Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)?

Størrelse: px
Starte visningen fra side:

Download "Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)?"

Transkript

1 Dagens program Økonometr Heteroskedastctet 6. oktober 004 Hovedemnet for denne forelæsnng er heteroskedastctet (kap ) Lneære sandsynlghedsmodel (kap 7.5) Konsekvenser af heteroskedastctet Hvordan kan man teste modeller med heteroskedastctet? Korrekton af varansen af OLS estmatoren Hypotesetest modeller med heteroskedastctet: t, F, W, LM Grafsk test Breusch-Pagan test Whte test Økonometr : Heteroskedastctet Økonometr : Heteroskedastctet Hvad nu hvs den afhængge varabel er en kvaltatv varabel (med to kategorer)? Indtl nu har v betragtet den afhængge varabel som en kvanttatv varabel (løn, prser, forbrug, ndkomst) Afhængge varabel: Dskret varabel med to værder Eksempler: Deltagelse på arbejdsmarkedet eller ej Bestået et kursus eller ej Om man har bl eller ej Vderegående udd. eller ej Har nvesteret akter eller ej Frma gået konkurs eller ej Lneær sandsynlghedsmodel Når den afhængge varabel er en kvaltatv varabel med to kategorer, kan man lave en dummyvarabel: y=0 eller y= Regressonsmodellen: y = β0 + βx+ βx + + βkxk + u Denne model kaldes den lneære sandsynlghedsmodel (på engelsk: Lnear probablty model, LPM) Fortolknngen af estmaterne denne model er anderledes end den alm. lneære regressonsmodel Parameteren β j kan kke fortolkes som ændrngen y gvet en enhedsændrng x j Økonometr : Heteroskedastctet 3 Økonometr : Heteroskedastctet 4

2 Lneær sandsynlghedsmodel Lneær sandsynlghedsmodel Hvs antagelsen MLR.3 er opfyldt: Eu ( x ) = 0 Er den betngede mddelværd af y E( y x) = β0 + βx+ βx + + βkxk For bnære varable gælder det E( y x) = 0*P( y = 0 x) + *P( y = x) = P( y = x) Altså P( y = x) = β0 + βx+ βx + + βkxk Hvor P( y = x) er respons sandsynlgheden Fortolknng af parameteren en LPM: Parametrene angver ændrngen sandsynlgheden for y= som følge af, at de forklarende varable ændres med en enhed P( y = x) = β j xj Sandsynlgheden for y=0 (betnget på x) kan også udregnes som P( y = 0 x) = P( y = x) LPM kan estmeres med OLS yˆ = ˆ β0 + ˆ βx+ ˆ βx ˆ + + βkxk Hvor ŷ skal fortolkes som den predkterede sandsynlghed (for y=) Økonometr : Heteroskedastctet 5 Økonometr : Heteroskedastctet 6 Lneær sandsynlghedsmodel Lneær sandsynlghedsmodel Ulemper ved LPM: Predktonerne er kke 0 eller, som de tlladte værder af den afhængge varabel Predkterede sandsynlgheder kan være negatve eller overstge Normalt lgger den predkterede sandsynlghed mellem 0 og, når man ser på værder af de forklarende varable der lgger omkrng gennemsnttet. Gauss Markov antagelserne: MLR.-4 kan godt være opfyldt for LPM LPM opfylder kke antagelsen MLR.5 (Homoskedastctet) V( y x) = σ Varansen af y betnget på x kan udregnes tl V( y x) = P( y = x)*( P( y = x)) Varansen afhænger altså af x Økonometr : Heteroskedastctet 7 Økonometr : Heteroskedastctet 8

3 Lneær sandsynlghedsmodel Heteroskedastctet Egenskaber ved OLS estmatoren LPM OLS estmaterne er mddelrette (gvet MLR.-4) Standardfejlene af estmaterne er kke mddelrette F og t test kke påldelge Problemet med heteroskedastctet kan løses ved at korrgere standardfejlene (dette ser v på kap. 8): Sjældent noget alvorlgt problem. Problemet med negatve ssh. og ssh. over kan kun løses ved at benytte en anden model end LPM. De nye modeller ntroduceres økonometr I kaptel 3 blev antagelsen om homoskedastctet ntroduceret: Samme varans på fejlleddet for alle Antagelsen kan være meget restrktv prakss og derfor vl v se på tlfælde med heteroskedastctet Defnton: Se på lneær multpel regressonsmodel y = β + β x + β x + + β x + u 0 k k Under antagelserne MLR.- MLR.4 er OLS mddelret og konsstent MLR.5 er antagelsen om homoskedastctet Vu ( x,, x) = σ k Økonometr : Heteroskedastctet 9 Økonometr : Heteroskedastctet 0 Heteroskedastctet (fortsat) Hvordan kan man teste modeller med heterosk.? Hvs MLR.5 kke er opfyldt, er fejlleddene heteroskedastske OLS estmatorens egenskaber ved heteroskedastctet: + OLS stadg mddelret og konsstent - Varansen af OLS estmaterne er kke mddelret - Konfdensntervallet er kke rgtgt konstrueret - t og F-test er kke nødvendgvs t og F-fordelt, LM test er kke nødvendgvs χ fordelt (og derfor er dsse test kke påldelge) OLS er kke længere den bedste lneære mddelrette estmator (BLUE): Der fndes andre lneære mddelrette estmatorer med mndre varans OLS er kke længere asymptotsk effcent Heteroskedastctet fejlleddet betyder, at et test der er baseret på OLS estmaton kun er gyldgt, hvs man korrgerer standardfejlene for heteroskedastctet. Tl det formål er der udvklet såkaldt heteroskedastctetsrobuste test. Antag: Modellen lder af heteroskedastctet af ukendt form: Vu ( x) = σ (#) V antager altså, at fejlleddet tl hver enhed (ndvd, frma, land) har sn egen varans (meget generel form) Homoskedastctet kan ses som et specaltlfælde hvor σ = σ for alle Økonometr : Heteroskedastctet Økonometr : Heteroskedastctet 3

