Kursus Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, ( , ) Per Bruun Brockhoff

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff"

Transkript

1 Kursus Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, ( , ) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

2 Oversigt 1 Hypotesetest - en repetition Hypotesetest og konfidensintervaller 2 Styrke og stikprøvestørrelse 3 Hypotesetest for to gennemsnit Eksempel 1 Generel formulering Med kendt varians Med "ukendt" varians - store stikprøver Med "ukendt" varians - små stikprøver, normalfordelinger Eksempel 1 - fortsat 4 Konfidensinterval for forskel i middelværdi Eksempel 1 - fortsat Eksempel 2 5 Parret t-test Eksempel 2 - fortsat 6 R (R note 7) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

3 Kapitel 7 og 8: Statistik for to gennemsnit, ( , ) Hypotesetest ( , ) Test og konfidensintervaller Hypotesetest for to gennemsnit Randomisering og parring R Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

4 Hypotesetest - en repetition Oversigt 1 Hypotesetest - en repetition Hypotesetest og konfidensintervaller 2 Styrke og stikprøvestørrelse 3 Hypotesetest for to gennemsnit Eksempel 1 Generel formulering Med kendt varians Med "ukendt" varians - store stikprøver Med "ukendt" varians - små stikprøver, normalfordelinger Eksempel 1 - fortsat 4 Konfidensinterval for forskel i middelværdi Eksempel 1 - fortsat Eksempel 2 5 Parret t-test Eksempel 2 - fortsat 6 R (R note 7) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

5 Hypotesetest - en repetition Hypoteser nul hypotese testes mod en alternativ hypotese H 0 : µ = µ 0 H 1 : µ µ 0 Bemærk: bevisbyrden er lagt på H 0. Man vælger enten at acceptere H 0 eller at forkaste H 0 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

6 Hypotesetest - en repetition Hypoteser Et par tommelfingerregler ved formulering af hypoteser: I nulhypotesen anvendes så vidt muligt lighedstegn = I den alternative hypotese placeres det udsagn som man gerne vil vise Den alternative hypotese kan enten være ensidet eller tosidet, afhængig af hvad man gerne vil vise tosidet: ensidet: < eller > Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

7 Hypotesetest - en repetition Hypoteser Når man tester statistiske hypoteser, kan man i princippet begå to typer af fejl: Type I: Fejlagtig forkaste H 0 når H 0 er sand Type II: Fejlagtig acceptere H 0 når H 1 er sand Vi definerer: P (fejl af type I) = α P (fejl af type II) = β Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

8 Hypotesetest - en repetition Eksempel: formulering af hypoteser Et ambulancefirma påstår at det i gennemsnit tager 20 minutter fra et opkald til centralen modtages indtil en ambulance er på stedet. Eksempelvis kan vi have målt tiderne: Hvis vi f.eks. ønsker at påvise, at det i gennemsnit tager længere tid end 20 minutter, bliver nul- og alternativ hypotese: H 0 : µ = 20 minutter H 1 : µ > 20 minutter Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

9 Hypotesetest - en repetition Eksempel Hvilke fejl kan begås? Type I: Fejlagtig forkaster H 0 når H 0 er sand dvs. man fejlagtig konkluderer at det tager længere tid for ambulancen at nå frem end 20 minutter Type II: Fejlagtig accepterer H 0 når H 1 er sand dvs. man fejlagtig konkluderer at det tager 20 minutter for ambulancen at nå frem Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

10 Hypotesetest - en repetition Valg af signifikansniveau α Man vælger signifikansniveau α ud fra hvor stor type I fejl man kan acceptere Typisk vælges α = 5% Såfremt man vil reducere fejlen for en type I fejl må α vælges mindre, f.eks. α = 1% Et mindre signifikansniveau betyder at det bliver sværere at påvise H 1 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

