02402 Løsning til testquiz02402f (Test VI)

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "02402 Løsning til testquiz02402f (Test VI)"

Transkript

1 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende: for hver annonceret salgspris angives en højere faktisk salgspris ved (+), lige præcis ved (0), og mindre (-) i forhold til hvad kunden havde forlangt, som vist i nedenstående tabel Kunde nr Salg Angiv hvilken metode der er (bedst) egnet til at teste og eventuelt påvise, at kunden som oftest får mindre end hvad den har forlangt for sin bolig. 2. Sign test 3. Test i antaltstabel for fordeling 4. lineær regressionsanalyse Korrekt svar: 2 Spørgsmål 5. En fisker tjener 20 kroner for et kg rejer. Hans fangst varierer lidt, i middel 40 kg, og standard afvigelse 5 kg. Angiv middelværdi og varians af fiskerens fortjeneste ved en fangst 1. Middelværdi 40 og varians 5 2. Middelværdi 40 og varians Middelværdi 800 og varians Middelværdi 800 og varians 500 Løsning Fiskerens fangst X er en stokastisk variabel med E[X] =40 Var[X]=5 2 Idet a = 20, og der er tale om en skalering, fås E[a X] =a[x]=20 40 Var[X]=a 2 Var[X]= Korrekt svar: 3 1

2 Spørgsmål 6. I et forsøg var man interesseret i at undersøge om indtagelse af koffein (i form af kaffe) havde effekt af hvor hurtigt man kunne indtaste en tekst (200 ord) på computer. Målingerne er givet i nedenstående tabel Koffein (ml) Tid (sek.) En evt sammenhæng mellem indtagelse af koffein og hvor hurtigt man kan indtaste en tekst analyseres mest hensigtsmæssigt ved 2. Sign test 3. test i antaltstabel for fordeling 4. lineær regressionsanalyse Løsning Idet vi søger en sammenhæng mellem 2 variable x (koffein) og y hastighed, dvs en sammenhæng mellem sammenhørende værdier, gøres dette mest hensigtsmæssigt ved lineær regressionsanalyse, dvs y = α + β x + ε Iøvrigt vil man kunne påvise en sammenhæng (på et givet signifkansniveau) hvis man kan afvise nul-hypotesen, H 0 : β =0 Korrekt svar: 4 Spørgsmål 7. Ventetiden når man ringer op til en servicetelefon følger en eksponetialfordeling med middelværdi 3 minutter. Hvad er sandsynligheden for, at man skal vente længere end 6 minutter, når man ringer til servicetelefonen? Løsning Opgaven kan løses på 2 forskellige måder. Enten direkte i eksponentialfordelingen (sandsynligheden for at vente længere en 6 minutter), eller ved regning i poissonfordelingen (sandsynligheden for ingen hændelser i løbet af 6 minutter). Her vises det sidste alternativ For en periode på 6 minutter vil man i middel forvente 2 kundeankomster, således at for perioden beskrives antal ankomster ved X pois(2). Den søgte sandsynlighed bliver derfor (tabel 2, side 570) P (X 0) =

3 Korrekt svar: 1 Spørgsmål 8. Du bliver tildelt 5 kort fra et almindelig spil kort (dvs. indholdende 52 kort). Hvad er sandsynligheden for, at alle 5 kort er hjerter? 1. 5/ / / / Løsning Idet sandsynligheden for at trække en hjerter er betinget af hvad man har trukket allerede, fås sandsynligheden ved at betragte den hypergeometriske fordeling Korrekt svar: 4 ( )( ) ( ) = Spørgsmål 9. I behandling af en sygdom sammenlignede man to typer af medicin (I og II). For en række patienter registrerede man graden af forbedring på en skala fra 1 til 4 (hvor 1 er bedst) og fik følgende resultater for 273 patienter I II Hvilken metode er (best) egnet til at undersøge om fordelingen i de to grupper (og dermed effektiviteten af de to typer medicin) er ens 2. Parret t-test 3. Test i antaltstabel 4. Lineær regressionsanalyse Løsning Tabellen viser, at patienter, der har afprøvet en af de to typer medicin, er blevet klassificeret på skalaen 1-4. Observationerne i hver celle (antal) kan altså betragtes som en andel ud af det totale antal, der har prøvet medicinen. Den mest hensigtsmæssige analysemetode er derfor test i en antalstabel Korrekt svar: 3 3

