Delprøven uden hjælpemidler. Opgave 1. a) A= 6x 2 +12xdx = 2x 3 + 6x 2 2

Matematik A, vejledende opgave 2, ny ordning. Vejledende løsninger, Peter B. Delprøven uden hjælpemidler. Opgave 1. a) A= 6x 2 +12xdx = 2x 3 + 6x 2 2 Delprøven uden hjælpemidler Opgave 1 a) A= 6x 2 +12xdx = 2x 3 + 6x 2 2 0 = 8 0 = 8 0 2 Opgave 2 a) Først differentierer vi løsningen: y = 10x. Dernæst indsættes løsningen y i y og vi får: y = 2 5x2 x =

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold December 2015 vinter VUC Vestegnen stx Mat A Gert Friis

Læs mere

Matematik A. Studentereksamen. Fredag den 9. december 2011 kl. 9.00-14.00. stx113-mat/a-09122011

Matematik A. Studentereksamen. Fredag den 9. december 2011 kl. 9.00-14.00. stx113-mat/a-09122011 Matematik A Studentereksamen stx113-mat/a-09122011 Fredag den 9. december 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Peter Orthmann Nielsen og Jørgen Franck. Dansk Amatør Raket Klub

Peter Orthmann Nielsen og Jørgen Franck. Dansk Amatør Raket Klub Beregning af areal, volumen, massemidtpunkt og inertimomenter for en klasse af omdrejningslegemer med cirkelbuegeometri af Peter Orthmann Nielsen og Jørgen Franck Dansk Amatør Raket Klub Introduktion Denne

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Definition:... 1 Hældningskoefficient... 3 Begyndelsesværdi... 3 Formler... 4 Om E-opgaver 11a... 5

Definition:... 1 Hældningskoefficient... 3 Begyndelsesværdi... 3 Formler... 4 Om E-opgaver 11a... 5 Lineære funktioner Indhold Definition:... Hældningskoefficient... 3 Begndelsesværdi... 3 Formler... 4 Om E-opgaver a... 5 Definition: En lineær funktion er en funktion, hvor grafen er lineær. Dvs. grafen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX MATEMATIK NOTAT. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: MAJ 04 Michel Mandi (00).Gradsligningen Side af 9 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... INTRODUKTION:... 3 KOEFFICIENTER...

Læs mere

Matematik A eksamen 14. august Delprøve 1

Matematik A eksamen 14. august Delprøve 1 Matematik A eksamen 14. august 2014 www.matematikhfsvar.page.tl Delprøve 1 Info: I denne eksamensopgave anvendes der punktum som decimaltal istedet for komma. Eks. 3.14 istedet for 3,14 Opgave 1 - Andengradsligning

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende

Læs mere

Stx matematik B december 2007. Delprøven med hjælpemidler

Stx matematik B december 2007. Delprøven med hjælpemidler Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem

Læs mere