4 Hvordan kan man teste modeller med heterosk.? Ideen er at opnå en estmator for varansen af OLS estmatoren, som er konsstent selvom om der er heteroskedastctet fejlleddet. Se på smpel lneær regressonsmodel: y = β0 + βx + u Udregn varansen af OLS estmatoren, når MLR.- MLR.4 er opfyldt, men den betngede varans af fejlleddet er gvet ved (#): MLR.5 holder kke. Varansen af OLS estmatoren er det generelle tlfælde gvet n ved ( x x) σ ˆ = V( β x ) = ( SST ) x Korrekton af varansen en smpel lneær regressonsmodel Leddene tælleren gves forskellg vægte, afhængg af Homoskedastctet: OLS varansen reduceres tl: V ( ˆ β x) = σ / SSTx Whte (980) har vst, at under svage betngelser vl en gyldg estmator af OLS varansen være gvet ved n ( x ˆ x) u ˆ ˆ = V( β x ˆ ) =, u er OLS resdualet. ( SSTx ) Heteroskedastctets-robust varans og heterosk. robuste standardfejl (Whte s standard errors). Beregnes fx med Proc Reg optonen ACOV SAS. σ Økonometr : Heteroskedastctet 3 Økonometr : Heteroskedastctet 4 Korrekton af varansen en multpel lneær regressonsmodel Varans af OLS estmatoren det generelle tlfælde: V( ˆ β X) = V[ X ' X) X ' u X] = ( X ' X) X ' V( u X) X( X ' X) = ( X ' X) X ' ΩX( X ' X) n X ' ΩX Behøver et konsstent estmat af: Σ= = σ xx ' n n = Whtes resultat: Estmeres konsstent af: S =Σ= n ˆ uˆ xx' n = Den robuste OLS varansmatrx kan derfor generelt estmeres som: ˆ ˆ( ) ( ' ) V β X n X X S ( X ' X ) = Test modeller med heteroskedastctet: Enkelt restrkton Heteroskedastctets-robust t-test: Hypotese: H : 0 βk = λ t-teststørrelse: ˆ βk λ t = s.. e hvor s.e. er heterosk. robust standardfejl på βˆ j t-teststørrelsen er asymptotsk standard normalfordelt For små datasæt er t-teststørrelserne kke nødvendgvs tæt på en t-fordelng Økonometr : Heteroskedastctet 5 Økonometr : Heteroskedastctet 6 4

5 Test modeller med heteroskedastctet: Flere restrktoner Hypotese: H : Rβ = r 0 hvor ß er en (k+)x vektor af parametre og R er en q x(k+) matrx og r er en q x vektor Heterosk. robust F-test kan beregnes ud fra robust kovarans Heterosk. robust Wald test: Wald-teststørrelsen W = R ˆ β r RVˆ ˆ β R R ˆ β r χ q ( )'( ( ) ') ( )~ ( ) Det er dette test som udføres ved brug af ACOV optonen SAS Eksempel Model for efterspørgsel efter cgaretter (Ex. 8.7) cgs = β + βlncome + β lprce + β educ + β age + β age + β rest + u Est. Std.err Robust std. Err Const Lncome Lprce Educ Age Age Rest Økonometr : Heteroskedastctet 7 Økonometr : Heteroskedastctet 8 Eksempel Hypoteseprøvnng Hypotese H 0 : β = 0 t-teststørrelse 0.88 t = =. 0.7 Robust t-teststørrelsen 0.88 t R = = Robust wald test W =.0 Test modeller med heteroskedastctet: Flere restrktoner Heterosk. robust LM test (se sde 63) Antag flg. model y = β + β x + β x + β x + β x + β x + u Hypotese Robust LM test H : β = 0, β = Trn : Estmer restrkterede model med OLS y = β + β x + β x + β x + u Og gem resdualerne u Økonometr : Heteroskedastctet 9 Økonometr : Heteroskedastctet 0 5

6 Test modeller med heteroskedastctet: Flere restrktoner Trn : Estmer flg. hjælperegresson med OLS x4 = β0 + βx+ βx + β3x3+ r x5 = β0 + βx+ βx + β3x3+ r Og gem resdualerne r og r Trn 3: Dan et nyt sæt af varable χ () ru og ru og l = Trn 4: Estmer flg. hjælperegresson l = λ ru + λru + e LM-teststørrelsen er gvet ved n-ssr fra ovenstående regresson LM testet er asymptotsk χ () Hvornår er der heteoskedatctet? Hvornår er der prakss heteroskedatctet Data består af gennemsnt over forskellge antal observatoner F.eks. Per capta varable for forskellge lande Gennemsnts for forskellge kommuner Forkert funktonel form Hvs fejlleddet er proportonal med den afhængge varabel kan problemet nogle gange løses ved at lave en transformaton med logartmen Heteroskedastctet knytter sg tl den enkelte model og det enkelte datasæt Økonometr : Heteroskedastctet Økonometr : Heteroskedastctet Hvordan tester man for heteroskedastctet? Antag følgende model y = β + β x + β x + β x + u 0 k k hvor antagelserne MLR.-MLR.4 er opfyldt Hypotese: H0 : V( u x, x xk ) = σ Alternatv formulerng af hypotesen H0 : E( u x, x xk ) = σ Hvs hypotesen er forkert er E( u x, x x k ) en funkton af x erne Grafske test: Estmer modellen med OLS Udregn og gem OLS resdualerne Plot resdualerne eller de kvadrerede resdualer mod de forskellge forklarende varable eller den forudsagte værd af den afhængge varabel Se efter systematske mønstre sprednngen af resdualerne Økonometr : Heteroskedastctet 3 Økonometr : Heteroskedastctet 4 6

