1 Trekantens linjer. Indhold

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "1 Trekantens linjer. Indhold"

Transkript

1 Geometri - Teori og opgaveløsning Formålet med disse noter er at give en grundig introduktion til geometri med fokus på hvad man har brug for til internationale matematikkonkurrencer. Noterne forudsætter kendskab til grundlæggende viden om vinkler, retvinklede trekanter og ensvinklede trekanter samt trigonometri. I hvert afsnit er der engelske gloser, og til slut er der en oversigt over teorien. Indhold 1 Trekantens linjer 1 2 irkler og vinkler 5 3 Indskrivelige firkanter 7 1 Trekantens linjer e vigtigste linjer i en trekant udover siderne er medianerne, midtnormalerne, vinkelhalveringslinjerne og højderne. e har alle hver deres særlige egenskaber som vi skal se nærmere på i dette kapitel. Men først ser på på transversalers egenskaber da vi får brug for dem i det følgende. efinition af transversal En transversal i en trekant er et linjestykke der forbinder to punkter på hver sin side i trekanten. En transversal kaldes en paralleltransversal hvis den er parallel med en af siderne i trekanten, og en midtpunktstransversal hvis den forbinder midtpunkterne af to sider. 4 tolemæus sætning 8 5 Et punkts potens 9 6 evas sætning 10 M N 7 real og radius i den omskrevne cirkel 12 8 Multiplikation omkring et punkt 14 9 Trekantens ydre røringscirkler Radikalakse og radikalcentrum Eulerlinjen og Simsonlinjen Menelaos sætning Inversion versigt Løsningsskitser 31 Sætning om transversaler En transversal fra punktet M på siden til punktet N på siden er en paralleltransversal netop hvis M N =. t M N er parallel med, er nemlig ensbetydende med at er ensvinklet med M N, hvilket igen er ensbetydende med at M N = da de to trekanter har en fælles vinkel. En midtpunktstransversal er derfor også en paralleltransversal. t forholdet M N er lig med forholdet, er ensbetydende med at forholdet M N er lig med forholdet M N. ette følger af brøkregnereglen der siger at s t = u v er ensbetydende med at s t = s u t v når t v. pgave 1.1. Lad være en firkant og punkterne M, N, og Q midtpunkter af henholdsvis,, og. Vis at firkant M N Q er et parallellogram. 1

2 efinition af median En median er et linjestykke i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. efinition af midtnormal En midtnormal til et linjestykke er det geometriske sted for de punkter der har samme afstand til og, altså mængden af punkter som opfylder at =. Midtnormalen er dermed en linje som går gennem midtpunktet af linjestykket og står vinkelret på, da det netop er punkterne på denne linje som opfylder betingelsen. Sætning om medianer e tre medianer i en trekant går igennem samme punkt, og dette punkt deler medianerne i forholdet 1:2. Medianernes skæringspunkt betegnes normalt M. evis Lad være en trekant, og kald medianerne for henholdsvis m a, m b og m c, og medianernes fodpunkter på siderne a, b og c for henholdsvis M a, M b og M c. Medianerne m a og m b skærer hinanden i et punkt vi kalder M. Vi vil nu vise at de skærer hinanden i forholdet 1 : 2. a M a og M b er midtpunkter på henholdsvis og, er M a M b midtpunktstransversal og dermed parallel med. vs. at og M b M a er ensvinklede med forholdet 1 : 2 og specielt 2 M a M b =. M b esuden er trekanterne M og M a M b M ensvinklede da M a M b og er parallelle, og forholdet mellem trekanterne er netop forholdet mellem M a M b og dvs. 1 : 2. Her af ses at m a og m b deler hinanden i forholdet 1 : 2. a m a og m b var vilkårlige medianer, må m a og m c også skære hinanden i forholdet 1 : 2, dvs. at alle tre medianer går gennem samme punkt M. M M a Sætning om midtnormaler I en trekant går de tre midtnormaler gennem samme punkt, og dette punkt er centrum for den omskrevne cirkel, dvs. den cirkel som går gennem trekantens tre vinkelspidser. Midtnormalernes skæringspunkt betegnes normalt. pgave 1.2 (m midtnormaler). evis ovenstående sætning om midtnormalerne i en trekant. (Hint: etragt to af midtnormalerne, og vis at deres skæringspunkt ligger i samme afstand til alle tre vinkelspidser i trekanten). efinition af vinkelhalveringslinje En vinkelhalveringslinje til en vinkel er det geometriske sted for de punkter der har samme afstand til vinklens ben. Vinkelhalveringslinjen er altså en linje som deler en vinkel i to lige store vinkler, da det netop er punkterne på denne linje som opfylder betingelsen. I 2

3 Sætning om vinkelhalveringslinjer I en trekant går de tre vinkelhalveringslinjer gennem samme punkt, og dette punkt er centrum for den indskrevne cirkel, dvs. den cirkel som tangerer alle tre sider i trekanten. Vinkelhalveringslinjernes skæringspunkt betegnes normalt I. En vinkelhalveringslinje deler modstående side i trekanten i samme forhold som forholdet mellem vinklens to hosliggende sider, = 1. Tilsvarende ses at 1 = 1 og 1 = 1. Højderne i er derfor midtnormaler i 1 1 1, og de går ifølge sætningen om midtnormaler gennem samme punkt b V v a c Sætning om areal og radius i den indskrevne cirkel I en trekant betegner r radius i den indskrevne cirkel, s trekantens halve omkreds og T trekantens arealet. er gælder at dvs. hvis fodpunktet for vinkelhalveringslinjen v a fra til siden betegnes V, da er V V = b c. pgave 1.3 (m vinkelhalveringslinjer). evis ovenstående sætning om vinkelhalveringslinjer i en trekant. (Hint: Første del: etragt to vinkelhalveringslinjer, og vis at deres skæringspunkt har samme afstand til alle tre sider i trekanten. nden del: enyt sinusrelationen på V og V.) efinition af højde En højde i en trekant er en linje der går gennem en vinkelspids og er ortogonal med modstående side. Sætning om højder I en trekant går højderne gennem samme punkt. T = r s. pgave 1.4. evis sætningen om sammenhængen mellem arealet af en trekant og radius i dens indskrevne cirkel. pgave 1.5. Vis at medianerne i en trekant deler trekanten i seks små trekanter med samme areal. pgave 1.6. I trekant er =. unktet F er et punkt på siden, og punktet M er et punkt på siden således at M = F. Vis at hvis M = F, da er trekant ligesidet. pgave 1.7. I en trekant med areal 1 indtegnes medianerne. Midtpunktet af medianen m a kaldes for, midtpunktet af medianen m b kaldes for, og midtpunktet af medianen m c kaldes for. evis Tegn linjer gennem henholdsvis, og som er parallelle med modstående sider. Firkant 1 og firkant 1 er parallellogrammer, dvs. at 1 = 3

4 estem arealet af trekant. pgave 1.8. Lad I være centrum i den indskrevne cirkel til trekant, og lad yderligere 1 og 2 være to forskellige punkter på linjen gennem og således at I = 1 I = 2 I, 1 og 2 være to forskellige punkter på linjen gennem og således at I = 1 I = 2 I, og 1 og 2 være to forskellige punkter på linjen gennem og således at I = 1 I = 2 I. Vis at er trekantens omkreds. pgave 1.9. Lad I være vinkelhalveringslinjernes skæringspunkt i en trekant, og lad yderligere 1, 1 og 1 være spejlingerne af I i henholdsvis a, b og c. irklen gennem 1, 1 og 1 går også gennem. estem vinklen. centrum for den indskrevne cirkel the incenter højde altitude højdernes skæringspunkt orthocenter omkreds perimeter linjestykke line segment 1 I 1 pgave Fra vinkelspidsen i trekant tegnes en ret linje der halverer medianen fra. I hvilket forhold deler denne linje siden? (Georg Mohr 1995) Gloser ligebenet trekant isosceles triangle ligesidet trekant equilateral triangle ensvinkelede trekanter similar triangles transversal transversal median median medianernes skæringspunkt centroid midtnormal perpendicular bisector den omskreve cirkel the circumcircle centrum for den omskrevne cirkel the circumcenter vinkelhalveringslinje angle bisector den indskrevne cirkel the incircle 1 4

