Stx matematik B december Delprøven med hjælpemidler

Størrelse: px
Starte visningen fra side:

Download "Stx matematik B december 2007. Delprøven med hjælpemidler"

Transkript

1 Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012

2 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem d (dybden målt i meter) og P (trykket målt i bar) Trykket i dybden 9 m P=0, ,113=1,896 Trykket i 9 meters dybde er 1,896 bar Hvor er trykket 2 bar? P=2 0,087 d +1,113=2 0,087 d +1,113 1,113=2 1,113 0,087 d =0,887 0,087 d 0,087 = 0,887 0,087 d =10,1954 Trykket er 2 bar i dybden 10,20 meter Konstanternes betydning Konstanten 0,087 fortæller, at trykket stiger med 0,087 bar for hver meter dybden vokser. Konstanten 1,113 fortæller, at når dybden er 0 m (dvs i overfladen af væsken) er trykket 1,113 bar. 2

3 Ib Michelsen Opgave 7 Grafen for den eksponentielle funktion f går gennem P(3,100) og har halveringskonstanten T 0,5 =47. Støttepunkter Der kan findes et støttepunkt mere: Q =(3+47 ; 100/2) = (50 ; 50) Beregning af parametre Vækstfaktoren a beregnes med formlen a= (x 2 x 1 ) y 2 y 1 De kendte tal indsættes: 50 a=0,9854 a= (50 3) 100 = Begyndelsesværdien b beregnes ned formlen b= y 1 a x 1 De kendte tal indsættes: b= 100 0, b = 104,52 Forskriften for funktionen f De kendte tal indsættes: f (x)=104,52 0,9854 x 1 Hvad der ikke burde komme overraskende 3

4 Delprøven med hjælpemidler Opgave 8 Bestemmelse af parametre Da det er oplyst, at sammenhængen kan beskrives ved en potensfunktion: M =b x a, findes modellen ved hjælp af regression: 4

5 Ib Michelsen Tabellens x- og M-værdier benyttes som koordinater for en række punkter; samtidig dannes liste1 som en liste med disse koordinater (i GeoGebra.) Regressionslinjen findes med kommandoen fitpot. a=0,5000 b=31,62 Sammenhængen mellem væksten af de to variable Da der er tale om en potensfunktion, vil vækstfaktoren k for x medføre vækstfaktoren for M. k a En vækst på 50 % svarer til x-(vækst)faktor på 1,50 y-(vækst)faktoren = 1,50 0,5000 =1,2247 Dvs. at når x vokser med 50 % vokser M med 22,5 % 5

6 Delprøven med hjælpemidler Opgave 9 Givet funktionen f (x)=3x 3 24x 2 +48x Tegning af grafer Forskriften for f indtastes i GeoGebra En tilfældig stamfunktion g til f findes med kommandoen integrale; den ønskede stamfunktion F findes ved at løse ligningen: g (4)+k=60 64+k=60 k = 4 dvs.: F (x)= 3 4 x4 8x 3 +24x 2 4 6

7 Ib Michelsen Opgave 10 Resultaterne fra 2 klasser er oplyst hhv som rå data og som kvartilsæt suppleret med oplysninger om mindste- og størsteværdi. Boksplot Med de to varianter af kommandoen Boksplot kan oplysningerne indtastes og boksplot fås som vist herunder: Forskelle på klassernes resultater Det ses, at der er lidt større spredninger på resultaterne i Klasse A end i Klasse B, men at nvauerne er ret ens. I Klasse A har færre end 1/4 af eleverne fået mindre end 12, i den anden klasse er det flere end 1/4; måske op mod halvdelen. Sammenlignes klassernes midtergrupper (de 50 % mellem øvre og nedre kvartil) ses, at de i modsætning til klasserne generelt har mindst spredning i Klasse A. Dvs., at Klasse A har en meget homogen midtergruppe med medianen på et lidt højere niveau, men med store udsving i både top og bund sammenlignet med den anden klasse. 7

8 Delprøven med hjælpemidler Opgave 11 Givet ligningen: ax 2 +2x+c=0 Beregning af diskriminanten I formlen d =b 2 4 a c indsættes størrelserne fra den givne ligning: d =2 2 4 ac=4 4a c d = 0 Da der kun er én løsning, må d = 0. Konklusion Af ovenstående følger: 0=4 4 a c 0=1 a c 1=ac Dvs. at produktet af a og c er 1; størrelserne er omvendt proportionale. 8