7 Hvs man antager en smpel lneær relaton u = δ0 + δx+ δx + + δkxk + v svarer nulhypotesen om homoskedastctet tl H0 : δ = δ = = δ k = 0 Denne hypotese kan testes ved at erstatte de sande fejlled med OLS resdualerne uˆ = δ0 + δx+ δx + + δkxk + w (*) Testet udføres enten som et F-test eller et LM test For store datasæt vl F og LM test have de sædvanlge fordelnger selvom man erstatter de sande fejlled med OLS resdualerne Regressonen (*) udføres og R u for denne regresson noteres F-teststørrelsen er gvet ved Ru / k F = ( R ) /( n k ) u Teststørrelsen er approx. F(k,n-k-)-fordelt under nulhypotesen (homoskedastctet) LM teststørrelsen LM = n* Ru, asympt. fordelt som χ ( k). Dette test blver ofte kaldt Breusch-Pagan testet Økonometr : Heteroskedastctet 5 Økonometr : Heteroskedastctet 6 Specaltlfælde af BP-testet: Hvs man mstænker, at varansen kun afhænger af en bestemt varabel. Testet udføres ved at regressere de kvadrerede resdualer på den pågældende varabel. Bemærk at antallet af frhedsgrader er ændret for både F-testet (antal frhedsgrader:,n--) og LM testet ( χ ( q) Alternatvt test: Whtes test for heteroskedastctet Betngelsen Eu ( x, x xk ) = σ kan erstattes af svagere betngelse: u skal være ukorreleret med alle forklarende varable (x j ), de forklarende varable anden (x j ) og alle krydsprodukterne (x j x l ) Antag v har en model med k=3 Hjælperegressonen for Whte s test û = δ + δ x + δ x + δ x + δ x + δ x δ x + δ x x + δ x x + δ x x + w NB: 9 forklarende varable Hypotese H : δ = = δ = Teststørrelsen fndes som et LM test LM = n R m m * u, asympt. fordelt som χ ( ), hvor er antal regressorer excl. konstantleddet hjælperegressonen ( ex: 9). Økonometr : Heteroskedastctet 7 Økonometr : Heteroskedastctet 8 7

8 Forenklet Whte s test: Hjælperegresson uˆ = δ0 + δyˆ+ δ ˆ y + w Hypotese H0 : δ = δ = 0 Testet konstrueres som LM = n R χ * u, asympt. fordelt som (). Fordelen ved dette test er at antallet af frhedsgrader er lavere Whte s test har asymptotsk gyldghed og er altså bedst for store datasæt Husk alle dsse test er udledt under forudsætnng af, at antagelserne MLR.-MLR.4 er opfyldt Hvs antagelse MLR.3 kke er opfyldt kan man få at test for homoskedastctet blver afvst selvom antagelsen MLR.5 er opfyldt Så afvsnng af homoskedastctet skal skyldes mere generelle former for msspecfkaton: Kaptel 9 Økonometr : Heteroskedastctet 9 Økonometr : Heteroskedastctet 30 Næste gang: Fredag den 9/0. Heteroskedastctet: Kaptel Estmatorer, der tager højde for heteroskedastctet: Vægtet mndste kvadraters estmaton (WLS, FGLS) Ldt mere om den lneære sandsynlghedsmodel Økonometr : Heteroskedastctet 3 8

Kvantitative metoder 2

Kvantitative metoder 2 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.4) Kvanttatve metoder Heteroskedastctet 6. aprl 007 Sdste gang: Konsekvenser af heteroskedastctet for OLS Whte s korrekton af OLS varansen Test for heteroskedastctet

Læs mere

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1 Økonometr 1 Heteroskedastctet 27. oktober 2006 Økonometr 1: F12 1 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.3-4) Sdste gang: I dag: Konsekvenser af heteroskedastctet for OLS Korrekton af varansen

Læs mere

Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse

Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse Økonometr Prøveeksamen Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Kommenteret vejledende besvarelse Resultaterne denne besvarelse er fremkommet ved brug af eksamensnummer 7. Dne

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 9

Økonometri 1 Efterår 2006 Ugeseddel 9 Økonometr 1 Efterår 006 Ugeseddel 9 Program for øvelserne: Opsamlng på Ugeseddel 8 Gruppearbejde SAS øvelser Ugeseddel 9 består at undersøge, om der er heteroskedastctet vores model for væksten og så fald,

Læs mere

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Generel Lneær Model Y afhængg skala varabel 1,, k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet =( 1,, k

Læs mere

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion Dagens program Økonometri 1 Dummy variable 4. marts 003 Emnet for denne forelæsning er kvalitative variable i den multiple regressionsmodel (Wooldridge kap. 7.5-7.6+8.1)! Husk at udfylde spørgeskema 3!