5 2 irkler og vinkler efinition af centervinkel En centervinkel er en vinkel der har toppunkt i centrum og radier som vinkelben. En centervinkel måles ved den bue den spænder over. å figuren er en centervinkel som spænder over buen, og vi skriver =. a vinkelsummen i en trekant er 180, er 2w = v. Tilsvarende fås 2w = v, dvs. 2w = v. w v w v ntag nu at w s ene vinkelben skærer v s vinkelben. iameteren gennem skærer da yderligere periferien i et punkt vi kalder for. Ifølge det vi lige har vist, er 2 = og 2 =, og dermed efinition af periferivinkel En periferivinkel er en vinkel der har toppunkt på cirklen og korder som vinkelben. v 2 v Sætning om periferivinkler En periferivinkel er halvt så stor som den bue den spænder over. ermed er to periferivinkler som spænder over samme bue, lige store, og en periferivinkel der spænder over en halvcirkel, er ret. evis Lad v være en centervinkel og w en periferivinkel der begge spænder over buen. Kald centrum for og punktet hvor w rører periferien, for. ntag først at vinkelbenene for vinkel v kun skærer vinkelbenene for w i punkterne og. a deler diameteren gennem vinklerne v og w i to vinkler som vi kalder hendholdsvis v og v og w og w. Trekant er nu en ligebenet trekant med to lige store vinkler w, og den sidste vinkel er 180 v. 2w = 2 2 = = v. pgave 2.1. I en spidsvinklet trekant kaldes centrum for den omskrevne cirkel og højdernes skæringspunkt for H. Linjen gennem skærer den omskrevne cirkel i et punkt Q forskelligt fra. Vis at Q H er at parallellogram. efinition af korde-tangent-vinkel En korde-tangent-vinkel er en vinkel der har toppunkt på cirklen og en korde samt en tangent som vinkelben. Sætning om korde-tangent-vinkel En korde-tangent-vinkel er halvt så stor som den bue korden spænder over. pgave 2.2 (m korde-tangent-vinkler). evis sætningen om korde-tangentvinkler. (Hint: Husk at står vinkelret på tangenten.) v 2 v 5

6 en omvendte sætning om korde-tangent-vinkler Lad Q være en korde i en cirkel og l en linje gennem. Lad yderligere R være et punkt på linjen l forskelligt fra og S et punkt på cirkelperiferien så R og S ligger på hver sin side af linjen Q. Hvis R Q = SQ, da er l tangent til cirklen. R pgave 2.3. evis den omvendte sætning om korde-tangent-vinkler. Sætning om vinkler i cirkler m vinklerne v og w på figurerne gælder: S Q pgave 2.6. Lad to cirkler 1 og 2 skære hinanden i punkterne og. Tangenten til 1 gennem skærer 2 i punktet, og tangenten til 2 gennem skærer 1 i punktet. esuden oplyses at = 3 og = 4. estem længden af. Gloser ret vinkel right angle spids vinkel acute angle stump vinkel obtuse angle centervinkel central angle periferivinkel inscribed angle bue arc korde chord tangent tangent v = + 2 og w = 2. v w pgave 2.4. evis sætningen. (Hint: Vinkel v : Kald skæringen mellem og for. Tegn linjestykket, og betragt og periferivinkler. Vinkel w : Tegn linjestykket, og kald vinkelspidsen ved w for. etragt og periferivinkler.) pgave 2.5. Sætning I en trekant betegner I centrum for den indskrevne cirkel, og M er skæringen mellem I og den omskrevne cirkel. Vis at M er centrum for cirklen gennem, og I. 6

7 3 Indskrivelige firkanter efinition af simple firkanter En firkant kaldes simpel hvis dens sider ikke skærer hinanden. I disse noter betegner ordet firkant fremover en simpel firkant. Figuren viser et eksempel på en ikke-simpel firkant. efinition af konvekse firkanter En firkant kaldes konveks hvis der for vilkårlige to indre punkter gælder at linjestykket mellem punkterne er indeholdt i firkanten. e konvekse firkanter er altså netop dem der ikke har en vinkel der overstiger 180. Generelt defineres en konveks figur på tilsvarende måde. efinition af indskrivelige firkanter En firkant kaldes indskrivelig hvis den har en omskreven cirkel. Sætning om indskrivelige firkanter En firkant er indskrivelig netop hvis summen af modstående vinkler er 180. evis ntag at en firkant er indskrivelig. To modstående vinkler spænder da tilsammen over hele cirkelperiferien, og summen er derfor 180. ntag at det for en given firkant gælder at summen af to modstående vinkler er 180. etragt nu den omskrevne cirkel til trekant, og lad punktet E være skæringen mellem cirklen og linjen gennem og. Hvis firkanten er indskrivelig, er lig E. Vi ved at = 180 = 180 E = E, dvs. at punktet E ligger på linjen og derfor er identisk med. Endnu en sætning om indskrivelige firkanter Lad være en konveks firkant. a er firkant indskrivelig netop hvis =. Specielt er firkant indskrivelig når begge diagonaler står vinkelret på en side. pgave 3.1. evis sætningen. pgave 3.2. Sætning Lad H a og H b være fodpunkterne for højderne fra henholdsvis og i trekant. Vis at firkant H a H b er indskrivelig. Vis desuden at og H a H b er ensvinklede. pgave 3.3. Sætning Lad H a, H b opg H c være fodpunkterne for højderne fra henholdsvis, og i en spidsvinklet trekant. Vis at H a er vinkelhalveringslinje i H a H b H c. pgave 3.4. Sætning Lad H være højdernes skæringspunkt i trekant. Vis at spejlingen af H i en vilkårlig af trekantens sider ligger på trekantens omskrevne cirkel. pgave 3.5. Lad være en spidsvinklet trekant, L og K højder i trekanten og M midtpunktet af. Vis at linjen M L og linjen M K tangerer den omskrevne cirkel til trekant K L. 7

8 pgave 3.6. Tre cirkler 1, 2 og 3 skærer hinanden i et fælles punkt, 1 og 2 skærer hinanden i a, 1 og 3 skærer hinanden b i Q, og 2 og 3 skærer hinanden i R. 2 1 R Lad være et punkt på cirkelbuen Q som vist på figuren. Linjen gennem og skærer cirklen 2 i punktet, og linjen gennem og Q skærer cirklen 3 i. Vis at punkterne, og R ligger på linje. pgave 3.7. I rektanglet er M midtpunktet af siden, og H er et punkt på linjestykket M således at H står vinkelret på M. Vis at trekant H er ligebenet. pgave 3.8. En firkant er indskrevet i en cirkel med som diameter. Lad S være skæringspunktet mellem diagonalerne og, og lad T være projektionen af S på. Vis at linjen S T halverer vinkel T. Gloser simpel firkant simple quadrilateral konveks firkant convex quadrilateral indskrivelig firkant cyclic quadrlateral parallelogram parallelogram Q 3 4 tolemæus sætning tolemæus ulighed For alle firkanter gælder tolemæus ulighed + med lighedstegn netop hvis firkant er indskrivelig. I de fleste opgaver har man ikke brug for uligheden, men blot at der for indskrivelige firkanter gælder lighedstegn. ette kaldes tolemæus sætning evis Givet en firkant lad M være et punkt så trekant M og trekant er ensvinklede og vender samme vej. ermed er = M. ga. konstruktionen er M =. a trekant M og trekant er ensvinklede, er / M = /. ltså er også trekant og trekant M ensvinklede med = M. I alt giver dette + = ( M + M ) M med lighedstegn netop når M ligger på. unktet M ligger på netop når =, dvs. netop når firkant er indskrivelig. pgave 4.1. En ligesidet trekant er indskrevet i en cirkel. Lad M være et vilkårligt punkt på cirkelbuen. Vis at M = M + M. pgave 4.2. En firkant er indskreven i en cirkel med radius 1, = 1, = 2 og = 2. estem. 8

9 pgave 4.3. Lad være et kvadrat, og lad være et punkt på cirkelbuen på den omskrevne cirkel til kvadratet. Vis at er konstant uanset valget af. + pgave 4.4. Lad E F G være en regulær syvkant. Vis at 1 = (En regulær n-kant er en n-kant hvor alle sider er lige lange, og alle vinkler er lige store.) Gloser tolemæus sætning tolemy s theorem tolemæus ulighed tolemy s inequality 5 Et punkts potens efinition af et punkts potens I en given cirkel betegnes centrum og radius r. Et punkt s potens mht. cirklen er tallet 2 r 2. Hvis ligger på cirkelperiferien, er s potens derfor 0, mens den er positiv hvis ligger uden for cirklen, og negativ hvis ligger inden for cirklen. Sætning om et punkts potens I en given cirkel betegnes centrum og radius r. Lad være et punkt og l og m være to linjer gennem, hvor l skærer cirklen i og, og m skærer cirklen i og. (Hvis en af linjerne tangerer cirklen, er de to punkter sammenfaldende.) a gælder at =. Hvis ligger uden for cirklen, er netop punktets potens mht. cirklen, og hvis ligger inden for cirklen, er netop punktets potens. evis i tilfældet hvor punktet ligger uden for cirklen Lad være et punkt uden for cirklen, og lad l være en vilkårlig linje gennem som skærer cirklen i punkterne og. Vi viser først at netop er s potens mht. cirklen. Q Q 9