9 Ib Michelsen Opgave 12 I Δ ABC er Bestem c og arealet Trekanten tegnes med GeoGebra, først linjestykket a som linje med given længde, derefter de to vinkler B og C (= = 81 ), som vinkler med givne størrelser. Vinklernes ben skærer hinanden i A overfor a. Trekanten tegnes op, hvorved også arealet er bestemt. Trekantens areal = 18,2 Siden c har længden 8,0 9

10 Delprøven med hjælpemidler Medianen m a Midtnormalen til a tegnes; skæringspunktet med siden a kaldes M. m a tegnes som linjestykket AM. Længden af m a aflæses i GeoGebra. m a = 6,0 Alternativ besvarelse I Δ ABC er (Se skitsen på næste side) 10

11 Ib Michelsen Bestem c I en vilkårlig trekant gælder reglen om trekantens vinkelsum; heraf fås formlen: C = 180 A B C = = 81 hvori er indsay de kendte tal. I en vilkårlig trekant gælder sinusrelationerne; heraf fås: c sin (C ) = a sin (A) a sin (C ) c= sin( A) De kendte tal indsættes: 6,7 sin (81) c= sin (56) c=7,98 Siden c har længden 8,0 11

12 Delprøven med hjælpemidler Bestem trekantens areal T I en vilkårlig trekant gælder arealformlen T =0,5 a c sin (B) De kendte størrelser indsættes: T =0,5 6,7 8,0 sin ( 43) T =18,24 T = 18,2 Bestem længden af medianen m a Da M er midtpunkt for siden a, fås længden af MB således: MB = 0,5 a Den kendte sidelængde indsættes: MB = 0,5 6,7=3,35 I en vilkårlig trekant gælder cosinusrelationerne; heraf m a 2 =m 2 +a m a 2 cos( B) Heri indsættes de kendte størrelser: m a 2 =7, , ,98 3,35 cos(43) m a = (7, , ,98 3,35 cos(43)) m a =5,98 m a = 6,0 12

13 Ib Michelsen Opgave 13 Funktionen f er givet ved: f (x)= x 3 +4x 2 +3x 3 Tegning af grafer: f og f' Funktionens graf tegnes med GeoGebra. f' tegnes. Skæringspunkter mellem f' og førsteaksen findes (A og B). 13

14 Delprøven med hjælpemidler Fortegnsvariation og ekstrema x x < -1/3 x = -1/3-1/3 < x <3 x = 3 3 < x If ' f lok. min. = f(1/3) I ]- ; - 1/3] aftager f I [- 1/3 ; 3] vokser f I ] 3 ; + ] aftager f Funktionen f har lokalt minimum = - 3,52 for x= -1/3 Funktionen f har lokalt maksimum = 15 for x = 3 3 løsninger lok. maks. = f(3) Ligningen f(x)=a har 3 løsninger, hvis og kun hvis a ligger mellem de to ekstrema. Det vil sige, at -3,52 < a < 15 14

15 Ib Michelsen Opgave 14a Givet andetgradspolynomiet f (x)= x 2 +9 Bestemmelse af ligninger for tangenter I Geogebra indtastes funktionens forskrift. Skæringspunkterne findes som skæringspunkter mellem graf og førsteakse (A og B). I disse punkter tegnes tangenter med tangentværktøjet. Som det også fremgår af tegningen er ligningerne for tangenterne: Tangent 1: Tangent 2: y=6x+18 y= 6x+18 15

16 Delprøven med hjælpemidler Arealet mellem tangenterne og grafen for f Det ses let, at tangenterne skærer hinanden i C = (0,18); derfor kan arealet beregnes som summen af arealerne fundet ved: integrale[6x+18,f,x[a],0] hhv. integrale[-6x+18,f,0,x[b]] Arealet = 9+9 = 18 16

17 Ib Michelsen Opgave 14b År År efter 1998 (x) 0 7 Fosforkoncentration (y) I Kruså sø er der målt ovenstående fosforkoncentrationer (i µg pr. liter); man regner med at koncentrationen kan beskrives med en (aftagende) eksponentiel model. Model og prognose I GeoGebra benyttes antal år efter 1998 som uafhængig variabel og fosforkoncentrationen som den afhængige variabel. Støttepunkterne (0,230) og (7,64) indtastes. Med kommandoen fitexp findes modellen: Blå graf. Da 2010 er 12 år efter 1998, findes f(12) = 25,7 Ifølge modellen ventes fosforkoncentrationen i 2010 at være faldet til 25,7 µg pr. liter. (Se herunder) 17

18 Delprøven med hjælpemidler Prognose med lineær model Tilsvarende kan man med kommandoen fitlinje finde en lineær model: den røde graf. Prognosen for 2010 findes som y-værdien i skæringspunktet D (mellem den lineære sammenhæng og linjen x=12). Som det ses vil værdien i 2010 for denne model være ca. -55 µg pr. liter. Kommentar Det giver ikke mening med koncentrationer under 0 µg pr. liter. 18

19

20

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Vejledende besvarelse

Vejledende besvarelse Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Matematik B-niveau STX 7. december 2012 Delprøve 1

Matematik B-niveau STX 7. december 2012 Delprøve 1 Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme

Læs mere

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU Tirsdag den 18. december 2007 Kl. 09.00 13.00 STX073-MAB Bedømmelsen af det skriftlige eksamenssæt I bedømmelsen af besvarelsen af de enkelte spørgsmål

Læs mere

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da:

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da: 7. marts 0 FVU AVU HF X FAG : Matematik B ark nr. antal ark 8 Opgave 0 a b 5 a b 5 = b 3 er en løsning til ligningen, da: = 9 = 3 Opgave Andengradsligningen løses, idet a = b = 3 c = 4 d (diskriminanten)

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Løsningsforslag Mat B August 2012

Løsningsforslag Mat B August 2012 Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

a) For at bestemme a og b i y=ax+b defineres to lister med data fra opgaven År d 0, 1, 2, 3, 4, 5, 6 :

a) For at bestemme a og b i y=ax+b defineres to lister med data fra opgaven År d 0, 1, 2, 3, 4, 5, 6 : Eksemplarisk løsning af eksamensopgave Nedenstående opgaver er delprøven med hjælpemidler fra Matematik B eksamen d. 22 maj 2014 restart with Gym : Opgave 7 a) For at bestemme a og b i y=ax+b defineres

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2014/15, eksamen maj-juni 2015 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

Matematik B-niveau 31. maj 2016 Delprøve 1

Matematik B-niveau 31. maj 2016 Delprøve 1 Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =

Læs mere

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2 GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Trigonometri I en trekant ABC får vi opgivet følgende: Vi skitserer trekanten i GeoGebra: Vi beregner

Læs mere

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier:

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier: Løsningsvejledning til eksamenssæt fra januar 2009 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - To linjer Vi får opgivet linjen m: Vi skal bestemme en ligning til linjen l, som er parallel med

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

Delprøven uden hlælpemidler

Delprøven uden hlælpemidler Matematik B - Juni 2014 Af hensyn til CAS-programmet er der anvendt punktum som decimaltegn. Delprøven uden hlælpemidler Opgave 1 AB=8, A1B=12, AC=10 Opgave 2 Hvor y er salget af øko. fødevarer i mio.

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Uddannelse Fag og niveau Lærer Hold VUC Skive-Viborg Hfe Matematik B Claus Ryberg

Læs mere

Kort om Eksponentielle Sammenhænge

Kort om Eksponentielle Sammenhænge Øvelser til hæftet Kort om Eksponentielle Sammenhænge 2011 Karsten Juul Dette hæfte indeholder bl.a. mange småspørgsmål der gør det nemmere for elever at arbejde effektivt på at få kendskab til emnet.

Læs mere

Matematik A studentereksamen

Matematik A studentereksamen Xxxx Side 1 af 11 Opgave 7 Jeg aflæser af boksplottet for personbeskatningen i 2007 medianen til. Første og anden kvartil aflæser jeg til hhv. og. Den mindst observerede personbeskatning i år 2007 var

Læs mere

Undervisningsbeskrivelse & Oversigt over rapporter

Undervisningsbeskrivelse & Oversigt over rapporter Undervisningsbeskrivelse & Oversigt over rapporter Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Reducering Reducér følgende udtryk: Vi ganger dividerer med i både nævner og begge led i tælleren:

