Webinar - Matematik. 1. Fælles Mål Relationsmodellen og et forløbsplanlægningsskema

Størrelse: px
Starte visningen fra side:

Download "Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema"

Transkript

1 Webinar - Matematik 1. Fælles Mål Relationsmodellen og et forløbsplanlægningsskema 3. Et eksempel på et forløb om areal og omkreds på mellemtrinnet 4. Relationsmodellen som refleksionsmodel

2 Alle Fælles Mål 2014 for fag og emner i grundskolen er læringsmål, mål for elevernes læringsudbytte Hvad enten de kaldes kompetencemål, færdighedsmål eller vidensmål i Fælles Mål 2014 er der tale om læringsmål - dvs. mål for elevernes læringsudbytte

3

4 I matematik gælder der: I planlægningen af undervisningsforløb skal der inddrages læringsmal fra både de matematiske kompetencer og fra de matematiske stofområder. (Læseplan for faget matematik s. 3)

5 Relationsmodellen Planlægningsfasen Gennemførelsesfasen Evalueringsfasen

6 Planlægningsskema for forløb Klasse: Fag: Antal uger Kompetenceområder, kompetencemål og færdighedsvidensmålpar Omsatte læringsmål Undervisningsaktiviteter Tegn på læring Evaluering Hvad er det nye eleverne skal lære? Eleven/eleverne kan Hvilke undervisningsaktiviteter støtter op om læringsmålene? Hvad viser at målene er nået? Hvad er det eleverne gør? Hvor befinder eleverne sig i forhold til de omsatte mål? Hvad gør eleven, hvad gør læreren, hvad gøres i fællesskab? Hvordan gives løbende feed-back til eleverne?

7 Planlægningsskema for forløb Klasse: Fag: Antal uger Kompetenceområder, kompetencemål og færdighedsvidensmålpar Omsatte læringsmål Undervisningsaktiviteter Tegn på læring Evaluering Hvad er det nye eleverne skal lære? Eleven/eleverne kan Hvilke undervisningsaktiviteter støtter op om læringsmålene? Hvad viser at målene er nået? Hvad er det eleverne gør? Hvor befinder eleverne sig i forhold til de omsatte mål? Hvad gør eleven, hvad gør læreren, hvad gøres i fællesskab? Hvordan gives løbende feed-back til eleverne?

8 Billede af FFM

9 Planlægningsskema for forløb Klasse: Fag: Antal uger Omsatte læringsmål Matematikske kompetencer Kompetencemål Eleven kan handle med overblik i sammensatte situationer med matematik Kommunikation (fase 3): Eleven kan anvende fagord og begreber mundtligt og skriftligt Eleven har viden om fagord og begreber Ræsonnement og tankegang (fase 1 og 2) Eleven kan anvende ræsonnementer i undersøgende arbejde Eleven har viden om enkle ræsonnementer knyttet til undersøgende arbejde, herunder undersøgende arbejde med digitale værktøjer Geometri og måling Kompetencemål Eleven kan anvende geometriske metoder og beregne enkle mål Måling (fase 1): Eleven kan anslå og bestemme omkreds og areal Eleven har viden om forskellige metoder til at anslå og bestemme omkreds og areal, herunder metoder med digitale værktøjer Kompetenceområder, kompetencemål og færdighedsvidensmålpar Undervisningsaktiviteter Tegn på læring Evaluering

10 Planlægningsskema for forløb Klasse: Fag: Antal uger Kompetenceområder, kompetencemål og færdighedsvidensmålpar Omsatte læringsmål Undervisningsaktiviteter Tegn på læring Evaluering

11 Omsatte læringsmål Undervisningsaktiviteter Tegn på læring Eleven kan bruge fagudtryk og matematiske argumentationer i forbindelse med at arbejde med omkreds og areal. Eleven kan anvende ræsonnementer i undersøgende arbejde Eleven kan måle og beregne omkreds og areal af kvadrater og rektangler. Eleven kan finde regler for, hvordan man kan regne sig frem til omkreds og areal af kvadrater og rektangler. Eleven kan bruge GeoGebra til at finde omkreds og areal af forskellige polygoner. Eleven kan forklare og tydeliggøre over for andre, hvordan han/hun er nået frem til sine resultater og metoder. Læreroplæg om areal og omkreds samt om polygoner. Eleverne skal arbejde med Gæt et ord om areal, omkreds, målestoksforhold, polygoner og forskellige enheder. Eleverne skal måle klassen op og tegne en skitse af den i et godt målestoksforhold. Eleverne skal beregne klassens areal og finde regler for at beregne areal, der gælder i andre sammenhænge. Eleverne skal arbejde med at finde omkreds og areal af forskellige polygoner, bl.a. ved at bruge GeoGebra. Eleverne skal fremlægge deres resultater og metoder for klassen. Fælles - opsamling på forløbet Eleven giver forklaringer på og diskuterer betydningen af de forskellige ord, når han/hun laver Gæt et ord. Eleven bruger fagord og begreber i dialog med andre om at måle lokalet op og tegne det. Eleven viser på sin tegning, hvordan han/hun vil finde arealet. Eleven beskriver en regel, der gælder for at udregne omkreds og areal af kvadrater og rektangler. Eleven sætter areal på forskellige polygoner i GeoGebra. Eleverne diskuterer, hvilke sammenhænge, de kan se mellem areal af forskellige polygoner. Eleven bruger matematiske fagudtryk og tydeliggør sine beregninger og metoder i sin fremlæggelse. Eleven opnår de rigtige resultater, når han/hun løser forskellige opgaver med areal og omkreds.