4 Spørgsmål 10. Når man tester en tosidet statistisk hypotese, og finder at teststørrelsen er numerisk mindre end de kritiske værdier, kan det konkluderes 1. At H 0 accepteres på det angivne signifikansniveau 2. At H 0 forkastes på det angivne signifikansniveau 3. At H 1 påvises på det angivne signifikansniveau 4. At H 1 påvises med sandsynligheden 5% Løsning Idet teststørrelsen er numerisk mindre end de kritiske værdier, og dermed ligger i acceptområdet, accepteres H 0 på det angivne signifikansniveau Korrekt svar: 1 Spørgsmål 11. I et amerikansk studie har man har stillet en række børn i 4 klasse følgende spørgsmål: Hvad vil du helst foretrække mht skolen? og hertil havde man følgende svarmuligheder a) få gode karakterer b) være dygtig til sport c) være populær Såfremt man vil undersøge om drenge og piger fordeler sig ens mht ovenstående svarmuligheder gøres dette mest hensigtsmæssigt ved 2. Sign test 3. Test i antaltstabel 4. Lineær regressionsanalyse Idet man vil registrere hvor mange drenge og piger, der svarer i en af de 3 kategorier, vil den efterfølgende analyse mest hensigtsmæssigt være test i en antalstabel korrekt svar: 3 4

5 Spørgsmål 12. I et studie undersøgte man om det tog længere tid for en baby at lære at kravle i kolde måneder (om vinteren) end i varme måneder (om sommeren). (Motivation var egentlig at undersøge om lag af varmt tøj forhindrede babyen i at kravle). Man registrerede derfor babyens alder, når den først lærte at kravle og den tilhørende udendørstemperatur. Såfremt korrelationskoefficienten mellem alder og udendørstemperatur er -0.5, og der i øvrigt er en lineær sammenhæng, kan det konkluderes 1. At piger lærer hurtigere at kravle end drenge 2. At når temperaturen falder, så kravler børn hurtigere, end når det er varmt 3. At når temperaturen falder, så tager det længere tid for babyer at lære at kravle 4. Børn kravler meget stærkt i varme korrekt svar: 3 Spørgsmål 13. Fortsat fra spm 12. Såfremt man ønsker en modellere sammenhæng mellem kravlealder og udendørstemperatur ved modellen Y = a + b X + e og man samtidig har estimeret korrelationskoefficienten mellem alder og udendørstemperatur er estimeret til r = 0.5, kan det konkluderes at 1. estimatet af a er negativt 2. estimatet af b er negativt 3. estimatet af e er negativt 4. man kan ikke konkludere noget direkte Løsning Hældningen på den rette linie, der passer bedst til data vil være negativ (men ikke nødvendigvis signifikant forskellig fra nul). korrekt svar: 2 5

6 Spørgsmål 14. Fortsat fra spm 12. Såfremt man har estimeret parametrene a og b i ligningen Y = a + b X + e hvor Y angiver kravlealder og X angiver temperatur. Variablen e angiver da 1. e angiver modellens residualer, 2. e angiver modelles forklaringsgrad 3. e angiver liniens hældning 4. e er ikke typisk en del af en regressionsmodel Løsning e angiver modellens residualer, dvs afvigelse mellem model og observationer, e = Y a b X Korrekt svar: 1 Spørgsmål 15. Fortsat fra spm 12. Lad os antage at X er angivet i grader celcius, Y i måneder og estimatet af a er 8 og estimatet af b er Hvor meget hurtigere lærer et barn at kravle hvis middeltemperaturen er 10 grader højere ifølge modellen? 1. Det kan kun besvares hvis man ved at b er signifikant forskellig fra en halv måned 3. 7 en halv måned 4. en halv måned Løsning Såfremt a og b er signifikante haves modellen Y = X Heraf ses, at hvis X bliver 10 grader højere, så bliver Y mindre, mere præcis = 0.5 måned mindre. Men hvis b ikke er signifikant (man kan antage at b = 0), gælder ovenstående model ikke. Spørgsmålet kan altså kun besvares, hvis det man ved at b er signifikant forskellig fra 0 Korrekt svar: 1 6

7 Spørgsmål 16. Såfremt man ved et statistisk test ikke kan afvise nul-hypotesen H 0 : b =0 kan det konkludere 1. at skæring med y-aksen kan antages at være 0 2. at en nyfødt baby kan kravle 3. at der ikke kan påvises sammenhæng mellem udetemperatur og kravlealder 4. at der kan påvises sammenhæng mellem udetemperatur og kravlealder Korrekt svar: 3 7

Test nr. 6 af centrale elementer 02402

Test nr. 6 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 6 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Konfidensinterval for µ (σ kendt)

Konfidensinterval for µ (σ kendt) Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

2 0.9245. Multiple choice opgaver

2 0.9245. Multiple choice opgaver Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1 Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter Ekstraopgaver uge 2-02402 Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X.