10 Tegn tangenten til cirklen gennem som vist på figuren, og kald røringspunktet for Q. Ifølge ythagoras sætning er Q 2 = 2 r 2. etragt nu trekanterne Q og Q. Korde-tangent-vinklen Q er lige så stor som periferivinklen Q, ifølge sætningerne om periferivinkler og korde-tangent-vinkler. ermed er Q og Q ensvinklede, og dette giver Q 2 =. Samlet har vi at netop er punktet s potens mht. cirklen. Lad nu m være endnu en linje gennem som skærer cirklen i punkterne og. Ifølge det vi netop har vist, må også være punktet s potens mht. til cirklen, dvs. at =. pgave 5.1 (m et punkt potens). evis sætningen om et punkts potens i det tilfælde hvor punktet ligger inden i cirklen. (Hint: Tegn linjen gennem og centrum, og vis at = (r )(r + ) = r 2 2 ). en omvendte sætning om et punkts potens Lad l og m være to forskellige linjer med skæringspunkt, lad og være to punkter på l på hver sin side af, og lad og være to punkter på m på hver sin side af (eller lad både og være på samme siden af og og være på samme side af ). Hvis =, da ligger,, og på samme cirkel. pgave 5.2. evis sætningen. pgave 5.3. To cirkler skærer hinanden i punkterne M og N, og den fælles tangent til de to cirkler nærmest N rører cirklerne i og Q. Vis at trekant M N og trekant Q M N har samme areal. pgave 5.4. I den spidsvinklede trekant skærer højden fra cirklen med diameter i og Q og højden fra cirklen med diameter i S og T. Vis at, Q, S og T ligger på samme cirkel. Gloser et punkts potens the power of a point 6 evas sætning efinition af cevian En cevian er en linje i en trekant fra en vinkelspids til den modstående side (eller dens forlængelse). Fx er højder, medianer og vinkelhalveringslinjer alle cevianer. evas sætning evas sætning siger at cevianerne, og (hvor ligger på osv.), skærer hinanden i samme punkt, netop hvis = 1. emærkning evas sætning gælder også hvis nogle af cevianerne går fra en vinkelspids til et punkt der ikke ligger på den modstående side men kun dens forlængelsen. I dette tilfælde er det dog nødvendigt at regne længderne med fortegn således at postiv retning er, og. Hvis fx ligger på forlængelsen af tættest på, da er negativ. evis Her beviser vi kun sætningen i tilfældet hvor alle tre cevianer ligger inden for trekanten. Hvis nogle af cevianerne falder uden for trekanten, foregår beviset stort set på samme måde, men det kræver lidt flere overvejelser undervejs. Først viser vi at hvis de tre cevianer går gennem samme punkt, så vil = 1. 10

11 ntag at cevianerne går gennem samme punkt. er gælder at hvis to trekanter har samme højde, da er forholdet mellem arealerne det samme som forholdet mellem grundlinjerne. Lad T ( ) betegne arealet af en trekant. ermed er Samlet får vi = T ( ) T ( ) og = T ( ) T ( ). = T ( ) T ( ) T ( ) T ( ) = T ( ) T ( ). Her har vi benyttet brøkregnereglen der siger at hvis s t = u v, er s t = s u t v, når t v. Tilsvarende fås Samlet giver dette = T ( ) T ( ) og = T ( ) T ( ). = T ( ) T ( ) T ( ) T ( ) T ( ) T ( ) = 1. Nu viser vi den modsatte vej. ntag at = 1. Kald skæringspunktet mellem og for, og betragt cevianen fra gennem. a cevianerne, og går gennem samme punkt, gælder ifølge det vi lige har vist, at = 1. Ifølge vores antagelse er = 1, dvs. at =. f dette ses at og er samme punkt, og dermed at cevianerne, og skærer hinanden i samme punkt. pgave 6.1. Før benyttede vi sætningen om midtnormaler til at bevise at højderne skærer hinanden i samme punkt. enyt nu i stedet evas sætning til at bevise dette. pgave 6.2. I trekant er og Q punkter på henholdsvis linjestykket og linjestykket således at Q er parallel med, og X er skæringspunktet mellem Q og. Vis at X deler linjestykket på midten. pgave 6.3. Sætning I en trekant tangerer den indskrevne cirkel siderne siderne, og i henholdsvis X, Y g Z. Vis at X, Y og Z skærer hinanden i et punkt. (ette punkt kaldes trekantens Gergonne punkt). pgave 6.4. I trekant er vinkelhalveringslinje og H højde, og og Q er projektionerne af på henholdsvis og. Vis at H, og Q skærer hinanden i et punkt. evas sætning med vinkler evas sætning kan også formuleres med de vinkler cevianerne danner med siderne, i stedet for med det forhold de deler siderne i. 11

12 Lad være en trekant og, og cevianer i trekanten. Lad α 1 =, α 2 =, β 1 =, β 2 =, γ 1 = og γ 2 =. Vinklerne regnes her med fortegn ligesom længderne i evas sætning, dvs. hvis fx ligger på forlængelsen af siden tættest på, da er α 1 negativ. evas sætning siger i denne version at cevianerne, og skærer hinanden i samme punkt, netop hvis sinα 1 sinα 2 sinβ 1 sinβ 2 sinγ 1 sinγ 2 = 1. α 1 α 2 pgave 6.5. evis sætningen. β 2 β1 γ 2 γ 1 pgave 6.6. Lad, og være tre cevianer i trekant som skærer hinanden i et fælles punkt. Lad være skæringen mellem og spejlingen af i vinkelhalveringslinjen til, og lad og være defineret tilsvarende. Vis at de tre cevianer, og skærer hinanden i et punkt. Gloser cevian cevian avas sætning eva s theorem 7 real og radius i den omskrevne cirkel I dette afsnit ser vi på en trekant hvor s betegner den halve omkreds, r er radius i den indskrevne cirkel, R er radius i den omskrevne cirkel, og T er arealet med mindre andet er nævnt. Sætning om radius i den omskrevne cirkel m radius i den omskrevne cirkel til trekant gælder evis 2R = a sin = b sin = 2R c sin. Lad være diameter i den omskrevne cirkel til trekant. a er sin = sin = a b c 2R. Tilsvarende ses at sin = 2R og sin = 2R, og dermed i alt 2R = a sin = b sin = c sin. Sætning om areal og radius i den omskrevne cirkel er gælder at 4RT = a b c. evis Ifølge sætningen om radius i den omskrevne cirkel samt sætningen om arealet af en trekant udtrykt ved sinus til en vinkel og længden af de hosliggende sider, er a 4RT = 2 2R T = 2 sin 1 2 b c sin = a b c. 12

13 Herons formel realet af en trekant kan beregnes ud fra trekantens sidelængder vha. Herons formel evis Ifølge cosinusrelationen er T = s (s a )(s b )(s c ). (2b c ) 2 cos 2 = (b 2 + c 2 a 2 ) 2. Vi ved at 4T = 2b c sin, og ved kvadrering 16T 2 = (2b c ) 2 sin 2. esuden er sin 2 = 1 cos 2. Samlet giver dette 16T 2 = (2b c ) 2 (2b c ) 2 cos 2 = (2b c ) 2 (b 2 + c 2 a 2 ) 2 = (2b c + b 2 + c 2 a 2 )(2b c b 2 c 2 + a 2 ) = ((b + c ) 2 a 2 )(a 2 (b c ) 2 ) = (a + b + c )(b + c a )(a + c b )(a + b c ) = 16s (s a )(s b )(s c ). pgave 7.2. Vis at der findes uendeligt mange trekanter hvor sidelængderne er tre på hinanden følgende hele tal, og arealet af trekanten er et helt tal. (NM 1995) pgave 7.3. Vis for en trekant at pgave 7.4. Vis for en trekant at Gloser Herons formel Heron s formula cos + cos + cos = r R a b + 1 a c + 1 b c = 1 2r R. Hermed er Herons formel bevist. rahmaguptas formel realet af en indskrivelig firkant kan tilsvarende beregnes ud fra firkantens sidelængder: T = (s )(s )(s )(s ) hvor s også her betegner den halve omkreds. (eviset udelades). pgave 7.1. Firkant er indskrevet i en cirkel med radius R. iagonalerne står vinkelret på hinanden, og deres skæringspunkt kaldes E. Vis at E 2 + E 2 + E 2 + E 2 = 4R 2. 13