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Den smple regressonsmodel 9. februar 007 Regressonsmodel med en forklarende varabel (W..3-5) Varansanalyse og goodness of ft Enheder og funktonel form af varabler modellen

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test

Læs mere

Økonometri 1. Lineær sandsynlighedsmodel (Wooldridge 8.5). Dagens program: Heteroskedasticitet 30. oktober 2006

Økonometri 1. Lineær sandsynlighedsmodel (Wooldridge 8.5). Dagens program: Heteroskedasticitet 30. oktober 2006 Dagens program: Øonometr 1 Heterosedastctet 30. otober 006 Effcent estmaton under heterosedastctet (Wooldrdge 8.4): Sdste gang: Kendte vægte - Weghted Least Squares (WLS) Generalzed Least Squares (GLS)

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvattatve metoder Iferes de leære regressosmodel 9. marts 007 Opsamlg vedr. feres e leær regressosmodel uder Gauss-Markov atagelser (W.4-5) Eksempel med flere restrktoer (F-test) Lagrage

Læs mere

Statistik Lektion 15 Mere Lineær Regression. Modelkontrol Prædiktion Multipel Lineære Regression

Statistik Lektion 15 Mere Lineær Regression. Modelkontrol Prædiktion Multipel Lineære Regression Statstk Lekton 15 Mere Lneær Regresson Modelkontrol Prædkton Multpel Lneære Regresson Smpel Lneær Regresson - repetton Spørgsmål: Afhænger y lneært af x?. Model: y = β + β x + ε ε d N(0, σ 0 1 2 ) Systematsk

Læs mere

Statistik II Lektion 4 Generelle Lineære Modeller. Simpel Lineær Regression Multipel Lineær Regression Flersidet Variansanalyse (ANOVA)

Statistik II Lektion 4 Generelle Lineære Modeller. Simpel Lineær Regression Multipel Lineær Regression Flersidet Variansanalyse (ANOVA) Statstk II Lekton 4 Generelle Lneære Modeller Smpel Lneær Regresson Multpel Lneær Regresson Flersdet Varansanalyse (ANOVA) Logstsk regresson Y afhængg bnær varabel X 1,,X k forklarende varable, skala eller

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005 Dages program Økoometr De multple regressosmodel. september 005 Emet for dee forelæsg er de multple regressosmodel (Wooldrdge kap 3.-3.3+appedx E.-E.) Defto og motvato Fortolkg af parametree de multple

Læs mere

Landbrugets efterspørgsel efter Kunstgødning. Angelo Andersen

Landbrugets efterspørgsel efter Kunstgødning. Angelo Andersen Landbrugets efterspørgsel efter Kunstgødnng Angelo Andersen.. Problemformulerng I forbndelse med ønsket om at reducere kvælstof udlednngen fra landbruget kan det være nyttgt at undersøge hvordan landbruget

Læs mere

Statikstik II 4. Lektion. Generelle Lineære Modeller

Statikstik II 4. Lektion. Generelle Lineære Modeller Statkstk II 4. Lekton Generelle Lneære Modeller Generel Lneær Model Y afhængg skala varabel X 1,,X k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet X + k = E( Y X ) = α + β x + + β

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvanttatve metoder 2 Instrumentvarabel estmaton 14. maj 2007 KM2: F25 1 y = cy ( c 0) Plan for resten af gennemgangen F25: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 y = cy ( c 0) Plan for resten af gennemgangen Kvanttatve metoder Instrumentvarabel estmaton 4. maj 007 F5: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler En regressor,

Læs mere

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol Økonometr lekton 7 Multpel Lneær Regresson Testbaseret Modelkontrol MLR Model på Matrxform Den multple lneære regressons model kan skrves som X y = Xβ + Hvor og Mndste kvadraters metode gver følgende estmat

Læs mere

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller Statkstk II 3. Lekton Multpel Logstsk regresson Generelle Lneære Modeller Defntoner: Repetton Sandsynlghed for at Ja tl at være en god læser gvet at man er en dreng skrves: P( God læser Ja Køn Dreng) Sandsynlghed

Læs mere

Lineær regressionsanalyse8

Lineær regressionsanalyse8 Lneær regressonsanalyse8 336 8. Lneær regressonsanalyse Lneær regressonsanalyse Fra kaptel 4 Mat C-bogen ved v, at man kan ndtegne en række punkter et koordnatsystem, for at afgøre, hvor tæt på en ret

Læs mere

Kvantitative metoder 2 Forår 2007 Ugeseddel 10

Kvantitative metoder 2 Forår 2007 Ugeseddel 10 Kvanttatve metoder 2 Forår 2007 Ugeseddel 0 Program for øvelserne: Gennemgang af teoropgave fra Ugesedel 9 Gruppearbejde og plenumdskusson SAS øvelser, spørgsmål -4. Sdste øvelsesgang (uge 2): SAS øvelser,

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 13

Økonometri 1 Efterår 2006 Ugeseddel 13 Økonometr 1 Efterår 2006 Ugeseddel 13 Prram for øvelserne: Gruppearbejde plenumdskusson SAS øvelser Øvelsesopgave: Vækstregressoner (fortsat) Ugeseddel 13 fortsætter den emprske analyse af vækstregressonen

Læs mere

Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1

Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1 Økonometr 1 Avancerede Paneldata Metoder I 24.november 2006 F18: Avancerede Paneldata Metoder I 1 Paneldatametoder Sdste gang: Paneldata begreber og to-perode tlfældet (kap 13.3-4) Uobserveret effekt modellen:

Læs mere

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelsøgnng Modelkontrol Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E[ y] = α...