11 Hypotesetest - en repetition Trin ved Hypotesetest 1 Opstil hypoteser og vælg signifikansniveau α (vælg "risiko-niveau") 2 Beregn teststørrelse (se på data) 3 Beregn p-værdi vha. teststørrelse(mål forskellen på data og hypotesen) 4 Samenlign p-værdi med signifikansniveau og drag en konklusion alternativt til (3)-(4) kan testet udføres ved at sammenligne teststørrelse med kritisk værdi Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

12 Hypotesetest - en repetition Hypotesetest og konfidensintervaller Sammenhæng mellem hypoteseprøvning og konfidensintervaller Vi betragter (1 α)100% konfidensinterval for µ (eksempel for lille n og ukendt σ): x t α/2 s n < µ < x + t α/2 s n Konfidensintervallet svarer til acceptområdet (af H 0 ), når man tester hypotesen (med to-sidet alternativ): H 0 : µ = µ 0 H 1 : µ µ 0 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

13 Styrke og stikprøvestørrelse Oversigt 1 Hypotesetest - en repetition Hypotesetest og konfidensintervaller 2 Styrke og stikprøvestørrelse 3 Hypotesetest for to gennemsnit Eksempel 1 Generel formulering Med kendt varians Med "ukendt" varians - store stikprøver Med "ukendt" varians - små stikprøver, normalfordelinger Eksempel 1 - fortsat 4 Konfidensinterval for forskel i middelværdi Eksempel 1 - fortsat Eksempel 2 5 Parret t-test Eksempel 2 - fortsat 6 R (R note 7) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

14 Styrke og stikprøvestørrelse Styrke og stikprøvestørrelse Hvordan kan sandsynligheden for fejl påvirkes? Ændre signifikansniveau α Øge stikprøvestørrelsen, n Testets styrke defineres ved 1 β Afsnit 7.7 Krævet stikprøvestørrelse givet en ønsket styrke: ( n = σ z ) 2 β + z α (µ 0 µ 1 ) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

15 Hypotesetest for to gennemsnit Oversigt 1 Hypotesetest - en repetition Hypotesetest og konfidensintervaller 2 Styrke og stikprøvestørrelse 3 Hypotesetest for to gennemsnit Eksempel 1 Generel formulering Med kendt varians Med "ukendt" varians - store stikprøver Med "ukendt" varians - små stikprøver, normalfordelinger Eksempel 1 - fortsat 4 Konfidensinterval for forskel i middelværdi Eksempel 1 - fortsat Eksempel 2 5 Parret t-test Eksempel 2 - fortsat 6 R (R note 7) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

16 Hypotesetest for to gennemsnit Eksempel 1 Eksempel 1 I et ernæringsstudie ønsker man at undersøge om der er en forskel i energiforbrug for forskellige typer (moderat fysisk krævende) arbejde. I studiet har man målt energiforbruget for 9 sekretærer, som forventes at have et stillesiddende arbejde, og 9 sygeplejersker, som forventes at have et lidt mere fysisk betonet arbejde. Målingerne, angivet i MJ, er givet i nedenstående tabel: Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

17 Hypotesetest for to gennemsnit Eksempel 1 Eksempel 1 A (sekretærer) B (sygeplejersker) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

18 Hypotesetest for to gennemsnit Generel formulering Hypotesetest for to gennemsnit Vi sammenligner gennemsnit (middelværdier) af 2 stikprøver Stikprøve 1: n 1, x 1 og s 2 1 Stikprøve 2: n 2, x 2 og s 2 2 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

19 Hypotesetest for to gennemsnit Generel formulering Formulering af Hypoteser nul hypotese testes mod en alternativ hypotese (her vist for et to-sidet alternativ) H 0 : H 1 : µ 1 µ 2 = δ µ 1 µ 2 δ Man vælger enten at acceptere H 0 eller at forkaste H 0 (Typisk er man interesseret i at teste med δ = 0) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