14 8 Multiplikation omkring et punkt Her gives en kort introduktion til den affine afbildning multiplikation omkring et punkt samt eksempler på hvordan denne afbildning kan bruges i løsningen af geometriopgaver. Hvis du ønsker en mere teoretisk indføring i affine afbildninger og deres egenskaber, så se Jens-Søren ndersens noter ffine transformationer. efinition af multiplikation omkring et punkt Multiplikation omkring punktet med multiplikationsfaktoren k er en afbildning af planen i sig selv hvor et punkt afbildes i punktet så = k. I det følgende ser vi bort fra tilfældet k = 0. Hvis k = 1 er det blot identitetsafbildningen, mens fx k = 1 giver en drejning på 180 om. Egenskaber Ved multiplikation omkring et punkt afbildes en linje i en linje parallel med linjen. Multiplikation omkring et punkt bevarer vinkler lle figurer afbildes i ligedannede figurer. For to cirkler med forskellige radier findes netop et punkt og en multiplikation omkring dette med positiv multiplikationsfaktor som afbilder den ene cirkel i den anden. For to cirkler findes netop et punkt og en multiplikation med negativ multiplikationsfaktor som fører den ene cirkel i den anden. For to ensvinklede trekanter som ikke er kongruente, og hvor ensliggende sider er parallelle, findes netop et punkt og en multiplikation omkring dette som afbilder den ene trekant i den anden. Sammensætningen af to multiplikationer om to punkter, hvor produktet af de to multiplikationsfaktorer ikke er 1, er igen en multiplikation omkring et punkt, og multiplikationsfaktoren er produktet af de to multiplikationsfaktorer. Eksempel 1 Multiplikation omkring et punkt kan fx benyttes til at vise at tre punkter ligger på linje, ved at vise at en multiplikation omkring et af punkterne kan afbilde det andet punkt i det tredje. Hvis vi fx betragter tre cirkler med samme radius som skærer hinanden i et fælles punkt S, og den trekant der opstår ved at tegne tangenter som vist på figuren, kan vi vise at S samt centrum I for den indskrevne cirkel og centrum for den omskrevne cirkel til trekant ligger på linje. I S Trekanten som opstår når man forbinder centrerne for de tre cirkler, har parvis parallelle sider med trekant da de tre cirkler har samme radius. a I er skæringen mellem vinkelhalveringslinjerne i trekant, og de tre centre ligger på disse vinkelhalveringslinjer, må I være centrum for den multiplikation som afbilder den lille trekant i trekant. unktet S er centrum for den omskrevne cirkel til den lille trekant da de tre cirkler har samme radius, og dermed afbildes S i. ette viser at I, S og ligger på samme linje. Eksempel 2 Multiplikation omkring et punkt kan også benyttes til at vise noget om vinkler fx ved at udnytte sætningen om periferivinkler i en cirkel. etragt en cirkel 1 som tangerer en cirkel 2 indvendigt i punktet. Lad l være en tangent til 1 i et punkt Q forskelligt fra. Linjen l skærer 2 i henholdvis og. Vi ønsker at vise at Q er vinkelhalveringslinje i trekant. Multiplikationen i som fører 1 i 2, fører Q i Q og tangenten l til 1 i en tangent l til 2 i punktet Q. 14

15 l Q j a l og l er parallelle, og l er tangent til 2, er cirkelbuerne Q og Q lige store. erfor er Q = Q, og altså Q vinkelhalveringslinje i trekant. emærkning Multiplikation omkring et punkt kan også benyttes til at vise at nogle punkter ligger på samme cirkel, fx ved at finde en multiplikation som afbilder punkterne i en allerede kendt cirkel. Man kan også vha. af multiplikation omkring et punkt vise at to linjer er parallelle ved at finde en multiplikation der afbilder den ene i den anden, og man kan benytte multiplikation omkring et punkt til at bestemme forholdet mellem forskellige linjestykker ud fra multiplikationsfaktoren. I de følgende opgaver kan du selv prøve kræfter med dette. pgave 8.1. To cirkler 1 og 2 med samme radius tangerer en større cirkel indvendigt i henholdsvis 1 og 2. Lad M være et punkt på forskelligt fra 1 og 2, og lad 1 og 2 være skæringspunkterne mellem henholdvis M 1 og 1 og mellem M 2 og 2. Vis at 1 2 er parallel med 1 2. pgave 8.2. En cirkel 1 tangerer en cirkel 2 indvendigt i punktet. En linje l skærer de to cirkler i punkterne M, N, og Q således at punkterne ligger i nævnte rækkefælge på linjen. Vis at M N = Q. pgave 8.3. En cirkel 1 tangerer en cirkel 2 indvendigt i punktet. m to forskellige linjer gennem oplyses at den ene skærer 1 og 2 i henholdsvis X 1 og X 2 og den anden skærer 1 og 2 i henholdsvis Y 1 og Y 2. Linjerne X 1 Y 2 og X 2 Y 1 skærer hinanden i punktet. Vis at hvis ligger på 1, da tangerer den omskrevne cirkel til X 2 Y 2 cirklen 1. pgave 8.4. unktet er et indre punkt i en spidsvinklet trekant, og X, Y og Z er projektionerne af på henholdsvis a, b og c. irklen gennem X, Y l Q l Q og Z skærer henholdsvis a, b og c i tre nye punkter X 1, Y 1 og Z 1. Vis at linjerne gennem henholdsvis X 1, Y 1 og Z 1 vinkelret på henholdsvis a, b og c skærer hinanden i et punkt. pgave 8.5. I en trekant kaldes midtpunkterne af, og for henholdvis M a, M b og M c. Trekant s Spieker centrum er centrum for den indskrevne cirkel til trekant M a M b M c. Vis at centrum I for den indskrevne cirkel til trekant, medianernes skæringspunkt M og trekantens Spieker centrum S alle ligger på samme linje. pgave 8.6. I trekant kaldes højdernes skæringspunkt for H og fodpunkterne for de tre højder for henholdsvis H a, H b og H c. Lad M a, M b og M c være midtpunkterne af henholdvis H, H og H. Vis at H a, H b, H c, M a, M b og M c ligger på en cirkel. Vis desuden at radius for den omskrevne cirkel til trekant er dobbelt så så stor som radius for den omskrevne cirkel til trekant H a H b H c. pgave 8.7. (IM 1978) I trekant er =. En cirkel tangerer siderne og i henholdsvis og Q samt den omskrevne cirkel til trekant indvendigt. Vis at midtpunktet af Q er centrum for den indskrevne cirkel til trekant. Gloser multiplikation omkring et punkt homothety muliplikation omkring med multiplikationsfaktor k homothety with center and ratio k 15

16 9 Trekantens ydre røringscirkler efinition af trekantens ydre røringscirkler En trekant har tre ydre røringscirkler, en for hver side i trekanten. en ydre røringscirkel til siden er en cirkel der ligger uden for trekanten, og som tangerer siden samt forlængelserne af og. Sætning om de ydre røringscirklers centre entrum for den ydre røringscirkel til siden i trekant er skæringspunktet for vinkelhalveringslinjen til vinkel og de ydre vinkelhalveringslinjer til vinkel og. e tre ydre røringscirklers centre danner en trekant i hvilken vinkelhalveringslinjerne for trekant er højder. Sætning 1 om den ydre røringscirkel Lad være en trekant, s den halve omkreds og c a den ydre røringscirkel til siden. a gælder at i) otensen af mht. c er s 2. ii) Røringspunktet mellem og den indskrevne cirkel og røringspunktet mellem og den ydre røringscirkel c ligger symmetrisk på linjestykket omkring dets midtpunkt. c a b c pgave 9.1. Vis sætningen. Sætning 2 om den ydre røringscirkel Lad være en trekant, I centrum for den indskrevne cirkel, a centrum for den ydre røringscirkel til siden og skæringen mellem den omskrevne cirkel og vinkelhalveringslinjen fra. a gælder a evis a den ydre røringscirkel til siden tangerer samt forlængelserne af og, må dens centrum ligge i samme afstand til disse tre linjer. a vinkelhalveringslinjen netop er det geometriske sted for de punkter der har samme afstand til de to vinkelben, må den ydre røringscirkel centrum ligge på vinkelhalveringslinjen til vinkel samt de ydre vinkelhalveringslinjer til vinkel og vinkel. f dette ses at de ydre røringscirklers centre a, b og c danner en trekant hvis sider går gennem henholdsvis, og. Vinkelhalveringslinjen til vinkel står vinkelret på siden b c, da a = a og b = c. I i) unkterne, I, og a ligger på en cirkel med som centrum. ii) er gælder at I a =. a 16

17 pgave 9.2. Vis sætningen. pgave 9.3. Sætning I trekant indtegnes tre cevianer fra vinkelspidserne til røringspunkterne for de tre røringscirkler. Vis at de tre cevianer skærer hinanden i et punkt. pgave 9.4. Sætning For en trekant betegner T arealet, r radius i den indskrevne cirkel og r 1, r 2 og r 3 radierne i de tre ydre røringscirkler. Vis at T 2 = r r 1 r 2 r 3. pgave 9.5. Lad I være centrum for den indskrevne cirkel i trekant, og lad Γ være trekantens omskrevne cirkel. Lad linjen I skære Γ i et punkt forskelligt fra. Lad E være et punkt på cirkelbuen som ikke indeholder, og lad F være et punkt på siden så F = E. Lad yderligere G være midtpunktet af linjestykket I F. Vis at linjerne G og E I skærer hinanden på Γ. (IM 2010) Gloser ydre røringscirkel excircle centrum for den ydre røringscirkel excenter 10 Radikalakse og radikalcentrum I kapitlet om punkts potens så vi at et punkt s potens mht. en cirkel med centrum og radius r defineres som tallet 2 r 2. Hvis ligger på cirkelperiferien, er s potens derfor 0, mens den er positiv hvis ligger uden for cirklen, og negativ hvis ligger inden for cirklen. Yderligere så vi at hvis en linje gennem skærer cirklen i og og en anden linje gennem skærer cirklen i og (i begge tilfælde er punkterne sammenfaldende hvis linjen tangerer cirklen), da gælder at =. Hvis ligger uden for cirklen, er netop punktets potens mht. cirklen, og hvis ligger inden for cirklen, er netop punktets potens. efinition af radikalakse Radikalaksen for to cirkler med forskellige centre er det geometriske sted for de punkter der har samme potens mht. de to cirkler. Sætning om radikalakse Kald centrum i de to cirkler for henholdsvis 1 og 2, cirklernes radier for henholdsvis r 1 og r 2, og lad d betegne afstanden mellem de to centre. a er radikalaksen en ret linje der står vinkelret på linjen 1 2. Radikalaksens afstand til henholdsvis 1 og 2 er r 1 2 r 2 2+d 2 2d og r 2 2 r 1 2+d 2 2d. Hvis cirklerne skærer hinanden i to punkter og, er radikalaksen netop linjen gennem og. evis Lad Q være punktet på linjen 1 2 med Q 1 = r 1 2 r 2 2+d 2 2d og Q 2 = r 2 2 r 1 2+d 2 2d. (ette er muligt da r 1 2 r 2 2+d 2 2d + r 2 2 r 1 2+d 2 2d = d )