12 I gennemførelsesfasen er der tre sekvenser Indledning, hvor målene bliver tydelige og forståelige for eleverne Bearbejdning, hvor der er fokus på at nå målene Opsamling, hvor det fælles bliver tydeligt hvilke mål der er nået Angiv tydeligt hvad læreren gør og hvad eleverne gør Gennemførelsesfasen Indledning Bearbejdning Opsamling

13 Areal og omkreds Mål for forløbet 1. I kan forklare, hvad areal og omkreds betyder, og hvilke måleenheder man bruger, når man taler om omkreds og areal 2. I kan måle og beregne omkreds og areal af kvadrater og rektangler. 3. I kan lave regler, som gælder, når man beregner areal og omkreds af kvadrater og rektangler. 4. I kan forklare andre, hvordan I udregner areal og omkreds af kvadrater og rektangler. 5. I kan bruge GeoGebra til at finde arealet af forskellige polygoner. 6. I kan finde regler, som gælder, når man skal udregne areal af andre polygoner end kvadrater og rektangler. 7. I kan give eksempler på, hvorfor det er vigtigt at kunne beregne areal og omkreds af forskellige figurer.

14 Synliggørelse i et modul et eksempel Læringsmål 2. I kan måle og beregne omkreds og areal af kvadrater og rektangler. 3. I kan lave regler, som gælder, når man beregner areal og omkreds af kvadrater og rektangler. Tegn/kriterier At I: måler lokalets længder og bredder med målehjul eller den store lineal med +/- 10 cm nøjagtighed beregner omkredsen af lokalet med en nøjagtighed på +/- 60 cm tegner en skitse af lokalet og deler det op, så I kan beregne arealet viser på skitsen, hvordan I regner arealet og omkredsen ud bruger de rigtige enheder, når I beskriver størrelsen af arealet og omkredsen opstiller en formel eller beskriver en regel, der gælder, når I skal regne kvadraters og rektanglers omkreds og areal ud.

15 Planlægningsskema for forløb Klasse: Fag: Antal uger Kompetenceområder, kompetencemål og færdighedsvidensmålpar Omsatte læringsmål Undervisningsaktiviteter Tegn på læring Evaluering

16 Relationsmodellen er også en refleksionsmodel, der viser de sammenhænge, der skal reflekteres didaktisk over Læringsmål Evaluering Undervisningsaktiviteter Tegn på læring

17 Modellen er ikke kronologisk, men en model for didaktisk refleksion i alle 3 faser over tid Planlægningsfasen Gennemførelsesfasen Evalueringsfasen

18 Læringsmål og tegn på læring for det komplekse Læringskompetence Relationsmodellen som refleksionsmodel Timing, variation samt bevidsthed om fokus og det udenom

FFM Matematik pop-up eftermiddag. CFU, UCC 11. Maj 2015

FFM Matematik pop-up eftermiddag. CFU, UCC 11. Maj 2015 FFM Matematik pop-up eftermiddag CFU, UCC 11. Maj 2015 Formål Deltagerne har: Kendskab til Forenklede Fælles Måls opbygning Kendskab til tankegangen bag den målstyrede undervisning i FFM Kendskab til læringsmål

Læs mere

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5

Læs mere

Fælles Mål Matematik Indskolingen. Roskilde 4. november

Fælles Mål Matematik Indskolingen. Roskilde 4. november Fælles Mål Matematik Indskolingen Roskilde 4. november 05-11-2015 klaus.fink@uvm.dk Side 2 Bindende/vejledende Bindende mål og tekster: Fagets formål Kompetencemål (12 stk.) Færdigheds- og vidensmål (122