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X. Opgave I I en undersøgelse af et potentielt antibiotikum har man dyrket en kultur af en bestemt mikroorganisme og tilført prøver af organismen til 20 prøverør med et vækstmedium og samtidig har man tilført

Læs mere

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

c) For, er, hvorefter. Forklar.

c) For, er, hvorefter. Forklar. 1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud

Læs mere

Test nr. 4 af centrale elementer 02402

Test nr. 4 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 4 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................

Læs mere

Kapitel 8 Chi-i-anden (χ 2 ) prøven

Kapitel 8 Chi-i-anden (χ 2 ) prøven Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1)

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Kursus 02402: Besvarelser til øvelsesopgaver i uge 9 Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Som model benyttes en binomialfordeling, som beskriver antallet, X, blandt

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Test nr. 5 af centrale elementer 02402

Test nr. 5 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 5 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK med Excel

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK med Excel MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK med Excel. udgave 004 i FORORD Denne bog er en fortsættelse af lærebogen M. Oddershede Larsen : Statistiske grundbegreber. Det forudsættes, at man har rådighed

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Statistik i basketball

Statistik i basketball En note til opgaveskrivning jerome@falconbasket.dk 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større

Læs mere

En intro til radiologisk statistik

En intro til radiologisk statistik En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur

Læs mere

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................

Læs mere

Peter Harremoës Mat A eksamen med hjælpemidler 15. december 2014. f (x) = 0. 2x + k 1 x = 0 2x 2 + k = 0 2x 2 = k x 2 = k 2. k 2.

Peter Harremoës Mat A eksamen med hjælpemidler 15. december 2014. f (x) = 0. 2x + k 1 x = 0 2x 2 + k = 0 2x 2 = k x 2 = k 2. k 2. Opgave 6 Se Bilag 3! Funktionen f er givet ved f (x) = x 2 + k ln (x), x > 0. Det oplyses at funktionen har netop ét ekstremum, når k > 0, så x-værdien til dette ekstremum må kunne findes ved at løse ligningen

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset 02402 Vejledende løsninger til Splus-opgaverne fra hele kurset Vejledende løsning SPL3.3.1 Der er tale om en binomialfordeling med n =10ogp=0.6, og den angivne sandsynlighed er P (X =4) som i bogen også

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende

Læs mere

Modul 12: Exercises. 12.1 Sukkersygepatienters vægt

Modul 12: Exercises. 12.1 Sukkersygepatienters vægt Modul 12: Exercises 12.1 Sukkersygepatienters vægt............... 1 12.2 Newfoundlandske kvinders blodtryk.......... 4 12.3 Korrelationskoefficient.................. 6 12.4 Højde og vægt......................

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte

Læs mere

Kapitel 7 Forskelle mellem centraltendenser

Kapitel 7 Forskelle mellem centraltendenser Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens

Læs mere

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro Uge 48 II Teoretisk Statistik 7. november 003 Numerisk modelkontrol af diskrete fordelinger: intro Eksempel: kvalitetskontrol Goodness-of-fit test: generel teori Endeligt udfaldsrum Udfaldsrum uden øvre

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet!

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet! Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 2. juni 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Indledende om Signifikanstest Boldøvelser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Indledende om Signifikanstest Boldøvelser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Indledende om Signifikanstest Boldøvelser 1 Påstand: Et nyt præparat M virker mod migræne. Inden præparatet kan markedsføres, skal denne påstand

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

2 X 2 = Antal mygstik på enpersoniløbetaf1minut

2 X 2 = Antal mygstik på enpersoniløbetaf1minut Opgave I I mange statistiske undersøgelser bygger man analysen på anvendelse af normalfordelingen til (eventuelt tilnærmelsesvist) at beskrive den tilfældige variation. Spørgsmål I.1 (1): Forén af følgende

Læs mere

Fokus på Forsyning. Datagrundlag og metode

Fokus på Forsyning. Datagrundlag og metode Fokus på Forsyning I notatet gennemgås datagrundlaget for brancheanalysen af forsyningssektoren sammen med variable, regressionsmodellen og tilhørende tests. Slutteligt sammenfattes analysens resultater

Læs mere

Mat2SS Vejledende besvarelse uge 11

Mat2SS Vejledende besvarelse uge 11 MatSS Vejledende besvarelse uge Eksamen V99/00 opg. a Kønsfordelingen 996 den samme for de tre skoler Mænd Kvinder I alt København 5 = n x 56 = x 8 = n Odense 9 = n x 06 = x 5 = n Århus 0 = n x 40 = x

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl?