Læs mere

MATEMATIK A-NIVEAU-Net

MATEMATIK A-NIVEAU-Net STUDENTEREKSAMEN STUDENTEREKSAMEN PRØVESÆT MAJ 22007 2010/2011 MATEMATIK A-NIVEAU-Net Prøvesæt 2 2010/2011 Kl. 09.00 14.00 Prøvesæt 2 2010/2011 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret

Læs mere

Vejledende løsning. Ib Michelsen. hfmac123

Vejledende løsning. Ib Michelsen. hfmac123 Vejledende løsning hfmac123 Side 1 Opgave 1 På en bankkonto indsættes 30.000 kr. til en rentesats på 2,125 % i 7 år. Beregning af indestående Jeg benytter formlen for kapitalfremskrivning: K n=k 0 (1+r

Læs mere

Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: +kat 2. De oplyste tal indsættes; ligningen løses.

Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: +kat 2. De oplyste tal indsættes; ligningen løses. Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: hyp 2 = kat 1 2 +kat 2 2 12 De oplyste tal indsættes; ligningen løses. hyp 2 = 5 2 +12 2 hyp 2 = 25 + 144 = 169 hyp = 13,00 = 13,0 (idet

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

sammenhänge for C-niveau i stx 2013 Karsten Juul

sammenhänge for C-niveau i stx 2013 Karsten Juul LineÄre sammenhänge for C-niveau i stx y 0,5x 2,5 203 Karsten Juul : OplÄg om lineäre sammenhänge 2 Ligning for lineär sammenhäng 2 3 Graf for lineär sammenhäng 2 4 Bestem y når vi kender x 3 5 Bestem

Læs mere

Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Parallelle linjer En linje l går gennem punktet og er parallel med linjen m der er givet ved:

Læs mere

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse.

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse. Opdateret 28. maj 2014. MD Ofte brugte kommandoer i Geogebra. Generelle Punktet navngives A Geogebra navngiver punktet Funktionen navngives f Funktionen navngives af Geogebra Punktet på grafen for f med

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

MATEMATIK B-NIVEAU STX081-MAB

MATEMATIK B-NIVEAU STX081-MAB MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau B. Delprøven uden hjælpemidler

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau B. Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 008 HHX08-MAB Matematik Niveau B Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra.

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet fremskrivningsfaktor. Vis,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 15/16, eksamen maj-juni 2016 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold 2-årig

Læs mere

MAT B GSK august 2007 delprøven uden hjælpemidler

MAT B GSK august 2007 delprøven uden hjælpemidler Opg MAT B GSK august 007 delprøven uden hjælpemidler Funktionen f har forskriften f() = ( + ) ( + ) ( ) Beregn nulpunkterne for f. Svar : f() = 0 = eller = eller = ; L = { ; ; } Polnomiers faktorisering

Læs mere

Løsningsforslag MatB Juni 2013

Løsningsforslag MatB Juni 2013 Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x

Læs mere

Løsningsforslag 7. januar 2011

Løsningsforslag 7. januar 2011 Løsningsforslag 7. januar 2011 May 9, 2012 Opgave 1 (5%) Funktionen f er givet ved forskriften f(x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). a) Definitionsmængden Logaritmen

Læs mere

1q + 1qs Ikast-Brande Gymnasium maj 2015. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det.

1q + 1qs Ikast-Brande Gymnasium maj 2015. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Emne: procent og rente: 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

1 Ligninger. 2 Ligninger. 3 Polynomier. 4 Polynomier. 7 Vækstmodeller

1 Ligninger. 2 Ligninger. 3 Polynomier. 4 Polynomier. 7 Vækstmodeller 1 Ligninger a. Fortæl om algebraisk og grafisk løsning af ligninger ud fra ét eller flere eksempler. b. Gør rede for algebraisk løsning af andengradsligningen ax 2 + bx + c = 0. 2 Ligninger a. Fortæl om

Læs mere

Matematik A-niveau Delprøve 1

Matematik A-niveau Delprøve 1 Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±

Læs mere

Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven

Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven 2014-0522 1stx141-MAT-B - eksemplarisk besvarelse Bemærk, at i opgaverne uden hjælpemidler er Maple blot benyttet som tekstbehandling. Til eksamen skal besvarelsen laves med papir og blyant. Opgavetksten

Læs mere

VIA læreruddannelsen Silkeborg. WordMat kompendium

VIA læreruddannelsen Silkeborg. WordMat kompendium VIA læreruddannelsen Silkeborg WordMat kompendium Bolette Fisker Olesen 25-11-2015 Indholdsfortegnelse Ligning... 2 Løs ligning... 2 WordMat som lommeregner... 4 Geometri... 4 Trekanter... 4 Funktioner...