Læs mere

Ringsted, 17.-18. september, 2015

Ringsted, 17.-18. september, 2015 Ringsted, 17.-18. september, 2015 Lidt om ideen med læringsmålstyret undervisning FFM og matematiske kompetencer FFM, læringsmålsstyring og matematiske kompetencer Hvad betyder synlig læring? Det synlige

Læs mere

MatematiKan og Fælles Mål

MatematiKan og Fælles Mål MatematiKan og Fælles Mål MatematiKan er et digitalt værktøj til matematik. Det hører til gruppen af interaktive CAS værktøjer. Denne type digitale værktøjer er kendetegnet ved, at de har en delvis blank

Læs mere

Fælles Mål for Matematik

Fælles Mål for Matematik Fælles Mål for Matematik Danmarks Privatskoleforening Fredericia 14. April 2016 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5

Læs mere

Matematik og skolereformen. Busses Skole 27. Januar 2016

Matematik og skolereformen. Busses Skole 27. Januar 2016 Matematik og skolereformen Busses Skole 27. Januar 2016 De mange spørgsmål Matematiske kompetencer, hvordan kommer de til at være styrende for vores undervisning? Algoritmeudvikling, hvad ved vi? Hvad

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10.

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10. Form Undervisningen vil veksle mellem individuelt arbejde, gruppearbejde og tavleundervisning. Materialer Undervisningen tager udgangspunkt i følgende grundbøger og digitale lærings- og undervisningsplatforme.

Læs mere

Inspiration til brug af mapop i din læringsmålstyrede undervisning

Inspiration til brug af mapop i din læringsmålstyrede undervisning Inspiration til brug af mapop i din læringsmålstyrede undervisning Dette er en hjælp til dig der gerne vil bringe mapop ind i din læringsmålstyrede undervisning. Vi tager udgangspunkt i Læringsmålstyret

Læs mere

Problembehandling. Progression

Problembehandling. Progression Problembehandling Progression Problemløsning Problemløsning forudsætter at man står overfor et problem som man ikke har en færdig opskrift til at løse. Algoritme Når man har fundet frem til en metode eller

Læs mere

Matematikvejlederdag. Ankerhus 3. november Side 1

Matematikvejlederdag. Ankerhus 3. november Side 1 Matematikvejlederdag Ankerhus 3. november 2014 Klaus.fink@uvm.dk Side 1 Oplægget Nyheder Fagligt fokus Læringsmålstyret undervisning Klaus.fink@uvm.dk Side 2 Udviklingsprogrammet Klaus.fink@uvm.dk Side

Læs mere

Barbie s Bungee Jump Eleverne kan på baggrund af en matematisk/naturfaglig undersøgelse, med efterfølgende behandling af data forudsige udfaldet af et praktisk eksperiment. Eleverne vil erfare nødvendigheden

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Ræsonnement og tankegang. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Ræsonnement og tankegang. Modellering MULTI 6 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning og skrivning Eleven kan anvende forskellige strategier til matematisk problemløsning

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Modellering MULTI 7 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Læs og skriv matematik Eleven kan kommunikere mundtligt og skriftligt med og om matematik

Læs mere

MULTI 7 A1 LÆS MATEMATIK FØR UNDER EFTER

MULTI 7 A1 LÆS MATEMATIK FØR UNDER EFTER LÆS OG SKRIV MATEMATIK A1 LÆS MATEMATIK Brug de tre rammer i modellen, når du skal løse en matematikopgave. Det er ikke sikkert, du skal bruge alle punkter i hver ramme til alle opgaver. Find ud af, hvilke

Læs mere

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK)

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK) Matematikundervisningen vil i år ændre sig en del fra, hvad eleverne kender fra de tidligere år. vil få en fælles grundbog, hvor de ikke må skrive i, et kladdehæfte, som de skal skrive i, en arbejdsbog

Læs mere

Hvilke overgangsproblemer løses med aktiviteten?

Hvilke overgangsproblemer løses med aktiviteten? Lærervejledning Formål Formålet med opgaven er, at eleverne gennem forløbet får styrket deres kompetencer inden for matematisk modellering samt lineære sammenhænge og proportionalitet. Hvilke overgangsproblemer

Læs mere

Matematik interne delprøve 09 Tesselering

Matematik interne delprøve 09 Tesselering Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen 30281023 Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der

Læs mere

Frederikshavn, 24.-25. september, 2015

Frederikshavn, 24.-25. september, 2015 Frederikshavn, 24.-25. september, 2015 Lidt om ideen med læringsmålstyret undervisning FFM og matematiske kompetencer FFM, læringsmålsstyring og matematiske kompetencer Hvad betyder synlig læring? Det

Læs mere

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Årsplan 2013/2014 6. ÅRGANG: MATEMATIK FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Formålet med undervisningen i matematik er, at eleverne udvikler matematiske r og opnår viden og kunnen således, at