20 Hypotesetest for to gennemsnit Med kendt varians 2. Beregning af teststørrelse Ved hypoteseprøvning af 2 middelværdier (µ 1 og µ 2 ) for data, der antages normalfordelt og varianser σ 2 1 og σ 2 2 er kendte, fås teststørrelsen Z = ( X 1 X 2 ) δ σ 2 1 /n 1 + σ 2 2 /n 2 Det følger under nul hypotesen at Z N(0, 1 2 ). Herfra kan testets p-værdi beregnes Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

21 Hypotesetest for to gennemsnit Med kendt varians Sammenligning med kritisk værdi Ved hypoteseprøvning af to middelværdier (µ 1 og µ 2 ) for data, der antages normalfordelt og σ1 2 og σ2 2 er kendte, fås Alternativ Afvis hypotese nul-hypotese hvis µ 1 µ 2 < δ Z < z α µ 1 µ 2 > δ Z > z α µ 1 µ 2 δ Z < z α/2 eller Z > z α/2 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

22 Hypotesetest for to gennemsnit Med "ukendt" varians - store stikprøver Beregning af teststørrelse Ved hypoteseprøvning af to middelværdier (µ 1 og µ 2 ) for data hvor σ 2 1 og σ 2 2 er ukendte, men for store stikprøver, fås teststørrelsen Z = ( X 1 X 2 ) δ s 2 1 /n 1 + s 2 2 /n 2 Det følger under nul hypotesen at Z N(0, 1 2 ). Herfra kan testets p-værdi beregnes. Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

23 Hypotesetest for to gennemsnit Med "ukendt" varians - store stikprøver Sammenligning med kritisk værdi Ved hypoteseprøvning af to middelværdi for data hvor σ1 2 og σ2 2 er ukendte, men vi har store stikprøver, fås Alternativ Afvis hypotese nul-hypotese hvis µ 1 µ 2 < δ Z < z α µ 1 µ 2 > δ Z > z α µ 1 µ 2 δ Z < z α/2 eller Z > z α/2 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

24 Hypotesetest for to gennemsnit Med "ukendt" varians - små stikprøver, normalfordelinger Beregning af teststørrelse Ved hypoteseprøvning af to middelværdier for data der antages normalfordelt hvor σ 2 1 og σ 2 2 er ukendte (men med σ 2 1 = σ 2 2), og stikprøverne er små, fås teststørrelsen hvor t = ( X 1 X 2 ) δ s 2 p/n 1 + s 2 p/n 2 s 2 p = (n 1 1)s (n 2 1)s 2 2 n 1 + n 2 2 Idet t t(n 1 + n 2 2) kan testets p-værdi beregnes Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

25 Hypotesetest for to gennemsnit Med "ukendt" varians - små stikprøver, normalfordelinger Sammenligning med kritisk værdi Ved hypoteseprøvning af to middelværdi for data der antages normalfordelt og σ1 2 og σ2 2 er ukendte, og for små stikprøver: Alternativ Afvis hypotese nul-hypotese hvis µ 1 µ 2 < δ t < t α µ 1 µ 2 > δ t > t α µ 1 µ 2 δ t < t α/2 eller t > t α/2 Ved opslag i tab. 4 vælges v = n 1 + n 2 2 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

26 Hypotesetest for to gennemsnit Eksempel 1 - fortsat Eksempel 1 A (sekretærer) B (sygeplejersker) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

27 Hypotesetest for to gennemsnit Eksempel 1 - fortsat Eksempel 1 - fortsat Udfør et hypotesetest om energiforbruget (i middel) ved de to typer arbejde er ens. Anvend signifikansniveau α = 5% Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

28 Konfidensinterval for forskel i middelværdi Oversigt 1 Hypotesetest - en repetition Hypotesetest og konfidensintervaller 2 Styrke og stikprøvestørrelse 3 Hypotesetest for to gennemsnit Eksempel 1 Generel formulering Med kendt varians Med "ukendt" varians - store stikprøver Med "ukendt" varians - små stikprøver, normalfordelinger Eksempel 1 - fortsat 4 Konfidensinterval for forskel i middelværdi Eksempel 1 - fortsat Eksempel 2 5 Parret t-test Eksempel 2 - fortsat 6 R (R note 7) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