Læs mere

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB GUX Matematik B-Niveau Fredag den 29. maj 2015 Kl. 9.00-13.00 Prøveform b GUX151 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier.

Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier. Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister 1. Polynomier. Redegør for andengradspolynomiets graf og udled en formel for koordinatsættet til parablens toppunkt. 2.

Læs mere

Løsningsforslag Mat B 10. februar 2012

Løsningsforslag Mat B 10. februar 2012 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 20. december 2010. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 20. december 2010. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx103-mat/a-01010 Mandag den 0. december 010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Dette opgavesæt består

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx101-MAT/B-26052010 Onsdag den 26. maj 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere

Eksamensspørgsmål 4emacff1

Eksamensspørgsmål 4emacff1 Eksamensspørgsmål 4emacff1 1. Funktioner, Lineære funktioner Gør rede for den lineære funktion y ax b. Forklar herunder betydningen af a og b, og kom ind på det grafiske forløb af en lineær funktion. Kom

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Fredag den 17. august 2012. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Fredag den 17. august 2012. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx1-mat/a-170801 Fredag den 17. august 01 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Vejledning i brug af Gym-pakken til Maple

Vejledning i brug af Gym-pakken til Maple Vejledning i brug af Gym-pakken til Maple Gym-pakken vil automatisk være installeret på din pc eller mac, hvis du benytter cd'en Maple 16 - Til danske Gymnasier eller en af de tilsvarende installere. Det

Læs mere

GU HHX MAJ 2009 MATEMATIK A. Onsdag den 13. maj 2009. Kl. 9.00 14.00 GL091-MAA. Undervisningsministeriet

GU HHX MAJ 2009 MATEMATIK A. Onsdag den 13. maj 2009. Kl. 9.00 14.00 GL091-MAA. Undervisningsministeriet GU HHX MAJ 2009 MATEMATIK A Onsdag den 13. maj 2009 Kl. 9.00 14.00 Undervisningsministeriet GL091-MAA Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og

Læs mere

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA STUDENTEREKSAMEN GUX MAJ 007 014 MATEMATIK A-NIVEAU Prøveform b 014 Kl. 9.00 14.00 GUX-MAA Matematik A Prøvens varighed er 5 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens.

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens. Rapport Bjælken Indledning Vi arbejdede med opgaverne i grupper. En gruppe lavede en tabel, som de undersøgte og fandt en regel. De andre grupper havde studeret tegninger af bjælker med forskellige længder,

Læs mere

navn: dato: fag: Matematik hold: 2dMa modtaget af: ark nr: 1 af i alt 12 ark

navn: dato: fag: Matematik hold: 2dMa modtaget af: ark nr: 1 af i alt 12 ark ark nr: af i alt ark Opgave En lineær funktion f opfylder at dens graf går gennem A(3,7) og B(9,5) Vi finder hældningen a af grafen a = y - y 5-7 8 = = = 3 x - x 9-3 6 Forskriften for f kan nu bestemmes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 2009 Institution Silkeborg Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik, niveau

Læs mere

Matematik A. Studentereksamen. Fredag den 5. december 2014 kl. 9.00-14.00. stx143-mat/a-05122014

Matematik A. Studentereksamen. Fredag den 5. december 2014 kl. 9.00-14.00. stx143-mat/a-05122014 Matematik A Studentereksamen stx143-mat/a-05122014 Fredag den 5. december 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Mette

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Mundtlig eksamen Maj-Juni 2014 Institution VUF Uddannelse Fag og niveau stx (Studenterkursus) Matematik C

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

GL. MATEMATIK B-NIVEAU

GL. MATEMATIK B-NIVEAU GL. MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 29. maj 2013 2016 Opgave 1 Opgave 2 Opgave 3 Opgave 4 Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2015, eksamen maj / juni 2015 Institution Kolding HF og VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