Læs mere

Aktionslæring som metode

Aktionslæring som metode Tema 2: Teamsamarbejde om målstyret læring og undervisning dag 2 Udvikling af læringsmålsstyret undervisning ved brug af Aktionslæring som metode Ulla Kofoed, uk@ucc.dk Lisbeth Diernæs, lidi@ucc.dk Program

Læs mere

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34 Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie

Læs mere

MATEMATIK SÅNING I SKOLEHAVEN SIDE 1 MATEMATIK. Såning i skolehaven

MATEMATIK SÅNING I SKOLEHAVEN SIDE 1 MATEMATIK. Såning i skolehaven SIDE 1 MATEMATIK SÅNING I SKOLEHAVEN MATEMATIK Såning i skolehaven SIDE 2 MATEMATIK SÅNING I SKOLEHAVEN MATEMATIK SÅNING I SKOLEHAVEN SIDE 3 MATEMATIK Såning i skolehaven INTRODUKTION I dette forløb skal

Læs mere

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Nye Fælles Mål og årsplanen Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Interview Find en makker, som du ikke kender i forvejen Stil spørgsmål, så du kan fortælle os andre om vedkommende ift.:

Læs mere

Hvad er matematik? Indskolingskursus

Hvad er matematik? Indskolingskursus Hvad er matematik? Indskolingskursus Vordingborg 25. 29. april 2016 Matematikbog i 50 erne En bonde sælger en sæk kartofler for 40 kr. Fremstillingsomkostningerne er 4/5 af salgsindtægterne. Hvor stor

Læs mere

Matematika rsplan for 5. kl

Matematika rsplan for 5. kl Matematika rsplan for 5. kl 2015-2016 Årsplanen tager udgangspunkt i fællesmål (færdigheds- og vidensmål) efter 6. klassetrin. Desuden tilrettelægges undervisningen efter læseplanen for matematik. Formålet

Læs mere

Årsplan 8. Klasse Matematik Skoleåret 2016/17

Årsplan 8. Klasse Matematik Skoleåret 2016/17 Hovedformål Der arbejdes med følgende 3 matematiske emner: 1. tal og algebra, 2. geometri samt 3. statistik og sandsynlighed. Derudover skal der arbejdes med matematik i anvendelse samt de matematiske

Læs mere

MaxiMat og de forenklede Fælles mål

MaxiMat og de forenklede Fælles mål MaxiMat og de forenklede Fælles mål Dette er en oversigt over hvilke læringsmål de enkelte forløb indeholder. Ikke alle forløb er udarbejdet endnu, men i skemaet kan man se alle læringsmålene også de,

Læs mere

SYNLIG LÆRING OG LÆRINGSMÅL I MATEMATIK. Sommeruni 2015. Louise Falkenberg og Eva Rønn

SYNLIG LÆRING OG LÆRINGSMÅL I MATEMATIK. Sommeruni 2015. Louise Falkenberg og Eva Rønn SYNLIG LÆRING OG LÆRINGSMÅL I MATEMATIK Sommeruni 2015 Louise Falkenberg og Eva Rønn UCC PRÆSENTATION Eva Rønn, UCC, er@ucc.dk Louise Falkenberg, UCC, lofa@ucc.dk PROGRAM Mandag d. 3/8 Formiddag (kaffepause

Læs mere

LÆRINGSMÅLSTYRET UNDERVISNING - MÅLPILEN SOM VÆRKTØJ

LÆRINGSMÅLSTYRET UNDERVISNING - MÅLPILEN SOM VÆRKTØJ LÆRINGSMÅLSTYRET UNDERVISNING - MÅLPILEN SOM VÆRKTØJ Oversigt Lovmæssige forandringer Indsigter fra didaktisk forskning vedrørende læringsmål i undervisningen Målpilen som værktøj Muligheder i lærerteamet

Læs mere

GEOMETRI I PLAN OG RUM

GEOMETRI I PLAN OG RUM LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 4 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning undersøgende arbejde Eleven kan læse og skrive enkle tekster med og om matematik

Læs mere

Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal

Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Link Mål Kompetence mål: Modellering Færdighedsmål Eleven kan vurdere egne og andres modelleringsprocesser Videns mål Eleven har viden om

Læs mere

MATEMATIK UDSTYKNING AF SKOLEHAVEN SIDE 1 MATEMATIK. Udstykning af skolehaven

MATEMATIK UDSTYKNING AF SKOLEHAVEN SIDE 1 MATEMATIK. Udstykning af skolehaven SIDE 1 MATEMATIK UDSTYKNING AF SKOLEHAVEN MATEMATIK Udstykning af skolehaven SIDE 2 MATEMATIK UDSTYKNING AF SKOLEHAVEN MATEMATIK UDSTYKNING AF SKOLEHAVEN 3 MATEMATIK UDSTYKNING AF SKOLEHAVEN INTRODUKTION