18 ntag at er et punkt på radikalaksen, og lad være projektionen af på 1 2. t er et punkt på radikalaksen, er ensbetydende med at c r 2 1 = 2 2 r 2 2. ette er ensbetydende med at c 1 c r 2 1 = 2 + (d 1 ) 2 r 2 2, og yderligere at 1 = r 1 2 r d 2. 2d ette er ensbetydende med at = Q, og dermed at ligger på linjen gennem Q vinkelret på 1 2. Vi har dermed vist at alle punkter på radikalaksen ligger på denne linje. Man kan tilsvarende vise at alle punkter på linjen har samme potens mht. de to cirkler, og altså samlet at radikalaksen netop består af punkterne på denne linje. Hvis cirklerne skærer hinanden i to punkter og, har begge punkter potens nul mht. de to cirkler, og dermed er radikalaksen netop linjen gennem og. efinition af radikalcentrum Radikalcentrum for tre cirkler med forskellige centre er det geometriske sted for de punkter der har samme potens mht. de tre cirkler. Sætning om radikalcentrum For tre cirkler c 1, c 2 og c 3 med forskellige centre som ikke alle tre ligger på linje, gælder at radikalakserne for henholdsvis, c 1 og c 2, c 1 og c 3 samt c 2 og c 3 skærer hinanden i et punkt, og at dette punkt er deres radikalcentrum. Hvis de tre centre ligger på linje, er radikalakserne for henholdsvis, c 1 og c 2, c 1 og c 3 samt c 2 og c 3 parallelle og evt. sammenfaldende, dvs. i dette tilfælde er deres radikalcentrum den tomme mængde eller en ret linje. evis. Hvis de tre centre ikke ligger på linje, ved vi fra sætningen om radikalakse at radikalakserne for henholdsvis c 1 og c 2, c 1 og c 3 samt c 2 og c 3 parvis ikke er parallelle, samt at radikalcentrum for de tre cirkler pr. definition er indeholdt i fællesmængden af disse radikalakser. Lad være skæringspunktet mellem radikalaksen for c 1 og c 2 og radikalaksen for c 1 og c 3. ermed er potensen af mht. c 1 lig potensen af mht. c 2, og potensen af mht. c 1 er lig med potensen af mht. c 3. ltså er potensen af mht. c 2 også lig med potensen af mht. c 3, hvilket betyder at ligger på radikalaksen for c 2 og c 3. ermed går alle tre radikalakser gennem, og er dermed radikalcentrum for de tre cirkler. Hvis de tre centre ligger på linje, ved vi fra sætningen om radikalakse at radikalakserne for henholdsvis c 1 og c 2, c 1 og c 3 samt c 2 og c 3 alle er parallelle. Hvis de ikke alle er sammenfaldende, er radikalcentrum for de tre cirkler den tomme mængde, og hvis de alle er sammenfaldende, er radikalcentrum identisk med den fælles radikalakse. egenererede cirkler med radius 0 åde for radikalakse og radikalcentrum giver definitionen også mening hvis en eller flere af cirklerne er en degenereret cirkel med radius 0, og sætningerne gælder også i dette tilfælde. Eksempel på anvendelse af radikalakse To cirkler c 1 og c 2 tangerer hinanden udvendigt i punktet T. Lad være et punkt på deres fælles tangent gennem T, og lad og være to punkter på c 1 så, og ligger på linje, og lad og være to punkter på c 2 så, og 18

19 ligger på linje. Vi ønsker at vise at,, og ligger på en cirkel. Kald cirklen gennem, og for c 3. Linjen T er radikalakse for c 1 og c 2, og linjen er radikalakse for c 1 og c 3. ermed må skæringspunktet mellem og T ligge på radikalaksen for c 2 og c 3, dvs. denne radikalakse er. a radikalaksen yderligere skærer c 2 i, må dette punkt også ligge på c 3. ermed ligger,, og på en cirkel. pgave I en cirkel c er ST en korde som afgrænser et cirkelafsnit, og i dette afsnit er der to cirkler c 1 og c 2 som begge tangerer c og korden ST, og som skærer hinanden i punkterne U og V. Røringspunktet mellem cirklen c 1 og cirklen c betegnes, og røringspunktet mellem cirklen c 1 og korden ST betegnes. Lad M være midtpunktet af cirkelbuen S T modsat det nævnte cirkelafsnit. T c 1 S c 2 V U c 1 T c c 2 M pgave To cirkler S 1 og S 2 skærer hinanden i punkterne M og N. Vis at hvis rektanglet er placeret så og ligger på S 1, og og ligger på S 2, så vil skæringspunktet mellem rektanglets diagonaler ligge på linjen M N. i) Vis at, og M ligger på linje. ii) Vis at M M = M T 2. iii) Vis at U, V og M ligger på linje. pgave Lad være en trekant, og lad trekanterne, E og F være ligebenede trekanter med henholdsvis, og som grundlinje, så disse tre trekanter ligger uden for trekant. Vis at de tre linjer gennem henholdsvis, og som står vinkelret på henholdsvis E F, F og E, skærer hinanden i samme punkt. pgave unkterne, Q, R og S ligger på cirklen c således at Q og RS ikke er parallelle. Lad L være mængden af punkter I for hvilke der findes en cirkel c 1 gennem og Q samt en cirkel c 2 gennem R og S således at de to cirkler tangerer hinanden i I. eskriv punktmængden L. 19

20 pgave Lad være diameter i halvcirklen c med centrum, og og to punkter på c således at,, og er fire forskellige punkter der ligger på c i den nævnte rækkefølge. Midtpunkterne af henholdsvis, og betegnes E, F og G. Linjen gennem E vinkelret på F skærer tangenten til c i i punktet M, og linjen gennem G vinkelret på F skærer tangenten til c i i punktet N. Lad cirklerne c 1, c 2 og c 3 have henholdsvis, og E G som diameter. M E F G N 11 Eulerlinjen og Simsonlinjen Sætning om Eulerlinjen I en trekant kaldes medianernes skæringspunkt som sædvanligt M, højdernes skæringspunkt H og midtnormalernes skæringspunkt. unkterne H, M og ligger på en ret linje som kaldes Eulerlinjen, og M deler H således at 2 M = M H. evis Kald midtpunkterne af og for henholdsvis M a og M b, og skæringspunktet mellem M b og H for. Vi ønsker at vise at = M samt at 2 M = H M. i) evis at radikalaksen for c 1 og c 3 er M E, samt at radikalaksen for c 2 og c 3 er N G. ii) Find radikalcentrum for c, c 1 og c 3 samt radikalcentrum for c, c 2 og c 3. iii) Vis at M N er parallel med. H M a pgave Lad være en trekant. en indskrevne cirkel c i trekanten rører siderne og i henholdsvis punkterne Z og Y. Lad G være skæringspunktet mellem Y og Z, og lad R og S være punkter så firkanterne Y R og SZ er parallelogrammer. Lad desuden s være den degenerede cirkel med centrum S og radius 0, og lad c a være den ydre røringscirkel til siden. i) Vis at Z er radikalakse for s og c a. ii) Vis at G R = G S. (Variation af opgave fra IM 2009 shortlist) Gloser radikalakse radical axis/power line radikalcentrum radical center M b a er parallel med midtpunktstransversalen M a M b, M b er parallel med H da de begge står vinkelret på, og M a er parallel med H da de begge står vinkelret på, er trekanterne H og M a M b ensvinklede med forholdet 2 : 1. esuden er trekant M b ensvinklet med trekant H med samme forhold. ermed er 2 M b =, og heraf ses det ønskede nemlig at = M og 2 M = M H. Sætning om Simsonlinjen Lad være et punkt på den omskrevne cirkel til trekant, 1 projektionen af på linjen, 2 projektionen af på linjen og 3 projektionen af på linjen. 20