29 Konfidensinterval for forskel i middelværdi Beregning af konfidensinterval for forskel i middelværdi For store stikprøver beregnes et (1 α)% konfidensinterval ved: s 2 1 x 1 x 2 ± z α/2 + s2 2 n 1 n 2 (kendes σ 2 1 og σ 2 2 anvendes disse i stedet for s 2 1 og s 2 2) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

30 Konfidensinterval for forskel i middelværdi Beregning af konfidensinterval for forskel i middelværdi For små stikprøver (ukendte σ 2 1 og σ 2 2) (men med σ 2 1 = σ 2 2) beregnes et (1 α)% konfidensinterval ved: x 1 x 2 ± t α/2 (n 1 1)s (n 2 1)s 2 2 n 1 + n n n 2 Ved opslag i tabellen over t-fordelingen (tab. 4) vælges antal frihedsgrader v = n 1 + n 2 2 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

31 Konfidensinterval for forskel i middelværdi Eksempel 1 - fortsat Eksempel 1 - fortsat, konfidensinterval Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

32 Konfidensinterval for forskel i middelværdi Eksempel 2 Eksempel 2 I et studie er man interesseret i at sammenligne 2 sovemidler A og B. For 10 testpersoner har man fået følgende resultater, der er givet i forlænget søvntid (i timer) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

33 Konfidensinterval for forskel i middelværdi Eksempel 2 Eksempel 2 - fortsat person A B Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

34 Parret t-test Oversigt 1 Hypotesetest - en repetition Hypotesetest og konfidensintervaller 2 Styrke og stikprøvestørrelse 3 Hypotesetest for to gennemsnit Eksempel 1 Generel formulering Med kendt varians Med "ukendt" varians - store stikprøver Med "ukendt" varians - små stikprøver, normalfordelinger Eksempel 1 - fortsat 4 Konfidensinterval for forskel i middelværdi Eksempel 1 - fortsat Eksempel 2 5 Parret t-test Eksempel 2 - fortsat 6 R (R note 7) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

35 Parret t-test Parret t-test Vi betragter nu en situation hvor vi vil sammenligne 2 middelværdier, men hvor data er parret Hypotesetestet foregår derfor ved at undersøge forskellen, D i, mellem de parrede observationer: D i = X i Y i for i = 1, 2,..., n Vi kan herefter beregne middelværdi D og varians S 2 D for D. Test af D gøres nu som de sædvanlige test for én middelværdi Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

36 Parret t-test Eksempel 2 - fortsat Eksempel 2 - fortsat person A B D = B A Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

37 Parret t-test Eksempel 2 - fortsat Eksempel 2 - fortsat Udfør et hypotesetest sovemidlerne er lige effektive. Anvend signifikansniveau α = 5% Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

38 R (R note 7) Oversigt 1 Hypotesetest - en repetition Hypotesetest og konfidensintervaller 2 Styrke og stikprøvestørrelse 3 Hypotesetest for to gennemsnit Eksempel 1 Generel formulering Med kendt varians Med "ukendt" varians - store stikprøver Med "ukendt" varians - små stikprøver, normalfordelinger Eksempel 1 - fortsat 4 Konfidensinterval for forskel i middelværdi Eksempel 1 - fortsat Eksempel 2 5 Parret t-test Eksempel 2 - fortsat 6 R (R note 7) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

39 R (R note 7) R (R note 7) > x1=c(10,13,16,19,17,15,20,23,15,16) > x2=c(13,16,20,25,18,16,27,30,17,19) > t.test(x1,x2,alt="less",conf.level=0.95,var.equal=true) Pooled-Variance Two-Sample t-test data: x1 and x2 t = , df = 18, p-value = alternative hypothesis: difference in means is less than 0 95 percent confidence interval: -Inf sample estimates: mean of x mean of y Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