Læs mere

Fælles Mål og den bindende læseplan om matematik i indskolingen. 8. marts 2016

Fælles Mål og den bindende læseplan om matematik i indskolingen. 8. marts 2016 Fælles Mål og den bindende læseplan om matematik i indskolingen 8. marts 2016 Forenklede fælles mål Kompetenceområde Kompetencemål Færdighedsmål Vidensmål Opmærksomhedspunkter Bindende/vejledende Bindende

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Mål for forløb På tur i vildmarken

Mål for forløb På tur i vildmarken Natur/teknologi 5.-6. klasse samt 3. - 4. klasse Mål for forløb Undersøgelse Undersøgelser i naturfag Eleven kan gennemføre enkle systematiske undersøgelser. variabler i en undersøgelse. Natur og miljø

Læs mere

LÆRINGSMÅLSTYRET UNDERVISNING - MÅLPILEN SOM VÆRKTØJ

LÆRINGSMÅLSTYRET UNDERVISNING - MÅLPILEN SOM VÆRKTØJ LÆRINGSMÅLSTYRET UNDERVISNING - MÅLPILEN SOM VÆRKTØJ Oversigt Lovmæssige forandringer: Fælles Mål Indsigter fra pædagogisk forskning vedrørende læringsmål i undervisningen Målpilen som værktøj Muligheder

Læs mere

Lærervejledning Modellering (3): Funktioner (1):

Lærervejledning Modellering (3): Funktioner (1): Lærervejledning Formål Gennem undersøgelsesbaseret undervisning anvendes lineære sammenhænge, som middel til at eleverne arbejder med repræsentationsskift og aktiverer algebraiske teknikker. Hvilke overgangsproblemer

Læs mere

Årsplan for matematik i 6. klasse 2016/17

Årsplan for matematik i 6. klasse 2016/17 Årsplan for matematik i 6. klasse 2016/17 Undervisningen søger vi at tilrettelægge hensigt på at opfylde formålet for faget. Det overordnede formål lyder: Eleverne skal i faget matematik udvikle matematiske

Læs mere

Lærervejledning. Matematik i Hasle Bakker 4.-6. klasse

Lærervejledning. Matematik i Hasle Bakker 4.-6. klasse Lærervejledning Matematik i Hasle Bakker 4.-6. klasse Lærervejledning I Matematik for 4.-6. klasse sendes eleverne gruppevis ud i for at løse matematikopgaver med direkte afsæt i både natur og menneskeskabte

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 3B Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Andre tal Eleven kan anvende konkrete, visuelle og enkle symbolske repræsentationer (fase

Læs mere

Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet

Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet penge Periode Mål Eleverne skal: Lære at anvende simpel hovedregning gennem leg og praktiske anvende addition og

Læs mere

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse Inspirationsforløb i faget matematik i 7.- 9. klasse Trekanter et inspirationsforløb om geometri i 8. klasse Indhold Indledning 2 Undervisningsforløbet 3 Mål for forløbet 3 Relationsmodellen 3 Planlægningsfasen

Læs mere

ÅRTSPLAN FOR 2. A MATEMATIK 2015/16

ÅRTSPLAN FOR 2. A MATEMATIK 2015/16 ÅRTSPLAN FOR 2. A MATEMATIK 2015/16 Kapitel 1: Tal til 1000 Hvor mange er der? Eleven kan anvende flercifrede naturlige tal til at beskrive antal og rækkefølge Eleven har viden om naturlige tals opbygning

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

Årsplan for matematik 2.b (HSØ)

Årsplan for matematik 2.b (HSØ) Årsplan for matematik 2.b (HSØ) Bøger, supplerende materiale og andet relevant I undervisningen bruger vi Kolorit. Der suppleres med kopiark fra den tilhørende kopimappe + andre kopiark, som passer til

Læs mere

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2011 Som bilag til dette opgavesæt er vedlagt et svarark 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Kommentarer til matematik B-projektet 2015

Kommentarer til matematik B-projektet 2015 Kommentarer til matematik B-projektet 2015 Mandag d. 13/4 udleveres årets eksamensprojekt i matematik B. Dette brev er tænkt som en hjælp til vejledningsprocessen for de lærere, der har elever, som laver

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 5 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning Opmærksomhedspunkt Eleven kan anvende ræsonnementer i undersøgende arbejde

Læs mere

Matematik Naturligvis. Matematikundervisning der udfordrer alle.

Matematik Naturligvis. Matematikundervisning der udfordrer alle. Matematikundervisning der udfordrer alle. Læring i bevægelse Matematikkompetencerne i spil Læringsstile Dialog og samarbejde i uderummet Matematik Naturligvis Hvorfor lære matematik i det fri? Ved at arbejde

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Opgave 1 -Tages kvadrat

Opgave 1 -Tages kvadrat Opgave 1 -Tages kvadrat Den danske matematiker, Tage Werner, fandt på figuren, som ses herunder. Figuren kan laves ved 1) at tegne et kvadrat, 2) markere midtpunkterne på kvadratets sider og 3) tegne linjestykker

Læs mere

ÅRSPLAN MATEMATIK 2. KLASSE 2016/17 I

ÅRSPLAN MATEMATIK 2. KLASSE 2016/17 I ÅRSPLAN MATEMATIK 2. KLASSE 2016/17 I de enkelte undervisningsforløb indgår der mål fra både de matematiske kompetencer og fra de 3 stofområder: Matematiske kompetencer Eleven kan handle hensigtsmæssigt

Læs mere

Dagens program. Velkommen og præsentation.

Dagens program. Velkommen og præsentation. Dagens program Velkommen og præsentation. Evt. udveksling af mailadresser. Forenklede Fælles Mål om geometri og dynamiske programmer. Screencast, hvordan og hvorfor? Opgave om polygoner i GeoGebra, løst

Læs mere

2. Christian den Fjerde. Årsplan 2015 2016 (Matematik PHO) Elevbog s. 2-11

2. Christian den Fjerde. Årsplan 2015 2016 (Matematik PHO) Elevbog s. 2-11 Lærer. Pernille Holst Overgaard Lærebogsmateriale. Format 2 Tid og fagligt område Aktivitet Læringsmål Uge 33-36 Elevbog s. 2-11 Additions måder. Vi kende forskellige måder at Addition arbejder med addition

Læs mere

Årsplan matematik 5 kl 2015/16

Årsplan matematik 5 kl 2015/16 Årsplan matematik 5 kl 2015/16 I matematik bruger vi bogsystemet Sigma som grundmateriale, og har matematikfessor som suplerende materiale, samt kopisider. I systemet er der,ud over grundbogen, også kopiark

Læs mere

Årsplan matematik 1. klasse 2015/2016

Årsplan matematik 1. klasse 2015/2016 Årsplan matematik 1. klasse 2015/2016 Undervisningen vil tage udgangspunkt i systemet Matematrix. I 1. klasse får eleverne udleveret 2 arbejdsbøger (Trix 1a + Trix 1b). Den pædagogiske tankegang i dette

Læs mere

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber: INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler

Læs mere

MATEMATIK I HASLEBAKKER 14 OPGAVER

MATEMATIK I HASLEBAKKER 14 OPGAVER MATEMATIK I HASLEBAKKER 14 OPGAVER Matematik i Hasle Bakker Hasle Bakker er et oplagt mål for ekskursioner, der lægger op til, at eleverne åbner øjnene for de muligheder, naturen giver. Leg, bevægelse,

Læs mere

Matematik Færdigheds- og vidensmål (Geometri og måling )

Matematik Færdigheds- og vidensmål (Geometri og måling ) Matematik Færdigheds- og vidensmål (Geometri og måling ) Kompetenceområde Klassetrin Faser 1 Eleven kan kategorisere Efter klassetrin Eleven kan anvende geometriske begreber og måle Eleven kan kategorisere

Læs mere

OM KAPITLET DIGITALE VÆRKTØJER. egne svar eller Elevernes egne forklaringer. I disse

OM KAPITLET DIGITALE VÆRKTØJER. egne svar eller Elevernes egne forklaringer. I disse OM KPITLET I dette kapitel om digitale værktøjer skal eleverne arbejde med anvendelse og vurdering af forskellige digitale værktøjer, som kan bruges til at løse opgaver og matematiske problemstillinger.

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Mundtlig prøve i Matematik

Mundtlig prøve i Matematik Mundtlig prøve i Matematik Tirsdag d. 9. september 2014 CFU Sjælland Mikael Scheby NTS-Center Øst Dagens indhold Prøvebekendtgørelse highlights Vekselvirkning mellem formalia, oplæg og arbejde med eksempler

Læs mere

Årsplan for Matematik 8. klasse 2011/2012

Årsplan for Matematik 8. klasse 2011/2012 Årsplan for Matematik 8. klasse 2011/2012 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand

Læs mere

Ræsonnement og tankegang. DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC

Ræsonnement og tankegang. DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Ræsonnement og tankegang DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Mål og indhold for workshoppen Mål At I kan Indhold opstille og synliggøre læringsmål knyttet til ræsonnement og tankegang på