21 3 1 linje gennem. ntag at l skærer det indre af linjestykket i F og linjen i G. ntag derudover at E F = E G = E. evis at l er vinkelhalveringslinje for vinkel. Hint: enyt resultatet om Simsonlinjen til at vise at projektionen af E på linjen netop er skæringspunktet mellem diagonalerne i firkant. (IM 2007) 2 Gloser Eulerlinje Euler line Simsonlinje Simson line a ligger punkterne 1, 2 og 3 på en ret linje, og denne linje kaldes Simsonlinjen. pgave 11.1 (m Simsonlinjen). evis sætningen. Hint: Vis at firkanterne 2 1, 3 1 og 2 3 er indskrivelige, og udnyt dette til at vise at 1 2 = 1 3. en omvendte Simson Lad være en trekant, et punkt og 1, 2 og 3 projektionerne af på henholdsvis, og. Hvis punkterne 1, 2 og 3 ligger på en ret linje, da ligger på den omskrevne cirkel til trekant. (eviset udelades). pgave Lad være en trekant hvor, E og F er fodpunkterne for højderne på henholdsvis, og. Lad yderligere, Q, M og N være projekterne af på henholdsvis,, E og F. Vis at punkterne, Q, M og N ligger på linje. pgave I planen er givet fire ikke-parallelle linjer således at der ikke er tre som går gennem samme punkt. Hver trippel af linjer danner en trekant, dvs linjerne danner i alt fire trekanter, og hver af disse trekanter har en omskreven cirkel. Vis at de fire omskrevne cirkler har et fælles punkt. pgave etragt fem punkter,,, og E sådan at firkant er et parallelogram, og firkant E har en omskreven cirkel. Lad l være en 21

22 12 Menelaos sætning Menelaos sætning Lad være en trekant. Menelaos sætning siger at tre punkter, E og F, som ligger på henholdsvis linjen, linjen og linjen, ligger på samme linje netop hvis E E F F = 1. F x ga. ensvinklede trekanter er z E y Her regnes linjestykkerne ligesom ved evas sætning med fortegn således at postiv retning er, og. Hvis fx ligger på forlængelsen af tættest på som på figuren, da er negativ. F E evis ntag først at punkterne, E og F ligger på samme linje. emærk at da denne linje skærer trekanten nul eller to gange, vil der i udtrykket E E F F være enten en eller tre længder med negativt fortegn, dvs. udtrykket er altid negativt. Hvis vi kun regner med positive længder, er det derfor nok at vise at udtrykket er lig med 1. Lad x være længden af projektionen fra på linjen E F, y længden af projektionen fra på linjen E F og z længden af projektionen fra på linjen E F, som vist på figuren. E F = x y, E E = y z og F F = z x, og dette er uafhængigt af om linjen E F skærer trekanten to eller nul gange. ermed er E E F F = 1, når vi regner med fortegn. ntag omvendt at der om, E og F gælder at E E F F = 1. Lad være skæringspunktet mellem E F og. a ved vi fra før at E E F F = 1, og dermed må =, dvs. at, E og F ligger på linje. pgave (Monges sætning) Lad 1, 2 og 3 være cirkler som ikke rører hinanden, og som har forskellige radier. Lad X være skæringspunktet mellem de to tangenter til 1 og 2 som har cirklerne på samme side af tangenten, lad tilsvarende Y være skæringspunktet mellem de to tangenter til 2 og 3 som har cirklerne på samme side af tangenten, og Z være skæringspunktet mellem de to tangenter til 1 og 3 som har cirklerne på samme side af tangenten. 22

23 Y 13 Inversion Z X 1 Vis at punkterne X, Y og Z ligger på linje. pgave (Monge-d lemberts sætning) Lad 1, 2 og 3 være cirkler som ikke rører hinanden, og som har forskellige radier. Lad X være skæringspunktet mellem de to tangenter til 1 og 2 som har cirklerne på samme side af tangenten, lad Y være skæringspunktet mellem de to tangenter til 2 og 3 som har cirklerne på hver sin side af tangenten, og Z være skæringspunktet mellem de to tangenter til 1 og 3 som har cirklerne på hver sin side af tangenten. Vis at punkterne X, Y og Z ligger på linje. Gloser Menelaos sætning Menelaus Theorem 2 3 Inversion er en bestemt type transformation af planen, og ved at benytte transformation på en geometrisk problemstilling omformer man problemstillingen til en anden ækvivalent problemstilling. Inversion er derfor et interessant redskab i nogle typer geometriopgaver. isse kapitel er en indføring i inversion, de centrale egenskaber ved inversion samt hvordan man kan benytte inversion. Inversion Lad være en cirkel med centrum og radius r. Inversion i denne cirkel er en afbildning af planen, fraregnet punktet, på sig selv. Et punkt,, afbildes i det punkt som ligger på halvlinjen fra gennem, og som opfylder at = r 2. et er oplagt at inversionsafbildningen er sin egen inverse, og den er desuden kontinuert hvilket vi ikke vil komme nærmere ind på her. emærk at afbildningen fikserer cirklen og afbilder dens indre på dens ydre og omvendt. eraf navnet. et interessante ved inversion er at den afbilder linjer og cirkler i linjer og cirkler, samt at den bevarer vinkler mellem kurver, hvilket vi skal se nærmere på når det drejer sig om linjer og cirkler. Man kan på helt tilsvarende vis definere inversion i en kugle i rummet. I det følgende ser vi på inversion i en cirkel med centrum og radius r, og vi betegner billedet af et punkt med, billedet af en cirkel α med α, osv. Sætning om vinkler og afstande To punkter og, begge forskellige fra, afbildes i punkterne og således at = og =. evis Vi viser at er ensvinklet med med forholdet r 2 r 2 da det 23

24 viser sætningen. Først bemærker vi at =. esuden er = r 2 = r 2 og tilsvarende = hvilket giver det ønskede. r 2, Sætning om linjer og cirkler Inversion afbilder som sagt linjer og cirkler i linjer og cirkler. Mere præcist gælder En linje gennem afbildes på sig selv. åstanden er nu at α er cirklen med diameter. Lad Q være et punkt på α. a gælder at Q = Q = 90, dvs. at Q ligger på cirklen med diameter. er gælder dermed at α afbildes på en cirkel gennem hvis tangent i er parallel med α. Tilsvarende afbildes en cirkel gennem på en linje som er parallel med tangenten til cirklen i. Lad β være en cirkel som ikke går gennem, og som indeholder punkterne, Q og R. Vi vil nu vise at β afbildes på cirklen gennem, Q og R. I det følgende regner vi med orienterede vinkler. β S S β En linje som ikke går gennem, afbildes på en cirkel gennem hvis tangent i er parallel med linjen. Q R R En cirkel gennem afbildes på en linje som er parallel med tangenten til cirklen i. En cirkel som ikke går gennem, afbildes på en cirkel som ikke går gennem. evis En linje gennem afbildes oplagt på sig selv. Lad α være en linje som ikke går gennem, og betragt projektionen af på α. α Q α Q Lad S være et punkt på β som ligger mellem lad os sige R og. Vi ønsker at vise at S Q + Q R S = 180 da dette giver at S ligger på cirklen gennem, Q og R. er gælder at og tilsvarende fås Samlet giver dette Q R S = R S R Q = SR Q R, S Q = Q S. S Q + Q R S = SR S + Q Q R = SR + RQ = 180. Q ette viser at en cirkel som ikke går gennem, afbildes i en cirkel som ikke går gennem. 24

25 et er vigtigt at bemærke at hvis α er en cirkel som ikke går gennem, da er billedet af centrum som oftest ikke centrum i α. Nu vil vi vise at vinkler mellem linjer og cirkler bevares ved inversion, men først beviser vi at tangens mellem linjer og cirkler bevares ved inversion. Sætning om tangens mellem linjer og cirkler En linje og en cirkel eller to cirkler som tangerer i punktet,, afbildes ved inversion på en linje og en cirkel eller to cirkler som tangerer i. evis a antallet af skæringspunkter forskellig fra bevares ved inversion, følger det let. pgave Lad α være en cirkel som ikke går gennem. Vis at centrum af α, centrum af α og ligger på linje. pgave Lad være en trekant, og lad s betegne den halve omkreds. Vis at den ydre røringscirkel til siden c afbildes på sig selv ved inversion i en cirkel med centrum og radius s. Sætning om at vinkler bevares ved inversion Vinklen mellem to linjer, en linje og en cirkel samt to cirkler bevares ved inversion. evis Hvis to linjer skærer i punktet bevares vinklen oplagt ved inversion. Lad α og β være to linjer som skærer hinanden i,. a vil α og β have netop to skæringspunkter og. Vinklen mellem α og β i vil være identisk med vinklen mellem dem i. a en linje gennem afbildes på sig selv, og en linje der ikke går gennem, afbildes på en cirkel gennem hvis tangent i er parallel med linjen, vil vinklen mellem α og β i være identisk med vinklen mellem α og β i. Lad α være en linje og β en cirkel som skærer hinanden i,. Lad γ være tangenten til β i. a er vinklen mellem α og β i lig med vinklen mellem α og γ i som ifølge det vi lige har vist er identisk med vinklen mellem α og γ i som er lig med vinklen mellem α og β i da tangens bevares ved inversion. å tilsvarende vis ses at vinklen mellem to cirkler bevares ved inversion. pgave I en trekant kaldes røringspunkterne mellem den indskrevne cirkel og siden og siden for henholdsvis M og N. Vis at ved inversion i den indskrevne cirkel afbildes i midtpunktet af linjestykket M N. Nu skal vi se på hvorfor inversion i nogle sammenhænge er rigtig smart. Fx er tolemæus ulighed helt lige til hvis man inverterer problemstillingen. tolemæus ulighed Som vi så i et tidligere kapitel siger tolemæus ulighed at der for en firkant gælder at + med lighedstegn netop hvis firkant er indskrivelig. evis Vi inverterer i en cirkel med centrum i og radius r. ette giver og + = r 2 r 2 + r 2 r 2 = r 4 ( + ) = r 2 r 2 r 4 =. tolemæus ulighed er i den inverterede situation derfor blot trekantsuligheden + hvor der gælder lighedstegn netop hvis, og ligger på en linje i nævnte rækkefølge. I det ikke inverterede tilfælde er dette netop ækvivalent med at, og ligger på en cirkel gennem, således at ikke ligger ved siden af, dvs. at firkant er omskrivelig. I beviset for tolemæus ulighed benyttede vi kun formlen for hvordan afstande ændres ved inversion, samt at en cirkel gennem inversionscirklens centrum afbildes på en linje der ikke går gennem centrum og omvendt. 25

26 Eksempel med NM-opgave fra 2007 En linje gennem skærer en cirkel i to punkter, og, på en sådan måde at ligger mellem og. Fra punktet tegnes de to tangenter til cirklen. Tangenterne rører cirklen i punkterne S og T. Lad være skæringspunktet mellem linjerne ST og. Nu skal vi først udregne hvad det er vi skal vise: = r 2 / r 2 /( ) = S 2 = 2 r 2 / r 2 /( ) = 2. Vi skal altså i det inverterede tilfælde blot vise den simplere sammenhæng at = 2. Vi skal vise at T = 2. llerførst skal vi overveje hvilket punkt vi skal invertere i. e to mest centrale punkter er og, så vi prøver først at invertere i en cirkel med centrum i og dernæst i en cirkel med centrum i for at se hvordan det omformer problemstillingen. Inversion i en cirkel med centrum i Ved inversion i en cirkel med centrum og radius r afbildes linjerne gennem på sig selv, linjen ST afbildes i en cirkel gennem, og cirklen afbildes i en cirkel som tangerer linjerne S og T som vist på figuren. S Lad være diameter i cirkel S T. a er S = T = 90, og derfor er centrum i cirkel T S. er gælder yderligere at = 90, hvilket betyder at radius fra gennem i cirkel T S står vinkelret på korden, og derfor deler den på midten. ltså er = 2 som ønsket. Inversion i en cirkel med centrum i Nu prøver vi i stedet at se hvad der sker, når vi inverterer i en cirkel med centrum i og radius r. Her afbildes linjerne gennem på sig selv, cirklen afbildes på en cirkel, og de to tangenter afbildes i to cirkler som tangerer billedet af cirklen. S T Ligheden som vi skal vise, reduceres i dette tilfælde til T = 2. 26

Geometri - Teori og opgaveløsning

Geometri - Teori og opgaveløsning Geometri - Teori og opgaveløsning Formålet med disse noter er at give en grundig introduktion til geometri med fokus på hvad man har brug for til internationale matematikkonkurrencer. Noterne forudsætter

Læs mere

Geometri. 1 Trekantens linjer. Indhold

Geometri. 1 Trekantens linjer. Indhold Geometrinoter, 2012, Kirsten Rosenkilde 1 Geometri Formålet med disse noter er at give en grundig introduktion til geometri med fokus på hvad man har brug for til internationale matematikkonkurrencer.

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

Transformationsgeometri: Inversion. Kirsten Rosenkilde, august Inversion

Transformationsgeometri: Inversion. Kirsten Rosenkilde, august Inversion Transformationsgeometri: Inversion. Kirsten Rosenkilde, august 2007 1 Inversion Inversion er en bestemt type transformation af planen, og ved at benytte transformation på en geometrisk problemstilling

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

1 Trekantens linjer. 1.1 Medianer En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. 1.1 Medianer En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter, maj 007, Kirsten Rosenkilde 1 Geometrinoter Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, indskrivelige

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Geometri med Geometer I

Geometri med Geometer I f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller

Læs mere

Forslag til løsning af Opgaver om areal (side296)

Forslag til løsning af Opgaver om areal (side296) Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens

Læs mere

1 Oversigt I. 1.1 Poincaré modellen

1 Oversigt I. 1.1 Poincaré modellen 1 versigt I En kortfattet gennemgang af nogle udvalgte emner fra den elementære hyperbolske plangeometri i oincaré disken. Der er udarbejdet både et Java program HypGeo inkl. tutorial og en Android App,

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.

Læs mere

Ligedannede trekanter

Ligedannede trekanter Ib Michelsen: Matematik C, Geometri, 1. kapitel 2011 Version 7.1 22-08-11 Rettet: tempel.png inkorporeret / minioverskrift rettet D:\Appserv260\www\2011\ligedannedeTrekanter2.odt Arven fra Grækenland Arven

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Projekt 8.12 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter

Projekt 8.12 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Projekter: Kapitel 8 Projekt 8. Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Projekt 8. Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Trigonometrien til beregning af

Læs mere

Geometri med Geometer II

Geometri med Geometer II hristian Madsen & Frans Kappel Øre, Morsø Gymnasium Geometri med Geometer II I det første forløb om geometri med Geometer beskæftigede i os især med at konstruere på skærmen. Ved hjælp af konstruktionerne

Læs mere

1 Geometri & trigonometri

1 Geometri & trigonometri 1 Geometri & trigonometri 1.0.1 Generelle forhold Trigonometri tager sit udgangspunkt i trekanter, hvor der er visse generelle regler: vinkelsum areal A trekant = 1 2 h G A B C = 180 o retvinklet trekant

Læs mere

dvs. vinkelsummen i enhver trekant er 180E. Figur 11

dvs. vinkelsummen i enhver trekant er 180E. Figur 11 Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

Svar på opgave 322 (September 2015)

Svar på opgave 322 (September 2015) Svar på opgave 3 (September 05) Opgave: En sekskant har sidelængder 7 7. Bestem radius i den omskrevne cirkel hvis sekskanten er indskrivelig. Besvarelse: ny version 6/0-05. metode. Antag at sekskanten

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 2013 2. runde

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 2013 2. runde Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 2013 2. runde esvarelser som falder uden for de løsninger som ligger til grund for pointskemaerne, bedømmes ved analogi så skridt med tilsvarende

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Projekt 2.4 Euklids konstruktion af femkanten

Projekt 2.4 Euklids konstruktion af femkanten Projekter: Kapitel Projekt.4 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen af den regulære femkant. 0. Forudsætninger, definitioner og

Læs mere

Løsningsforslag til Geometri 4.-10. klasse

Løsningsforslag til Geometri 4.-10. klasse Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem

Læs mere

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 - 2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Sorø 2004. Opgaver, geometri

Sorø 2004. Opgaver, geometri Opgaver, geometri 1. [Balkan olympiade 1999]. For en given trekant ABC skærer den omskrevne cirkel BC s midtnormal i punkterne D og E, og F og G er spejlbillederne af D og E i BC. Vis at midtpunkterne

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne median 50% halvdel geometri i tredje 3 rumfang normal 90 grader underlig indskrevet kilogram (kg) bage forkortelse tusinde (1000) rumfang beholder fylde liter passer ben sds bredde deci centi lineal tiendedel

Læs mere

*HRPHWUL PHG *HRPH7ULFNV. - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser

*HRPHWUL PHG *HRPH7ULFNV. - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser *HRPHWUL PHG *HRPH7ULFNV q2nodvvh - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser INFA 1998 1 Forord I den nye læseplan for matematik og i den tilhørende undervisningsvejledning

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

ELEVFORUDSÆTNINGER OM KAPITLET PLANGEOMETRI

ELEVFORUDSÆTNINGER OM KAPITLET PLANGEOMETRI OM KAPITLET I dette kapitel om plangeometri arbejder eleverne med forskellige egenskaber ved plane figurer. I den første del af kapitlet arbejder eleverne med at finde areal af rektangler, parallelogrammer,

Læs mere

Matematisk argumentation

Matematisk argumentation Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen (MEL) Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på

Læs mere

Trekantsberegning 25 B. 2009 Karsten Juul

Trekantsberegning 25 B. 2009 Karsten Juul Trekantsberegning 7,0 3 5 009 Karsten Juul ette häfte indeholder den del af trekantsberegningen som skal kunnes på - niveau i gymnasiet (stx) og hf ra sommer 0 kräves mere remstillingen undgår at forudsätte

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

F-dag om geometri. Fremstilling og beskrivelse af stiliserede blade

F-dag om geometri. Fremstilling og beskrivelse af stiliserede blade F-dag om geometri Fremstilling og beskrivelse af stiliserede blade I foråret fejrede Canada at landet havde eksisteret som nation i 150 år. I den anledning blev der fremstillet et logo, der tog afsæt i

Læs mere

2.1 Euklidisk konstruktion af nogle regulære polygoner

2.1 Euklidisk konstruktion af nogle regulære polygoner Geometri og bilhjul Miroslava Sovičová, Štefan Havrlent, Ľubomír Rybanský Constantine the Philosopher University Nitra, Slovakia 1 Introduktion En matematiklærer der vil præsentere eleverne for noget nyt

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører: Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave

Læs mere

Matematik for lærerstuderende klasse Geometri

Matematik for lærerstuderende klasse Geometri Matematik for lærerstuderende 4.-10. klasse Geometri Klassisk geometri (kapitel 6) Deduktiv tankegang Ræsonnementskompetence Mål med kapitlet: Erkender Thales sætning som fundament for afstandsberegning.