40 R (R note 7) Oversigt 1 Hypotesetest - en repetition Hypotesetest og konfidensintervaller 2 Styrke og stikprøvestørrelse 3 Hypotesetest for to gennemsnit Eksempel 1 Generel formulering Med kendt varians Med "ukendt" varians - store stikprøver Med "ukendt" varians - små stikprøver, normalfordelinger Eksempel 1 - fortsat 4 Konfidensinterval for forskel i middelværdi Eksempel 1 - fortsat Eksempel 2 5 Parret t-test Eksempel 2 - fortsat 6 R (R note 7) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 7 Foråret / 40

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Konfidensinterval for µ (σ kendt)

Konfidensinterval for µ (σ kendt) Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 12: Variansanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff. Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X.

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X. Opgave I I en undersøgelse af et potentielt antibiotikum har man dyrket en kultur af en bestemt mikroorganisme og tilført prøver af organismen til 20 prøverør med et vækstmedium og samtidig har man tilført

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 6: Hypotesetest 1

ØVELSER Statistik, Logistikøkonom Lektion 6: Hypotesetest 1 ! ØVELSER Statistik, Logistikøkonom Lektion 6: Hypotesetest 1 Eksempel 1 TEST AF MIDDELVÆRDI FRA ÉN STIKPRØVE (ukendt varians) En producent af tyggegummi påstår at en pakke tyggegummi i gennemsnit vejer

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kapitel 7 Forskelle mellem centraltendenser

Kapitel 7 Forskelle mellem centraltendenser Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Test nr. 4 af centrale elementer 02402

Test nr. 4 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 4 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

En intro til radiologisk statistik

En intro til radiologisk statistik En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur

Læs mere

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen Kursus 02402/02323 Introducerende Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Oversigt 1 Intro: Regneeksempel og TV-data fra B&O 2 Model og hypotese Per Bruun Brockhoff DTU Compute, Statistik

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 5. undervisningsuge, onsdag

Læs mere

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................

Læs mere

Test nr. 5 af centrale elementer 02402

Test nr. 5 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 5 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet!

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet! Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 2. juni 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen Introduktion til Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 30. maj 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Løsninger til kapitel 9

Løsninger til kapitel 9 Opgave 9.1 a) test for spredning, ensidet b) test for middelværdi, ensidet c) test for andel, ensidet d) test for to andele, ensidet e) test for spredning, tosidet f) test for middelværdi, ensidet g) test

Læs mere

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2 Statistik og Sandsynlighedsregning IH kapitel Overheads til forelæsninger, onsdag 5. uge Resultater om normalfordeling X N(µ,σ ). N har tæthed ϕ µ,σ (x) = exp (x µ) πσ σ EX = µ, Var(X) = σ X µ N(0,) σ

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

c) For, er, hvorefter. Forklar.

c) For, er, hvorefter. Forklar. 1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Statistik i basketball

Statistik i basketball En note til opgaveskrivning jerome@falconbasket.dk 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større

Læs mere

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1)

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Kursus 02402: Besvarelser til øvelsesopgaver i uge 9 Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Som model benyttes en binomialfordeling, som beskriver antallet, X, blandt

Læs mere

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK med Excel

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK med Excel MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK med Excel. udgave 004 i FORORD Denne bog er en fortsættelse af lærebogen M. Oddershede Larsen : Statistiske grundbegreber. Det forudsættes, at man har rådighed

Læs mere

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse Basal statistik Esben Budtz-Jørgensen 4. november 2008 Forsøgsplanlægning Stikprøvestørrelse 1 46 Planlægning af et studie Videnskabelig hypotese Endpoints Instrumentelle/eksponerings variable Variationskilder

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Besvarelser til øvelsesopgaver i uge 6

Besvarelser til øvelsesopgaver i uge 6 Besvarelser til øvelsesopgaver i uge 6 Opgave 7.46, side 228 (7ed 7.28, side 244 og 6ed: 7.28, side 240) Vi tænker os, at vi har data for emissionen {x 1, x 2,..., x n }, når det pågældende device er monteret.

Læs mere

Modul 12: Exercises. 12.1 Sukkersygepatienters vægt

Modul 12: Exercises. 12.1 Sukkersygepatienters vægt Modul 12: Exercises 12.1 Sukkersygepatienters vægt............... 1 12.2 Newfoundlandske kvinders blodtryk.......... 4 12.3 Korrelationskoefficient.................. 6 12.4 Højde og vægt......................

Læs mere

Test nr. 6 af centrale elementer 02402

Test nr. 6 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 6 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Forelæsning 1: Intro og beskrivende statistik

Forelæsning 1: Intro og beskrivende statistik Kursus 02402 Introduktion til Statistik Forelæsning 1: Intro og beskrivende statistik Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: 5.116 side 201 og 6ed: 5.116 side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Klasseøvelser dag 2 Opgave 1

Klasseøvelser dag 2 Opgave 1 Klasseøvelser dag 2 Opgave 1 1.1. Vi sætter først working directory og data indlæses: library( foreign ) d

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel

Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel Kursus 02402/02323 Introducerende Statistik Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske

Læs mere

Eksempler fra bogen Statistiske Grundbegreber løst ved anvendelse af Excel.

Eksempler fra bogen Statistiske Grundbegreber løst ved anvendelse af Excel. Eksempler fra bogen Statistiske Grundbegreber løst ved anvendelse af Excel. Kapitel Deskriptiv statistik Indhold 1. Generelle forhold... 1 Kapitel : Deskriptiv Statistik... 1 Kapitel 4: Normalfordelingen...

Læs mere

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test)

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test) Kursus 02402/02323 Introducerende Statistik Forelæsning 11: Tovejs variansanalyse, ANOVA Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Empirisk Miniprojekt 2

Empirisk Miniprojekt 2 Empirisk Miniprojekt 2 Michael Bejer-Andersen, Thomas Thulesen og Emil Holmegaard Gruppe 5 26. November 2010 Indhold 1 Introduktion 2 1.1 Bane og Robot..................................... 2 1.2 Counter

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 22 sider. Skriftlig prøve: 13. december 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Oversigt. 1 Motiverende eksempel - energiforbrug. 2 Hypotesetest (Repetition) 3 Two-sample t-test og p-værdi. 4 Konfidensinterval for forskellen

Oversigt. 1 Motiverende eksempel - energiforbrug. 2 Hypotesetest (Repetition) 3 Two-sample t-test og p-værdi. 4 Konfidensinterval for forskellen Kursus 02402/02323 Introducerende Statistik Forelæsning 6: Sammenligning af to grupper Oversigt 1 Motiverende eksempel - energiforbrug 2 Hypotesetest (Repetition) 3 Klaus K. Andersen og Per Bruun Brockhoff

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Indledende om Signifikanstest Boldøvelser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Indledende om Signifikanstest Boldøvelser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Indledende om Signifikanstest Boldøvelser 1 Påstand: Et nyt præparat M virker mod migræne. Inden præparatet kan markedsføres, skal denne påstand

Læs mere

Estimation og konfidensintervaller

Estimation og konfidensintervaller Statistik og Sandsynlighedsregning STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Estimation og konfidensintervaller Antag X Bin(n,

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt, Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi

Læs mere

Introduktion til Statistik. Forelæsning 12: Inferens for andele. Peder Bacher

Introduktion til Statistik. Forelæsning 12: Inferens for andele. Peder Bacher Introduktion til Statistik Forelæsning 12: Inferens for andele Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag    susanne Statistik og Sandsynlighedsregning 1 STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 7. undervisningsuge, mandag 1 Estimation og konfidensintervaller

Læs mere