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

LÆRERVEJLEDNING. Matematik -6. klase. Hasle bakker 4.-6.klassetrin

LÆRERVEJLEDNING. Matematik -6. klase. Hasle bakker 4.-6.klassetrin LÆRERVEJLEDNING Matematik -6. klase Hasle bakker 4.-6.klassetrin Lærervejledningen Forord: Hasle bakker forløbet er et nyskabende undervisningsmateriale hvor teknologien, i form af mobiltelefonen og dens

Læs mere

Årsplan for matematik i 2. klasse 2013-14

Årsplan for matematik i 2. klasse 2013-14 Årsplan for matematik i 2. klasse 2013-14 Klasse: 2. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 5(mandag, tirsdag, onsdag, torsdag, fredag) Formål for faget matematik Formålet med undervisningen

Læs mere

Forenklede Fælles Mål og læringsmålstyret undervisning i matematikfaget

Forenklede Fælles Mål og læringsmålstyret undervisning i matematikfaget Forenklede Fælles Mål og læringsmålstyret undervisning i matematikfaget STOV Det Samfundsfaglige og Pædagogiske Fakultet Program mandag 08.30 09.00 Velkomst præsentation og forventningsafstemning 09.00

Læs mere

8:30-14:30 Sproglig udvikling Kort aktivitet Planlægning af undervisningsforløb Fremlæggelse af undervisningsforløb

8:30-14:30 Sproglig udvikling Kort aktivitet Planlægning af undervisningsforløb Fremlæggelse af undervisningsforløb 8:30-14:30 Sproglig udvikling Kort aktivitet Planlægning af undervisningsforløb Fremlæggelse af undervisningsforløb Kaffepause 10:00-10:15 Frokost 12:15-13:00 Kaffepause 13:45-14:00 SPROGLIG UDVIKLING

Læs mere

Årsplan 9. Klasse Matematik Skoleåret 2015/16

Årsplan 9. Klasse Matematik Skoleåret 2015/16 Årsplan 9 Klasse Matematik Skoleåret 2015/16 Hovedformål Årsplanen for 9 Klasse i Matematik tager udgangspunkt i Forenklede Fællesmål (Undervisningsministeriet) Formålet med undervisningen er, at eleverne

Læs mere

Mundtlig prøve i Matematik

Mundtlig prøve i Matematik Mundtlig prøve i Matematik Mandag d. 9. september 2013 CFU Sjælland Mikael Scheby Dagens indhold Velkomst, præsentation, formål med dagen Vekselvirkning mellem formalia, oplæg og arbejde med eksempler

Læs mere

Læringsmålsorienteret didaktik 2 hold 3

Læringsmålsorienteret didaktik 2 hold 3 Læringsmålsorienteret didaktik 2 hold 3 Vejledere i Greve Kommune. 16. december 2015, kl. 09:00-15:00 Underviser: Leon Dalgas Jensen, ldj@ucc.dk, Program for Læring og Didaktik, Videreuddannelsen, UCC

Læs mere

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen)

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Bog: Vi bruger grundbogssystemet Format, som er et fleksibelt matematiksystem, der tager udgangspunkt i læringsstile.

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 3A Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Decimaltal og store tal Eleven kan anvende flercifrede naturlige tal til at beskrive antal

Læs mere

Matematisk argumentation

Matematisk argumentation Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.

Læs mere

Statistik og sandsynlighed

Statistik og sandsynlighed Navn: Nr.: Klasse: Prøvedato: mat3 Noter: Kompetencemål efter 3. klassetrin Eleven kan udvikle metoder til beregninger med naturlige tal Tal og algebra Tal Titalssystem Decimaltal, brøker og procent Negative

Læs mere

Læringsmålsorienteret didaktik 1 hold 2

Læringsmålsorienteret didaktik 1 hold 2 Læringsmålsorienteret didaktik 1 hold 2 Vejledere i Greve Kommune. 21. oktober 2015, kl. 09:00-15:00 Underviser: Marianne Thomsen, Mart@ucc.dk Program for Læring og Didaktik, Videreuddannelsen, UCC Mål

Læs mere

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet.