Læs mere

GEOMETRI og TRIGONOMETRI del 2

GEOMETRI og TRIGONOMETRI del 2 GEOMETRI og TRIGONOMETRI del x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse COS, SIN, TAN og RETVINKLEDE TREKANTER... 3 Vinkler målt i radianer:... 6 Grundrelationen:... 8 Overgangsformler:...

Læs mere

Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014

Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014 Sæt 05 Geometri 01 Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014 Rettes: Karakter: Rettes ikke: Set og godkendt: Samlet elevtid: 165 min. = 2,75 time

Læs mere

1.1.1 Første trin. Læg mærke til at linjestykket CP ikke er en cirkelbue; det skyldes at det ligger på en diameter, idet = 210

1.1.1 Første trin. Læg mærke til at linjestykket CP ikke er en cirkelbue; det skyldes at det ligger på en diameter, idet = 210 1.1 Konstruktionen Denne side går lidt tættere på den hyperbolske geometri. Vi bruger programmet HypGeo, og forklarer nogle geometriske konstruktioner, som i virkeligheden er de samme, som man kan udføre

Læs mere

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil

Læs mere

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

OM KAPITLET PLANGEOMETRI. Elevernes egne svar eller Elevernes egne forklaringer. I

OM KAPITLET PLANGEOMETRI. Elevernes egne svar eller Elevernes egne forklaringer. I PLNGEOMETRI OM KPITLET I dette kapitel om plangeometri skal eleverne arbejde med trekanter og deres egenskaber. Eleverne skal kunne anvende deres viden om trekanter til at beregne afstande, som de ikke

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på bagsiden).

Læs mere

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber:

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: 8. 8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: Kvadrat Rektangel Parallelogram Trapez Ligebenet trekant Ligesidet trekant Retvinklet trekant Rombe Polygon Ellipse

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

Ib Michelsen: Matematik C, Geometri 2011, Euklid Version 7.2 03-10-11 G:\_nyBog\1-3-euklid\nyEuclid4.odt Sidetal starter med 65

Ib Michelsen: Matematik C, Geometri 2011, Euklid Version 7.2 03-10-11 G:\_nyBog\1-3-euklid\nyEuclid4.odt Sidetal starter med 65 Euklid Ib Michelsen: Matematik C, Geometri 2011, Euklid Version 7.2 03-10-11 G:\_nyBog\1-3-euklid\nyEuclid4.odt Sidetal starter med 65 Indledning "Matematikeren Euklid levede og virkede omtrent 300 aar

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på

Læs mere

Forslag til løsning af Opgaver til analytisk geometri (side 338)

Forslag til løsning af Opgaver til analytisk geometri (side 338) Forslag til løsning af Opgaver til analytisk geometri (side 8) Opgave Linjerne har ligningerne: a : y x 9 b : x y 0 y x 8 c : x y 8 0 y x Der må gælde: a b, da Skæringspunkt mellem a og b:. Det betyder,

Læs mere

************************************************************************

************************************************************************ Projektet er todelt: Første del har fokus på Euklids system og består af introduktionen, samt I og II. Anden del har fokus på Hilberts system fra omkring år 1900 og består af III sammen med bilagene. Man

Læs mere

06 Formler i retvinklede trekanter del 2

06 Formler i retvinklede trekanter del 2 06 Formler i retvinklede trekanter del 2 I del 2 udledes (nogle af) de generelle formler, der gælder for sinus, cosinus og tangens i retvinklede trekanter. Sætning 1 For enhver vinkel v gælder der BEVIS

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Projekt 2.3 Euklids konstruktion af femkanten

Projekt 2.3 Euklids konstruktion af femkanten Projekter: Kapitel. Projekt.3 Euklids konstruktion af femkanten Projekt.3 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen af den regulære

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Bjørn Felsager, Haslev Gymnasium & HF, 2003

Bjørn Felsager, Haslev Gymnasium & HF, 2003 Keglesnitsværktøjer De følgende værktøjer er beregnet til at tegne keglesnit på forskellig vis, såsom ellipser og hyperbler ud fra centrum, toppunkter, halvakser og lignende. Der er faktisk allerede inkluderet

Læs mere

Projekt 3.3 Linjer og cirkler ved trekanten

Projekt 3.3 Linjer og cirkler ved trekanten Projekt 3.3 Linjer og cirkler ved trekanten Midtnormalerne i en trekant Konstruer et linjestykke (punkt-menuen) og navngiv endepunkterne A og B (højreklik og vælg: Etiket), dvs. linjestykket betegnes AB.

Læs mere

7 Trekanter. Faglige mål. Trekanter. Linjer i trekanter. Pythagoras. Areal

7 Trekanter. Faglige mål. Trekanter. Linjer i trekanter. Pythagoras. Areal 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Trekanter: kende navne for sider og vinkelspidser i trekanter, kunne konstruere bestemte trekanter ud fra givne betingelser

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) August 2015- juni 2017 ( 1 og 2. År) Rybners HTX Matematik B

Læs mere

Geometri. Ib Michelsen

Geometri. Ib Michelsen Geometri Ib Michelsen Ikast 2008 Forsidebilledet Detalje fra Matematiker Johannes Meyers kort over Aabenraa Amt og Lundtofte Herred (1648) tilhørende Ib Michelsen. Version: 1.01 16-8 Version: 1.02 18-8

Læs mere

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm.

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm. Homografier Möbius transformationer Følgende tema, handler om homografier, inspireret af professor Børge Jessens noter, udgivet på Københavns Universitet 965-66. Noterne er herefter blevet bearbejdet og

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

Geometrisk tegning - Facitliste

Geometrisk tegning - Facitliste Geometrisk tegning - Facitliste Om kapitlet I dette kapitel om geometrisk tegning skal eleverne arbejde med forskellige tegneteknikker og hjælpemidler. De skal gengive og undersøge muligheder og begrænsninger

Læs mere

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 12/13 Institution Teknisk gymnasium Thisted, EUC - nordvest Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

Løsningsforslag til Geometri 1.-6. klasse

Løsningsforslag til Geometri 1.-6. klasse 1 Løsningsforslag til Geometri 1.-6. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser,

Læs mere

Matematik interne delprøve 09 Tesselering

Matematik interne delprøve 09 Tesselering Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen 30281023 Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

Geogebra Begynder Ku rsus

Geogebra Begynder Ku rsus Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant

Læs mere

Formel- og tabelsamling

Formel- og tabelsamling Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens håndbogsserie 2005 Grundskolen Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens

Læs mere

Egenskaber ved Krydsproduktet

Egenskaber ved Krydsproduktet Egenskaber ved Krydsproduktet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Trekanter. Frank Villa. 8. november 2012

Trekanter. Frank Villa. 8. november 2012 Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 2009 Institution Silkeborg Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik, niveau

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Ib Michelsen. Matematik C. mimimi.dk

Ib Michelsen. Matematik C. mimimi.dk Ib Michelsen Matematik C mimimi.dk Matematik C Copyright Ib Michelsen, Ikast ISBN... mimimi.dk 23-08-10 Indhold Indhold...3 Forord...7 Geometri Arven fra Grækenland...11 Begreber og sprog...12 Hvad betyder

Læs mere

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede

Læs mere

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres.

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres. .01 Trekanter Trekanttypespil En retvinklet trekant med siderne,, og. Kan ikke konstrueres. En trekant, hvor to af vinklerne er 90. En ligesidet trekant med siden. En spidsvinklet trekant hvor den ene

Læs mere

Maria Solstar Vestergaard 30-11-2006 Roskilde Tekniske Gymnasium Klasse 1.4g. Matematik B Klasse 1.4g Hjemmeopgaver

Maria Solstar Vestergaard 30-11-2006 Roskilde Tekniske Gymnasium Klasse 1.4g. Matematik B Klasse 1.4g Hjemmeopgaver Matematik B Hjemmeopgaver 1) opgave 107c, side 115 Jeg skal tegne en trekant og estemme vinklerne A og C og siderne a, og c. Jeg har følgende mål: Jeg har ikke nok mål til at kunne regne nogle af vinklerne

Læs mere

Opgave 1 A. Opgave 2 A m 2 B. 125,66 m 2 C m 2 D m 2

Opgave 1 A. Opgave 2 A m 2 B. 125,66 m 2 C m 2 D m 2 Opgave 1 Opgave 2 21 000 m 2 B. 125,66 m 2 C. 1200 m 2 D. 185 540 m 2 Opgave 3 Det betyder, at en centimeter på tegningen svarer til 100 cm i virkeligheden B. 22m 2 C. D. E. Hvis længdeforholdet ændres

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2018 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik A Klaus

Læs mere