UNDERVISNINGSBESKRIVELSE

UNDERVISNINGSBESKRIVELSE UNDERVISNINGSBESKRIVELSE Termin Maj-juni 2015-2016 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF2 Matematik B Ineta Sokolowski mab1 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 15-16 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF 2-årigt Matematik C

Læs mere

Undervisningsplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over planlagte undervisningsforløb

Undervisningsplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over planlagte undervisningsforløb Undervisningsplan Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2015-2016 Institution Svendborg Erhvervsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jesper

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren Matematik B, 5 december 2014 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Delprøve 1 UDEN hjælpemidler Opgave

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj- juni, 14-15 Horsens HF & VUC HF 2- årigt Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Oktober-december 2014 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau B Peter Harremoës GSK hold: k12gymabu1n2 Oversigt over gennemførte

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B Ashuak Jakob France

Læs mere

6. Regression. Hayati Balo,AAMS. 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1

6. Regression. Hayati Balo,AAMS. 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1 6. Regression Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1 6.0 Indledning til funktioner eller matematiske modeller Mange gange kan

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Ib Michelsen Vejledende løsning HF C 121 1. Et beløb forrentes i en bank med rentesatsen 3,5 % i 5 år og derefter er indeståendet kr. 59.384,32 kr.

Ib Michelsen Vejledende løsning HF C 121 1. Et beløb forrentes i en bank med rentesatsen 3,5 % i 5 år og derefter er indeståendet kr. 59.384,32 kr. Ib Michelsen Vejledende løsning HF C 121 1 Opgave 1 Et beløb forrentes i en bank med rentesatsen 3,5 % i 5 år og derefter er indeståendet kr. 59.384,32 kr. Beregning af startkapital Da der er tale om kapitalfremskrivning,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2016, eksamen maj / juni / 2016 Institution Kolding HF og VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007 07-0-6-U Matematik Niveau B Delprøven uden hjælpemidler Prøvens varighed: 1 time Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2015 Institution VUC Vest, Stormgade 47, 6700 Esbjerg Uddannelse HF net-undervisning, HFe Fag og niveau

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Selvstuderende Lærer Maj-juni 2014 Skoleår 2013/2014

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj-juni 2016 Institution Uddannelse Fag og niveau Lærer Hold Favrskov Gymnasium Stx Matematik B Anne Blom 2f Oversigt over gennemførte undervisningsforløb Titel 1 Intro:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 15/16, eksamen maj-juni 2016 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2005. Typeopgave 1. Matematik Niveau A. Delprøven uden hjælpemidler. Prøvens varighed: 1 time.

Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2005. Typeopgave 1. Matematik Niveau A. Delprøven uden hjælpemidler. Prøvens varighed: 1 time. 054966 22/12/05 7:45 Side 1 Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2005 05-A-1-U Typeopgave 1 Matematik Niveau A Delprøven uden hjælpemidler Prøvens varighed: 1 time. Dette opgavesæt består

Læs mere

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever.

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever. År Sommer 2015 Institution Horsens HF & VUC Uddannelse HF2-årigt Fag og Matematik C niveau Lærer Søren á Rógvu Hold 1b Oversigt over forløb Forløb 1 Forløb 2 Forløb 3 Forløb 4 Forløb 5 Forløb 6 Forløb

Læs mere

DELPRØVE 1. Maj 2008,2009,2010,2012 og 2015

DELPRØVE 1. Maj 2008,2009,2010,2012 og 2015 DELPRØVE 1 Maj 2008,2009,2010,2012 og 2015 DELPRØVE 1, maj 2008 Følgende opgaver i delprøve 1 er løst i hånden, hvorefter det er skrevet ind i Word, så det er lettere at læse og evt. kommentere på udregningerne.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2016, eksamen maj / juni / 2016 Institution Kolding HF og VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Løsningsforslag MatB Juni 2014

Løsningsforslag MatB Juni 2014 Løsningsforslag MatB Juni 2014 Opgave 1 (5 %) a) Bestem en ligning for den rette linje l, der indeholder punkterne P( 2,4) og Q(4, 1) Løsning: Da de to punkter er givet kan vi beregne hældningen på følgende

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Opgave 1 - Rentesregning. Opgave a)

Opgave 1 - Rentesregning. Opgave a) Matematik C, HF 7. december 2016 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Løsningerne nedenfor er løst

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold 2015 Sommer VUC Lyngby HF Matematik B Christian Møller

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 2015 VUC

Læs mere