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet. Algebra og ligninger - Facitliste Om kapitlet I dette kapitel om algebra og ligninger skal eleverne lære at regne med variable, få erfaringer med at benytte variable Elevmål for kapitlet Målet er, at eleverne:

Læs mere

Natur/teknologi i 6 klasse affald og affaldshåndtering, rumfang, målestok og matematik

Natur/teknologi i 6 klasse affald og affaldshåndtering, rumfang, målestok og matematik Natur/teknologi i 6 klasse affald og affaldshåndtering, rumfang, målestok og matematik Dette er en beskrivelse af et samspil mellem fagene Natur/Teknologi og matematik i to 6. klasser på Tingkærskolen

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2017 HANSENBERG

Læs mere

Læringsmålsorienteret didaktik 1 hold 1

Læringsmålsorienteret didaktik 1 hold 1 Læringsmålsorienteret didaktik 1 hold 1 Vejledere i Greve Kommune. 21. oktober 2015, kl. 09:00-15:00 Underviser: Leon Dalgas Jensen, ldj@ucc.dk, Program for Læring og Didaktik, Videreuddannelsen, UCC Mål

Læs mere

meget svært ved at anvende et enkelt layout i elektroniske tekster Er usædvanlig god til/meget god til/god til/har svært ved/har

meget svært ved at anvende et enkelt layout i elektroniske tekster Er usædvanlig god til/meget god til/god til/har svært ved/har Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan for It-kompetence STATUS it 2. klasse 4. klasse 6. klasse 9. klasse Produktion og formidling layout Computerskrift og tekstbehandling

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE I den midtengelske by Liverpool ligger bydelen Sefton med Sefton Park - et parkanlæg, der bl.a. er kendt for det ottekantede palmehus, hvor man kan

Læs mere

Beregninger Microsoft Excel 2010 Grundforløb Indhold

Beregninger Microsoft Excel 2010 Grundforløb Indhold Indhold Arealberegning... 2 Kvadrat/rektangulær... 2 Rektangel... 2 Kvadrat... 2 Cirkel... 2 Omkredsberegning... 3 Kvadrat/rektangulær... 3 Rektangel... 3 Kvadrat... 3 Cirkel... 3 Rumfangsberegning...

Læs mere

ÅRSPLAN MATEMATIK 10 C SKOLEÅRET 2015/2016. 13 piger, 5 tosprogede og 8 etnisk danske (15 17 år) 14 drenge, 7 tosprogede og 7 etnisk danske (15 17 år)

ÅRSPLAN MATEMATIK 10 C SKOLEÅRET 2015/2016. 13 piger, 5 tosprogede og 8 etnisk danske (15 17 år) 14 drenge, 7 tosprogede og 7 etnisk danske (15 17 år) LINIE 10 ÅRSPLAN MATEMATIK 10 C SKOLEÅRET 2015/2016 FAG: KLASSE: LÆRER: Matematik 10C Nicolai Thyssen KLASSEFORUDSÆTNINGER: Holdet består af 27 elever fordelingen af eleverne er: 13 piger, 5 tosprogede

Læs mere

Årsplan for matematik i 1. klasse 2010-11

Årsplan for matematik i 1. klasse 2010-11 Årsplan for matematik i 1. klasse 2010-11 Vanløse den 6. juli 2010 af Musa Kronholt Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden

Læs mere

Rettevejledning, FP9, Prøven med hjælpemidler, endelig version

Rettevejledning, FP9, Prøven med hjælpemidler, endelig version Rettevejledning, FP9, Prøven med hjælpemidler, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. Den udvidede rettevejledning

Læs mere

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL 8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = 25 61 x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x + 1 5 = 9 4x

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

INFA-Småtryk 1996-1. Allan C. Malmberg. Matematisk kunnen gennem brug af edb

INFA-Småtryk 1996-1. Allan C. Malmberg. Matematisk kunnen gennem brug af edb INFA-Småtryk 1996-1 Allan C. Malmberg Matematisk kunnen gennem brug af edb INFA Matematik - 1996 1 INFA-Småtryk 1996-1 Allan C. Malmberg Matematisk kunnen gennem brug af edb Indholdsfortegnelse Matematisk

Læs mere

Statistik og sandsynlighed

Statistik og sandsynlighed Navn: Nr.: Klasse: Prøvedato: mat Noter: Kompetencemål efter 6. klassetrin Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Ringsted Lilleskole, Uffe Skak Årsplan for 5. klasse, matematik Som det fremgår af nedenstående uddrag af undervisningsministeriets publikation om fælles trinmål til matematik efter 6. klasse, bliver faget

Læs mere

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål 4. klasse Årsplan Kapitel 1: Tal Eleven Talsystem Regnestrategier!!!* Fase 1: Eleven kan udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger vedrørende hverdagsøkonomi

Læs mere

i matematikundervisningen arealer, vinkler, polygoner og vinkelsummer IT-færdighedsniveau

i matematikundervisningen arealer, vinkler, polygoner og vinkelsummer IT-færdighedsniveau i matematikundervisningen arealer, vinkler, polygoner og vinkelsummer IT-færdighedsniveau Dette E-læringsmodul er udarbejdet af: Jacob Kjær Hansen Tommerup Skole April 2011 Indledning I dette e-læringsmodul

Læs mere