Læs mere

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004 Dages program Økoometr De multple regressosmodel. september 004 Emet for dee forelæsg er stadg de multple regressosmodel (Wooldrdge kap. 3.4-3.5) Praktske bemærkg Opsamlg fra sdst Irrelevate varable og

Læs mere

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelkontrol Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E y] = α... [ 3 3 4 4

Læs mere

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen Vægtet model Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervsnng/lf Gvet n uafhængge målnger x,, x n af n størrelser µ,, µ n Målnger

Læs mere

Scorer FCK "for mange" mål i det sidste kvarter?

Scorer FCK for mange mål i det sidste kvarter? Uge 7 I Teoretsk Statstk, 9. aprl 2004. Hvor er v? Hvor var v: opstllg af statstske modeller Hvor skal v he: tro om estmato og test 2. Eksempel: FCK Estmato (tutvt) Test Maksmum lkelhood estmato Scorer

Læs mere

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag Afdelng for Epdemolog Afdelng for Bostatstk 6. SEESTER Epdemolog og Bostatstk Opgaver tl 3. uge, fredag Data tl denne opgave stammer fra. Bland: An Introducton to edcal Statstcs (Exercse 11E ). V har hentet

Læs mere

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio Logstsk regresson Logstsk regresson Odds/Odds rato Probt model Fortolknng udfra latent varabel En varabel Y parameter p P( Y 1 Bernoull/bnomal fordelngen 1 1 p. er Bernoull- fordelt med sandsynlgheds hvs

Læs mere

Økonometri 1. Avancerede Paneldata Metoder II Introduktion til Instrumentvariabler 27. november 2006

Økonometri 1. Avancerede Paneldata Metoder II Introduktion til Instrumentvariabler 27. november 2006 Økonometr 1 Avancerede Paneldata Metoder II Introdukton tl Instrumentvarabler 27. november 2006 Paneldata metoder Sdste gang: Paneldata med to eller flere peroder og fxed effects estmaton. Første-dfferens

Læs mere

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen Vægtet model Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervsnng/lf3 Insttut for Matematske Fag Aalborg Unverstet Gvet n uafhængge

Læs mere

Antag X 1,..., X n stokastiske variable med fælles middelværdi µ og varians σ 2. Hvis µ er ukendt estimeres σ 2 ved 1/36.

Antag X 1,..., X n stokastiske variable med fælles middelværdi µ og varians σ 2. Hvis µ er ukendt estimeres σ 2 ved 1/36. Estmaton af varans/sprednng Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - rw@math.aau.dk Insttut for Matematske Fag Aalborg Unverstet Antag X,..., X n stokastske varable med fælles

Læs mere

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kvanttatve metoder 2 Forår 2007 Oblgatorsk opgave 2 Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Opgavens prmære formål er at lgne formen på tag-hjem delen af eksamensopgaven. Der

Læs mere

Økonometri 1. Hvorfor simulationseksperimenter? Monte Carlo eksperimenter: Ideen. Inferens i den lineære regressionsmodel 28.

Økonometri 1. Hvorfor simulationseksperimenter? Monte Carlo eksperimenter: Ideen. Inferens i den lineære regressionsmodel 28. Oversgt: de næste forelæsnnger Økonometr Inferens den lneære regressonsmodel 8. september 4 Statstsk nferens: hvorledes man med udgangspunkt en statstsk model kan drage konklusoner på grundlag af data,

Læs mere

Bilag 6: Økonometriske

Bilag 6: Økonometriske Marts 2015 Blag 6: Økonometrske analyser af energselskabernes omkostnnger tl energsparendsatsen Energstyrelsen Indholdsfortegnelse 1. Paneldataanalyse 3 Specfkaton af anvendte panel regressonsmodeller

Læs mere

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder Regressonsanalyse Epdemolog og Bostatstk Mogens Erlandsen, Insttut for Bostatstk Uge, torsdag (forelæsnng) 1.Smpel lneær regresson (Kaptel 11) systolsk blodtryk og alder. Multpel lneær regresson (Kaptel

Læs mere

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Opbygnng af statstsk model Eksploratv data-analyse Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2005II, Økonometri 1

Rettevejledning til Økonomisk Kandidateksamen 2005II, Økonometri 1 Rettevejlednng tl Økonomsk Kanddateksamen 005II, Økonometr 1 Vurderngsgrundlaget er selve opgavebesvarelsen og blaget, nklusve det afleverede SAS program. Materalet på dskette/cd bedømmes som sådan kke,

Læs mere

Økonometri 1. Interne evalueringer af forelæsninger. Kvalitative variabler. Dagens program. Dummyvariabler 21. oktober 2004

Økonometri 1. Interne evalueringer af forelæsninger. Kvalitative variabler. Dagens program. Dummyvariabler 21. oktober 2004 Dagens program Økonometri 1 Dummyvariabler 21. oktober 2004 Emnet for denne forelæsning er kvalitative egenskaber i den multiple regressionsmodel (Wooldridge kap. 7.1-7.6) Kvalitative variabler generelt

Læs mere

Kvantitative metoder 2 Forår 2007 Ugeseddel 9

Kvantitative metoder 2 Forår 2007 Ugeseddel 9 Kvanttatve metoder 2 Forår 2007 Ugeseddel 9 Program for øvelserne: Introdukton af problemstllng og datasæt Gruppearbejde SAS øvelser Paneldata for tlbagetræknngsalder Ugesedlen analyserer et datasæt med

Læs mere

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen Sandsynlghedsregnng. forelæsnng Bo Frs Nelsen Matematk og Computer Scence Danmarks Teknske Unverstet 800 Kgs. Lyngby Danmark Emal: bfn@mm.dtu.dk Dagens nye emner afsnt 6.5 Den bvarate normalfordelng Y

Læs mere

2. Sandsynlighedsregning

2. Sandsynlighedsregning 2. Sandsynlghedsregnng 2.1. Krav tl sandsynlgheder (Sandsynlghedens aksomer) Hvs A og B er hændelser, er en sandsynlghed, hvs: 1. 0 ( A) 1 n 2. ( A ) 1 1 3. ( A B) ( A) + ( B), hvs A og B ngen udfald har

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Opsamlng vedr. nferens uden MLR.5: Beregnng af robuste standardfejl og kovarans under heteroskedastctet (W8.) W.6: Flere emner en multpel regressonsmodel Inferens den

Læs mere

Notat om porteføljemodeller

Notat om porteføljemodeller Notat om porteføljemodeller Svend Jakobsen 1 Insttut for fnanserng Handelshøjskolen Århus 15. februar 2004 1 mndre modfkatoner af Mkkel Svenstrup 1 INDLEDNING 1 1 Indlednng Dette notat ndeholder en opsummerng

Læs mere

Husholdningsbudgetberegner

Husholdningsbudgetberegner Chrstophe Kolodzejczyk & Ncola Krstensen Husholdnngsbudgetberegner En model for husholdnngers daglgvareforbrug udarbejdet for Penge- og Pensonspanelet Publkatonen Husholdnngsbudgetberegner En model for

Læs mere

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1 Økonometri 1 Dummyvariabler 13. oktober 2006 Økonometri 1: F10 1 Dagens program Dummyvariabler i den multiple regressionsmodel (Wooldridge kap. 7.3-7.6) Dummy variabler for kvalitative egenskaber med flere

Læs mere

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser Uge 37 I Teoretsk Statstk, 9.sept. 003. Fordelger kyttet tl N-ford. Gvet: uafhægge observatoer af samme N(µ,σ )-fordelte stokastske varabel. Formelt: X,X,,X uafhægge, alle N(µ,σ )-fordelt. Mddelværd µ

Læs mere

Fagblok 4b: Regnskab og finansiering 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 til 31.01 2004 kl. 14.00

Fagblok 4b: Regnskab og finansiering 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 til 31.01 2004 kl. 14.00 Fagblok 4b: Regnskab og fnanserng 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 tl 31.01 2004 kl. 14.00 Dette opgavesæt ndeholder følgende: Opgave 1 (vægt 50%) p. 2-4 Opgave 2 (vægt 25%) samt opgave 3 (vægt

Læs mere

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005 Dages program Økoometr De smple regressosmodel 4. september 5 Dee forelæsg drejer sg stadg om de smple regressosmodel (Wooldrdge kap.4-.6) Fuktoel form Hvorår er OLS mddelret? Varase på OLS estmatore Regressosmodelle

Læs mere

Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol

Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol Udvklng af en metode tl effektvurderng af Mljøstyrelsens Kemkalenspektons tlsyn og kontrol Orenterng fra Mljøstyrelsen Nr. 10 2010 Indhold 1 FORORD 5 2 EXECUTIVE SUMMARY 7 3 INDLEDNING 11 3.1 AFGRÆNSNING

Læs mere

Luftfartens vilkår i Skandinavien

Luftfartens vilkår i Skandinavien Luftfartens vlkår Skandnaven - Prsens betydnng for valg af transportform Af Mette Bøgelund og Mkkel Egede Brkeland, COWI Trafkdage på Aalborg Unverstet 2000 1 Luftfartens vlkår Skandnaven - Prsens betydnng

Læs mere

Binomialfordelingen. Erik Vestergaard

Binomialfordelingen. Erik Vestergaard Bnomalfordelngen Erk Vestergaard Erk Vestergaard www.matematkfysk.dk Erk Vestergaard,. Blleder: Forsde: Stock.com/gnevre Sde : Stock.com/jaroon Sde : Stock.com/pod Desuden egne fotos og llustratoner. Erk

Læs mere

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006 Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W

Læs mere

Morten Frydenberg Version: Thursday, 16 June 2011

Morten Frydenberg Version: Thursday, 16 June 2011 Morten Frydenberg Verson: Thursday, 6 June 20 Logstc regresson og andre regresonsmodeller Morten Frydenberg Deartt of Bostatscs, Aarhus Unv, Denmar Hvornår an man bruge logsts regresson. Ldt om odds og

Læs mere

Note til Generel Ligevægt

Note til Generel Ligevægt Mkro. år. semester Note tl Generel Lgevægt Varan kap. 9 Generel lgevægt bytteøkonom Modsat partel lgevægt betragter v nu hele økonomen på én gang; v betragter kke længere nogle prser for gvet etc. Den

Læs mere

Stadig ligeløn blandt dimittender

Stadig ligeløn blandt dimittender Stadg lgeløn blandt dmttender Kvnder og mænd får stadg stort set lge meget løn deres første job, vser DJs dmttendstatstk for oktober 2012. Og den gennemsntlge startløn er fortsat på den pæne sde af 31.500

Læs mere

Beregning af strukturel arbejdsstyrke

Beregning af strukturel arbejdsstyrke VERION: d. 2.1.215 ofe Andersen og Jesper Lnaa Beregnng af strukturel arbedsstyrke Der er betydelg forskel Fnansmnsterets (FM) og Det Økonomske Råds (DØR) vurderng af det aktuelle output gap. Den væsentlgste

Læs mere

Fysik 3. Indhold. 1. Sandsynlighedsteori

Fysik 3. Indhold. 1. Sandsynlighedsteori Fysk 3 Indhold Termodynamk John Nclasen 1. Sandsynlghedsteor 1.1 Symboler 1.2 Boolsk Algebra 1.3 Betngede Udsagn 1.4 Regneregler 1.5 Bayes' formel 2. Fordelnger 2.1 Symboler 2.2 Bnomal Fordelngen 2.3 ultnomal

Læs mere

Kreditrisiko efter IRBmetoden

Kreditrisiko efter IRBmetoden Kredtrsko efter IRBmetoden Vacceks formel Arbejdspapr, oktober 2013 1 KRAKAfnans - Fnanskrsekommssonens sekretarat Teknsk arbejdspapr udkast 15. oktober 2013 Indlednng Det absolutte mndstekrav tl et kredtnsttut

Læs mere

Fastlæggelse af strukturel arbejdsstyrke

Fastlæggelse af strukturel arbejdsstyrke d. 23.5.2013 Fastlæggelse af strukturel arbedsstyrke Dokumentatonsnotat tl Dansk Økonom, Forår 2013 For at kunne vurdere økonomens langsgtede vækstpotentale og underlggende saldoudvklng og for at kunne

Læs mere

TEORETISKE MÅL FOR EMNET:

TEORETISKE MÅL FOR EMNET: TEORETISKE MÅL FOR EMNET: Kende begreberne ampltude, frekvens og bølgelængde samt vde, hvad begreberne betyder Kende (og kende forskel på) tværbølger og længdebølger Kende lysets fart Kende lysets bølgeegenskaber

Læs mere

Undersøgelse af pris- og indkomstelasticiteter i forbrugssystemet - estimeret med AIDS

Undersøgelse af pris- og indkomstelasticiteter i forbrugssystemet - estimeret med AIDS Danmarks Statstk MODELGRUPPEN Arbedspapr* Mads Svendsen-Tune 13. marts 2008 Undersøgelse af prs- og ndkomstelastcteter forbrugssystemet - estmeret med AIDS Resumé: For at efterse nestnngsstrukturen forbrugssystemet

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen

Læs mere

Nøglebegreber: Objektivfunktion, vægtning af residualer, optimeringsalgoritmer, parameterusikkerhed og korrelation, vurdering af kalibreringsresultat.

Nøglebegreber: Objektivfunktion, vægtning af residualer, optimeringsalgoritmer, parameterusikkerhed og korrelation, vurdering af kalibreringsresultat. Håndbog grundvandsmodellerng, Sonnenborg & Henrksen (eds 5/8 GEUS Kaptel 14 IVERS MODELLERIG Torben Obel Sonnenborg Geologsk Insttut, Københavns Unverstet Anker Laer Høberg Hydrologsk Afdelng, GEUS øglebegreber:

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation Statstk Lekto 4 Smpel Leær Regresso Smpel leær regresso Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures ( ad Sales ( Et scatterplot vser par (, af observatoer.

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Real valutakursen, ε, svinger med den nominelle valutakurs P P. Endvidere antages prisniveauet i ud- og indland at være identisk, hvorved

Real valutakursen, ε, svinger med den nominelle valutakurs P P. Endvidere antages prisniveauet i ud- og indland at være identisk, hvorved Lgevægt på varemarkedet gen! Sdste gang bestemtes følgende IS-relatonen, der beskrver lgevægten på varemarkedet tl: Y = C(Y T) + I(Y, r) + G εim(y, ε) + X(Y*, ε) Altså er varemarkedet lgevægt, hvs den

Læs mere

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Økonometr 1 Efterår 2006 Ugeseddel 10: Prøveeksamen Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Om opgavens formål: Opgavesættets prmære formål er - så vdt mulgt - at lgne formen

Læs mere

Inertimoment for arealer

Inertimoment for arealer 13-08-006 Søren Rs nertmoment nertmoment for arealer Generelt Defntonen på nertmoment kan beskrves som Hvor trægt det er at få et legeme tl at rotere eller Hvor stort et moment der skal tlføres et legeme

Læs mere

Forbedret Fremkommelighed i Aarhus Syd. Agenda. 1. Vurdering af forsøg Lukning af Sandmosevej

Forbedret Fremkommelighed i Aarhus Syd. Agenda. 1. Vurdering af forsøg Lukning af Sandmosevej Trafkgruppen Agenda 1. Vurderng af forsøg Luknng af Sandmosevej 2. Vurderng af foreslået forsøg Luknng af Sandmosevej og Brunbakkevej 3. Forslag tl forbedret fremkommelghed for hele Aarhus Syd 4. Kortsgtet

Læs mere

Måleusikkerhed i kalibrering Nr. : AB 11 Dato : 2011-12-01 Side : 1/3

Måleusikkerhed i kalibrering Nr. : AB 11 Dato : 2011-12-01 Side : 1/3 Sde : 1/3 1. Anvendelsesområde 1.1 Denne akkredterngsbestemmelse gælder ved DANAK s akkredterng af kalbrerngslaboratorer. 1. Akkredterede kalbrerngslaboratorer skal ved estmerng af uskkerhed, rapporterng

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 30. april 2007 KM2: F21 1 Program for de to næste forelæsninger Emnet er specifikation og dataproblemer (Wooldridge kap. 9) Fejlleddet kan være korreleret

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2 Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition

Læs mere

Konfidensinterval for µ (σ kendt)

Konfidensinterval for µ (σ kendt) Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)

Læs mere

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger Vaansanalyse (ANOVA) Repetton, ANOVA Tjek af model antagelse Konfdensntevalle fo mddelvædene Tukey s test fo pavse sammenlgnnge ANOVA - defnton ANOVA (ANalyss Of VAance), også kaldet vaansanalyse e en

Læs mere

Repetition. Forårets højdepunkter

Repetition. Forårets højdepunkter Repetto Forårets højdepukter Forårets højdepukter Smpel Leær Regresso Smpel leær regresso: Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures (X ad Sales (Y Et scatterplot

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst

Læs mere

Brugerhåndbog. Del IX. Formodel til beregning af udlandsskøn

Brugerhåndbog. Del IX. Formodel til beregning af udlandsskøn Brugerhåndbog Del IX Formodel tl beregnng af udlandsskøn September 1999 Formodel tl beregnng af udlandsskøn 3 Formodel tl beregnng af udlandsskøn 1. Indlednng FUSK er en Formodel tl beregnng af UdlandsSKøn.

Læs mere

Estimation af CES - forbrugssystemet med og uden dynamik: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts

Estimation af CES - forbrugssystemet med og uden dynamik: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts Danmarks Statstk MODELGRUPPEN Arbejdspapr [udkast] Andreas Østergaard Iversen 140609 Estmaton af CES - forbrugssystemet med og uden dynamk: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger Oversigt: De næste forelæsninger Økonometri Inferens i den lineære regressionsmodel 5. september 006 Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan drage konklusioner på

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Korrelation (kontrol af model) Regression (tilpasning af model) 1. Grad af fælles variation mellem X og Y. 2. Område og fordeling af sample data

Korrelation (kontrol af model) Regression (tilpasning af model) 1. Grad af fælles variation mellem X og Y. 2. Område og fordeling af sample data tatstk 9. gag GIONANAL Korrelato (kotrol af model egresso (tlpasg af model tatstk 9. gag KOLATION ANAL. Grad af fælles varato mellem X og. Område og fordelg af sample data 3. Optræde af ekstrem-værder

Læs mere

Økonomisk Kandidateksamen 2005II Økonometri 1. Lønpræmier

Økonomisk Kandidateksamen 2005II Økonometri 1. Lønpræmier Økonomsk Kanddateksamen 005II Økonometr 1 Lønpræmer Praktske anvsnnger tl ndvduel tag-hjem eksamen Økonometr 1: Start med at skre dg at du kan få adgang tl data og blag (se næste sde). Opgaven skal besvares

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Tabsberegninger i Elsam-sagen

Tabsberegninger i Elsam-sagen Tabsberegnnger Elsam-sagen Resumé: Dette notat beskrver, hvordan beregnngen af tab foregår. Første del beskrver spot tabene, mens anden del omhandler de afledte fnanselle tab. Indhold Generelt Tab spot

Læs mere

Simpel Lineær Regression - repetition

Simpel Lineær Regression - repetition Smpel Leær Regresso - repetto Spørgsmål: Afhæger leært af?. Model: β + β + ε ε d N(0, σ 0 ) Sstematsk kompoet + Stokastsk kompoet Estmato - repetto Vha. Mdste Kvadraters Metode fder v regressosle hvor

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

En panelmodel for timeløn i Danmark: Ny metode til imputering af skyggelønninger i Finansministeriets forskelsbeløbsmodel

En panelmodel for timeløn i Danmark: Ny metode til imputering af skyggelønninger i Finansministeriets forskelsbeløbsmodel Arbejdspapr nr: / En panelmodel for tmeløn Danmark: Ny metode tl mptern af skyelønnner Fnansmnsterets forskelsbeløbsmodel Lars Grønvall Foldspan o Mads Vej Andersen* ** Resmé: En vrdern af tlskyndelsen

Læs mere

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro Uge 48 II Teoretisk Statistik 7. november 003 Numerisk modelkontrol af diskrete fordelinger: intro Eksempel: kvalitetskontrol Goodness-of-fit test: generel teori Endeligt udfaldsrum Udfaldsrum uden øvre

Læs mere

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker

Læs mere

Analytisk modellering af 2D Halbach permanente magneter

Analytisk modellering af 2D Halbach permanente magneter Analytsk modellerng af 2D Halbach permanente magneter Kaspar K. Nelsen kak@dtu.dk, psjq@dtu.dk DTU Energ Konverterng og -Lagrng Danmarks Teknske Unverstet Frederksborgvej 399 4000, Rosklde, Danmark 17.

Læs mere

Økonometri 1. Instrumentvariabelestimation 26. november Plan for IV gennemgang. Exogenitetsantagelsen. Exogenitetsantagelsen for OLS

Økonometri 1. Instrumentvariabelestimation 26. november Plan for IV gennemgang. Exogenitetsantagelsen. Exogenitetsantagelsen for OLS y = cy ( c 0 ) Pla for IV geemgag Økoometr Istrumetvarabelestmato 6. ovember 004 F9: Hvad er IV estmato: Bvarat model, et strumet: Kap.5. + afst -4 ote. F0: IV estmato det multple tlfælde (eksakt detfceret):

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Inferens i den lineære regressionsmodel 7. marts 2007 regressionsmodel 1 Opgave fra sidst (Gauss-Markov teoremet) Opgave: Vis at hvis M = I X X X X 1 ( ' ) ' er M idempoten dvs der

Læs mere

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud

Læs mere