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl? Module 6: Exercises 6.1 To laboranter....................... 2 6.2 Nicotamid i piller..................... 3 6.3 Karakterer......................... 5 6.4 Blodtryk hos kvinder................... 6 6.5

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Opgave 6. Opgave 7. Opgave 8. Peter Harremoës Mat A delprøve med hjælpemidler 15 december 2015

Opgave 6. Opgave 7. Opgave 8. Peter Harremoës Mat A delprøve med hjælpemidler 15 december 2015 Opgave 6 a) Se Bilag 3! b) Funktionen differentieres, sættes lig nul og ligningen løses. g (x) = 0 K ln (x) + K = 0 K ln (x) = K ln (x) = 1 x = e 1. Det stationære punkt har x = e 1. Opgave 7 a) Data indlæses

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Estimation og usikkerhed

Estimation og usikkerhed Estimation og usikkerhed = estimat af en eller anden ukendt størrelse, τ. ypiske ukendte størrelser Sandsynligheder eoretisk middelværdi eoretisk varians Parametre i statistiske modeller 1 Krav til gode

Læs mere

Ekstremregn i Danmark

Ekstremregn i Danmark Ekstremregn i Danmark Supplement til statistisk bearbejdning af nedbørsdata fra Spildevandskomiteens regnmålersystem 1979-96 Henrik Madsen August 2002 Miljø & Ressourcer DTU Danmark Tekniske Universitet

Læs mere

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks:

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Til hvert af de gennemgåede værktøjer findes der 5 afsnit. De enkelte afsnit kan læses uafhængigt af hinanden. Der forudsættes et elementært kendskab

Læs mere

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up

Læs mere

Side 1 af 21 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2003. Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 21 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2003. Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 21 sider Skriftlig prøve: 15. december 2003 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable

Læs mere

Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger

Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger Af Karen Helle Sloth og Flemming Skjøth, AgroTech Sammendrag

Læs mere

Program dag 2 (11. april 2011)

Program dag 2 (11. april 2011) Program dag 2 (11. april 2011) Dag 2: 1) Hvordan kan man bearbejde data; 2) Undersøgelse af datamaterialet; 3) Forskellige typer statistik; 4) Indledende dataundersøgelser; 5) Hvad kan man sige om sammenhænge;

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 6: Hypotesetest 1

ØVELSER Statistik, Logistikøkonom Lektion 6: Hypotesetest 1 ! ØVELSER Statistik, Logistikøkonom Lektion 6: Hypotesetest 1 Eksempel 1 TEST AF MIDDELVÆRDI FRA ÉN STIKPRØVE (ukendt varians) En producent af tyggegummi påstår at en pakke tyggegummi i gennemsnit vejer

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

Nanostatistik: Opgavebesvarelser

Nanostatistik: Opgavebesvarelser Nanostatistik: Opgavebesvarelser JLJ Nanostatistik: Opgavebesvarelser p. 1/16 Pakkemaskine En producent hævder at poserne indeholder i gennemsnit 16 ounces sukker. Data: 10 pakker sukker: 16.1, 15.8, 15.8,

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark

Læs mere

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900. 2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske

Læs mere

Estimation og konfidensintervaller

Estimation og konfidensintervaller Statistik og Sandsynlighedsregning STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Estimation og konfidensintervaller Antag X Bin(n,

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere

Test og sammenligning af udvalgte regressionsmodeller Berit Christina Olsen forår 2008

Test og sammenligning af udvalgte regressionsmodeller Berit Christina Olsen forår 2008 Indholdsfortegnelse 1 INDLEDNING OG PROBLEMSTILLING... 2 1.1 OVERVÆGT SOM CASE... 2 2 ANALYSEFORBEREDELSER... 4 2.1 HEPRO-UNDERSØGELSEN... 4 2.2 DEN AFHÆNGIGE VARIABEL VIGTIGHED AF ÆNDRINGEN AF VÆGT...

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hhx122-mat/b-17082012 Fredag den 17. august 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere