Integration af IKT i matematikundervisningen

Størrelse: px
Starte visningen fra side:

Download "Integration af IKT i matematikundervisningen"

Transkript

1 Integration af IKT i matematikundervisningen 4m 3m 2m Horisont 1m ground A bottel of chees and pest Udarbejdet af Kaj Østergaard Århus Dag- og Aftenseminarium 2004/2005

2 1. Forord Baggrund for projektet Formelle krav Politiske tegn Ideen bag udviklingsarbejdet Udviklingsarbejdets formål De involverede skoler Teori Kategorisering af programmer Undervisningsprogrammer Værktøjsprogrammer Tre typer elevvirksomhed Den usikre og defensive elevvirksomhed Den løsningsorienterede elevvirksomhed Den reflekterende elevvirksomhed Matematisk modellering Elevernes evaluering Spørgeskemaundersøgelse på Frijsenborg Ungdomsskole Spørgeskemaundersøgelse på Engdalskolen Resultater af spørgeskemaundersøgelser Hold B2, Frijsenborg Ungdomsskole Beskrivelse af hold og årsforløb Vilkår for IKT i undervisningen Geometer Excel Spil Økonomi Er eleverne blevet dygtigere til matematik ved at anvende edb i undervisningen? Hold B1, Frijsenborg Ungdomsskole Beskrivelse af undervisningsforløb Et undervisningsforløb sidst på året

3 6.3 IKT vilkår på skolen Blev IKT en naturlig del af matematikundervisningen? a, Engdalskolen Status: Mål: Tiltag: Tegn: Evaluering: Litteraturliste Links Bilag Bilag 1: Jon Lissners evalueringer

4 1. Forord Denne rapport er et resultat af udviklingsarbejdet med titlen Integration af IKT i matematikundervisningen i Folkeskolen, som blev gennemført i skoleåret 2004/2005. I arbejdet deltog to lærere med 5. klasser fra Engdalsskolen (folkeskole) i Brabrand, to lærere med klasser fra Frijsenborg Ungdomsskole (efterskole) i Hammel, en lærer med 10. klasse fra N. Kochs Skole (privat skole) i Århus og undertegnede, Kaj Østergaard (KJ), som er adjunkt ved Århus Dag- og Aften-Seminarium. Desværre blev den deltagende lærer fra N. Kochs Skole syg under forløbet og måtte forlade arbejdet. I overskriften har jeg brugt betegnelsen IKT (Informations- og Kommunikations- Teknologi), andre steder i rapporten bruger fx undervisningsministeriet betegnelsen IT og endnu andre steder blot computer. I praksis beskæftigede udviklingsarbejdet sig udelukkende med brug af computere. Arbejdet forløb efter følgende tidsskema: Marts - Aug Indledende studie af litteratur. Udvælgelse af litteratur til lærere. 4. August 2004 Indledende møde. Hvorfor integrere IKT i matematikundervisningen? Forskellige typer programmer. Forskellige elevtilgange. Konkrete forslag til undervisning med inddragelse af IKT. Ideudveksling. Aug. Nov forløb. 10.November møde. Evaluering af første undervisningsforløb. Lærer eleverne matematik, når vi inddrager IKT? Fokus på arbejdsformer og formulering af problemstillinger til brug i skolen. Matematisk modellering. Ideudveksling. Nov. Feb. 2004/05 2. forløb. 9. Feb Møde. Hvad lærer eleverne? Evaluering af undervisning. Statistik og sandsynlighedsregning med Excel, herunder simulering. Rapportskrivning. Udarbejdning af idekatalog. Ideudveksling. Feb. April forløb. 28. April møde. Evaluering. Rapportskrivning. Juni 2004 Afsluttende sammenskrivning af rapport. Figur 1. De 4 mødegange bestod af en kombination af oplæg fra KJ, erfaringsudveksling, udvikling af konkrete forløb til undervisningen og diskussion af litteratur

5 I hver af de tre mellemliggende perioder gennemførte hver lærer minimum et forløb, hvor IKT blev integreret i matematikundervisningen. Til slut udfærdiges nærværende rapport. Kapitel to beskriver baggrunden og begrundelsen for projektet, stort set som det blev beskrevet i ansøgningen for udviklingsarbejdet. Kapitel 3 er en indføring i den bagvedliggende teori, med nogle kommentarer til, hvordan teorien blev brugt konkret i arbejdet på skolerne, og kapitel 4 er elevernes evaluering af projektet. I kapitel 5-7 beskriver tre lærere så praksis (den fjerde har, stik imod aftale, ikke bidraget), det konkrete arbejde på skolerne, som er kommet ud af projektet. Kapitel 5-7 er således, som det fremgår, skrevet af tre af de medvirkende lærere, hvorimod resten udelukkende er KJ s ansvar. Formålet med rapporten er, at give nogle af de overvejelser de involverede har gjort sig, før under og efter de gennemførte forløb, videre, samt inspirere andre til at arbejde videre med de beskrevne ideer og problemstillinger. 2. Baggrund for projektet I 70 erne og starten af 80 erne var matematikfaget stort set det eneste, der forsøgte at bruge computeren i undervisningen i folkeskolen. I løbet af de sidste 30 år er det forventede boom i brugen af computere i matematikundervisningen imidlertid udeblevet. Samtidig er det lykkedes for en række andre fag fx sprogfagene og dansk i langt højere grad at integrere det nye medie. Dette ses fx af Undervisningsministeriets evaluering af folkeskolens prøver, det såkaldte PEU-hæfte (Undervisningsministeriet 2004), hvoraf det fremgår, at kun 9,2% (FSA) og 13,62% (FS10) af eleverne anvendte computer til den skriftlige prøve i matematik ved sommerprøven 2004, mens det er yderst få steder computeren og brug af IT indgår som en naturlig og integreret del af de mundtlige prøver (Undervisningsministeriet 2004, side 105). Der er dog meget store udsving fra klasse til klasse. Til sammenligning brugte 74,44% af eleverne computer ved den afsluttende skriftlige prøve i engelsk (sommerprøven 2004). Der er imidlertid fra flere sider ønske om, at brugen af informationsteknologi styrkes såvel i folkeskolen som helhed, som i folkeskolens matematikundervisning. 2.1 Formelle krav Alle folkeskolens fag har siden folkeskoleloven fra 1993 været forpligtet på at integrere IKT i undervisningen (en af de tre dimensioner ). Herudover står der, at grundlæggende færdigheder at kunne kommunikere, dvs. læse, skrive og anvende engelsk, samt anvende tal og informationsteknologi er fælles ansvarsområder for alle fag, samarbejdet mellem fagene og skolens aktiviteter i øvrigt. (Faghæfte 12, s. 9, Undervisningsministeriet 2001)

6 I de to sidste faghæfter for matematik Klare Mål (Undervisningsministeriet 2001) og Fælles Mål (Undervisningsministeriet 2003) er brugen af computere tydeligt pointeret, hvilket fremgår af nedenstående citater, som er udvalgt blandt mange: Delmål: Forventninger til, hvad eleverne almindeligvis kan og ved indenfor området: Indskolingen: - behandle data, fx ved hjælp af lommeregner og computer (ibid. s. 14) Mellemtrinnet: Tegne, undersøge og eksperimentere med geometriske figurer, fx ved at benytte en computer: (ibid. s. 16) Afsluttende trin: benytte computeren til tegning, undersøgelser og beregninger vedrørende geometriske figurer. (ibid. s. 17) Beskrivelser/Læseplan: Indskolingen: Efterhånden kan computeren supplere arbejdet med konkrete materialer, hvor den udnyttes som et fleksibelt redskab til at undersøge og eksperimentere med geometriske figurer (ibid. s. 30) Mellemtrinnet: Simulering af eksperimenter gennemføres ved hjælp af computer (ibid. s. 52) Afsluttende klassetrin: Anvendelse af enkle matematiske modeller i forbindelse med brug af computeren til undersøgelse og beskrivelser af samfundsmæssige forhold inddrages. (s. 54) 2.2 Politiske tegn Der har gennem de sidste 15 år været talrige eksempler på politiske tiltag, som indikerer at man ønsker at udvikle og udbygge brugen af computere i folkeskolens fag. Her skal blot nævnes et par enkelte markante tiltag: Efteruddannelse af lærere. To-tredjedele af lærerne i folkeskolen har gennemgået et pædagogiske it- efteruddannelseskursus, oftest det såkaldte pædagogiske itkørekort (http://pub.uvm.dk/2003/it/1.html). Udvikling af undervisningen. I perioden gennemførtes de såkaldte ITMF-projekter (IT, Medier og Folkeskolen) (se for samlet 340 millioner kroner. Indkøb af computere. Som det fremgår af tabel 1 er antallet af elever pr. computer i folkeskolen faldet kraftigt i den omtalte periode. Desværre er der en tendens til at den kraftige udvikling er stoppet omkrig årtusindskiftet, og det er samtidig værd at bemærke, at tallene dækker over meget store lokale forskelle, således er der kommuner, hvor der er mere end 300 (!) elever om hver nyere computer, mens antallet andre steder er under 4. (http://pub.uvm.dk/2003/it_stat/2.html) - 5 -

7 Tabel 1. Udvikling i antal elever pr. computer, 1992 til 2002 Kilde: Også den nuværende regering ønsker i høj grad at satse på udvikling i brug af computere i undervisningen. I publikationen It i Folkeskolen fra 2003 hedder det bl.a: It skal være et fremherskende pædagogisk værktøj i den danske folkeskole, og eleverne skal bruge computeren som et personligt redskab, hvor de kan lære med de værktøjer, de selv og lærerne har valgt for at nå målene (Undervisningsministeriet 2003) I samme publikation fremsætter regeringen følgende mål: at it effektivt understøtter den enkelte elevs mulighed for et højt fagligt udbytte af undervisningen at anvendelse af it så tidligt som muligt bliver en naturlig del af elevernes hverdag at børn og unge opnår de bedste betingelser i forhold til at begå sig i et samfund, hvor it indtager en stadig større rolle på stadig flere områder. (ibid.) Regeringen har derfor iværksat en handlingsplan, således at der i perioden investeres 495 mio. kr. i it i folkeskolen heraf 370 mio. til indkøb af nye computere, svarende til ca. 64% af antal computere i 2002 (http://pub.uvm.dk/2003/it/1.html). Dette tiltag har særlig henblik på at opgradere antallet af computer i 3. klasse, således at brugen af computere kan integreres i den daglige undervisning på et tidligere tidspunkt i skoleforløbet. 2.3 Ideen bag udviklingsarbejdet Der er således et helt oplagt misforhold mellem politiske og pædagogiske intentioner, de formelle krav, og den konkrete undervisningen i folkeskolen i hvert tilfælde hvad matematik angår. Dette misforhold kan forklares fx med manglende computere (i nogle kommuner/skoler), mangel på (efter-)uddannelse og mangel på egnet software. Erfaringer fra min egen virksomhed i folkeskolen/efterskolen, fra de efteruddannelseskurser jeg har holdt for skolens lærere, samt fra mit daglige arbejde med lærerstuderende, har imidlertid indikeret, at lærerne herudover mangler didaktiske redskaber til, hvordan man griber en undervisning med integration af IKT an, det vil sige, hvordan organiserer man en sådan undervisning, hvilke arbejdsformer er specielt egnede, hvordan formulerer man brugbare problemstillinger, hvordan undgår man at tiden og energien bruges på at lære at bruge en given software frem for det matematiske indhold, samt ikke mindst, hvordan gør man computeren til et redskab, som eleverne kan vælge, på lige fod med fx lommeregner eller passer, til løsning af de problemstillinger, som opstår i den daglige matematikundervisning.. Det var derfor især disse spørgsmål, der blev sat fokus på gennem arbejdet, da de, ud over selvfølgelig en - 6 -

8 generel indføring i brug og vurdering af software, må anses for at være helt centrale for uddannelsen af kommende lærere og for udviklingen af undervisningen på dette felt. 2.4 Udviklingsarbejdets formål Inddragelse af IKT er ikke noget mål i sig selv. Først i det øjeblik hvor teknologien er med til at lette vejen til, at eleven opnår den intenderede læring, eller hvor den åbner nye indholdsmæssige muligheder, bliver den det stærke redskab i undervisningssammenhæng, den har vist sig at være i mange andre sammenhænge. Udviklingsarbejdets formål er at undersøge og vurdere de nye muligheder, som brugen af IKT giver. Hvordan tilrettelægges en undervisning, hvor inddragelse af IKT påvirker vilkårene for læring i en positiv retning, det vil sige, hvor kan brugen af IKT åbne nye veje og muligheder for læring? 2.5 De involverede skoler Efter at repræsentanten fra N. Kochs Skole måtte melde fra, var der kun to skoler, Engdalskolen (ES) og Frijsenborg Ungdomsskole (FUS), tilbage. Disse to skoler, og de klasser/lærere der repræsenterede dem, er meget forskellige på afgørende punkter for udviklingsarbejdet. Først og fremmest er antallet af computere pr. elev og computernes tilgængelighed helt forskellig. Til brug i den daglige undervisning råder ES, ud over 10 bærbare computere som lærerne oplever som meget besværlige at bruge i den daglige undervisning, kun over 18 computere placeret i et kælderlokale til de ca. 700 elever. I modsætning hertil råder FUS over 30 computere til 88 elever, som er placeret i og omkring undervisningsmiljøet, således at de er umiddelbart tilgængelige for eleverne, både når alle elever skal arbejde med dem, og når enkelte elever eller grupper selv vælger at bruge dem i undervisningen. Herudover var det to 5. klasser som deltog fra ES, hvorimod det var to 9./10. klasser fra FUS, og da FUS er en efterskole, er stort set alle elever nye på skolen ved skoleårets begyndelse, hvilket betyder at eleverne naturligvis møder med vidt forskellige erfaringer og forudsætninger i forhold til brug af computere i undervisningen, ligesom den didaktiske kontrakt hvert år skal tegnes på ny, med fælles indarbejdelse af rutiner, arbejdsmetoder, normer osv, i modsætning til ES, hvor disse ting er opbygget gennem det hidtidige skoleforløb. Da de to klasser på ES, som følge af det meget ringe antal computere på skolen, kun havde meget begrænsede erfaringer i brug af computere i matematikundervisningen, skulle alle klasser ved skoleårets begyndelse starte fra bunden med introduktion af program(mer). Alle fire lærere valgte at starte med en introduktion af Excel. Selv om forholdene på de to skoler således var vidt forskellige, startede de således det samme sted. Det er klart, at ovenstående forhold kom til at begrænse mulighederne for gensidig inspiration og erfaringsudveksling, men det viste sig alligevel i høj grad muligt, at diskutere centrale problemstillinger, som var relevante for begge parter

9 3. Teori I det følgende kapitel gives et kort overblik over den teori, som blev brugt i projektet. Det meste af litteraturen blev læst af alle, andet blev gennemgået af KJ på møderne, og det resterende blev læst og brugt som baggrundsmateriale af KJ. 3.1 Kategorisering af programmer Computerprogrammer til brug i matematikundervisningen kan overordnet kategoriseres i to hovedgrupper: undervisningsprogrammer og værktøjsprogrammer Undervisningsprogrammer Undervisningsprogrammer (naturligvis i dette tilfælde underforstået matematikundervisning) er karakteriseret ved, at de er specielt designede til undervisning i et afgrænset matematisk-fagligt emne oftest på et helt bestemt tidspunkt i skoleforløbet. Indholdet kan fx være procentregning, arealberegning, eller matematiske modeller som fx bremselængde i forhold til hastighed eller lignende. Oftest kræver arbejdet med programmerne, at der har været et indledende arbejde med det givne område, og programmerne kan så bruges som træning, uddybning, visualisering, eksemplificering eller lignende. Dette er en meget stor og forskelligartet gruppe af programmer både i omfang og kvalitet. De fleste er små og billige programmer, som ofte fås i større pakker som fx INFA-pakken (DLH) og Orfeus-pakken (UNI-C). Andre er udviklet af matematiklærere, som naturligvis er amatører med hensyn til at udvikle software. Undervisningsprogrammer kan opdeles i to undergrupper. Den første gruppe, som er meget stor i antal, er træningsprogrammer, designet til at træne helt specifikke færdigheder. Disse kan ofte sammenlignes med opgaveark, eventuelt krydret med forskellige småeffekter, når eleven løser opgaverne rigtigt eller forkert. Et eksempel er et program, som træner eleven i Færdighedsdelen til Folkeskolens Afgangsprøve ved at stille eleven opgaver, som ligner prøven. Programmet kan så registrere, hvilke typer opgaver eleven løser rigtig og forkert. Computerens eneste funktioner er, at den angiveligt skulle motivere eleverne til arbejdet og spare læreren for en del af rettearbejdet. Motivation er imidlertid i bedste fald kortvarig og gælder kun en del af eleverne. Lærerens arbejdsbesparelse er også til at overse, idet læreren alligevel er nødt til at undersøge elevens besvarelse nøjere for at kunne analysere elevens kundskaber. Træningsprogrammer har lukkede opgaver med kun et facit, og er således uforenelige med en undervisning, som bygger på åbne problemstillinger. De tilbyder som sådan ikke noget nyt til matematikundervisningen, men er blot en kopi af arbejdsformer som tidligere er benyttet via andre medier. Arbejdet med disse programmer optager skolens computere og var med til at vende en generation af matematiklærere mod inddragelse af computere i matematikundervisningen. (Noss & Hoyles, 1996, side 54) Den anden undergruppe af undervisningsprogrammer er simuleringsprogrammer (fx Kugle1, 2 og 3, Brems (http://www.infa.dk/emma/index.htm) og mange andre). Oftest - 8 -

10 simuleres forskellige matematiske modeller, som bruges i matematik i anvendelse. Styrken ved denne type programmer er, at computeren på kort tid kan simulere et stort antal forsøg og fremstille resultaterne på en overskuelig form. Desuden kan udregninger, som er for svære rent fagligt for eleven, udføres af computeren, således at eleven udelukkende skal forstå og forholde sig til informationer og analysere sammenhænge. Om simuleringsprogrammer skriver Noss og Hoyles: This relates to our second, more fundamental objection. Software which fails to provide the learner with a means of expressing mathematical ideas also fails to open any windows onto the process of mathematical learning. A student working with even the very best simulation, is intent on grasping what the simulation is demonstrating, rather than attempting to articulate the relationship involved. It is in the articulation witch offers some purchase on what the learner is thinking, and it is in the process of articulation that a learner can create mathematics and simultaneously reveal this act of creation to an observer. (Noss & Hoyles, 1996, side 54) De fleste (alle?) modeller til simuleringer kan konstrueres af enten elever eller lærere i forskellige værktøjsprogrammer (som omtales i næste afsnit), hvor der i langt højere grad åbnes mulighed for at analysere på de involverede størrelser og deres sammenhæng. Har man således valgt at bruge et antal værktøjsprogrammer, er der ikke nogen begrundelse for at supplere med forprogrammerede simuleringsprogrammer, som ofte giver mere begrænsede muligheder for udforskning og analyse Værktøjsprogrammer Den anden gruppe af programmer er værktøjsprogrammer. Værktøjsprogrammer er først og fremmest karakteriseret ved deres blanke overflade og dermed mangfoldige muligheder afhængig af brugeren. Med blanke overflade menes, at programmerne i udgangspunktet er som et blankt stykke papir. Det er brugeren selv, i dette tilfælde eleven, der skal lægge indholdet ind. Eksempler på værktøjsprogrammer er regneark (inklusiv VisiRegn fra INFA), dynamiske geometriprogrammer og CAS-programmer (Computer Algebra System). Nogle værktøjsprogrammer er som undervisningsprogrammer udviklet specielt til undervisning (fx GeoMeter, DataMeter og MatematiKan), andre er udviklet til anden form for professionel brug, fx er regneark (eksempelvis Excel) udviklet til brug i forretningslivet. Alligevel er Excel, som det bl.a. kan ses af elevevalueringerne i kapitel 4 det mest udbredte program i folkeskolens matematikundervisning, men oprindelsen fra forretningslivet giver naturligvis anledning til en række problemer, som det bl.a. er fremført af Inge B. Larsen (2000): Regneoperationerne, i regnearket kaldet formler, er skjult, således at eleverne ikke umiddelbart kan se, hvad computeren gør, kun resultatet er synligt. Ved at anbringe cellemarkøren i en celle kan man se formlen men kun i en celle af gangen. Skifter man til vis formler kan alle formler ses, men nu forsvinder resultaterne. Dette gør det svært, især for den utrænede elev, at overskue sammenhænge, som involverer mere end nogle få variable. Navngivning af variable er helt forskellig fra den vi sædvanligvis bruger i matematik. I regnearket bruges cellenavne som A4, C7 i stedet for x, y, a, b osv

11 Samtidig er cellenavnet også henvisning til en bestemt position i regnearket. Læreren bliver nødt til at vælge: Skal eleverne lære begge navne, eller kun den ene? Det er naturligvis utilstrækkeligt, at de kun lærer navnet fra regnearket. Endelig er der muligheden for at omdøbe cellernes navne til dem vi kender fra matematikken, men dette giver en ekstra arbejdsgang. Notationen i regnearket er helt forskellig fra den, vi kender i matematik. Igen skal vi afgøre om eleverne skal lære begge notationer og deres indbyrdes forhold, eller de kan nøjes med den ene, og i givet fald hvilken? Regneark indeholder rigtig mange forskellige diagramtyper, men kun meget få lever op til de er standarder, vi normalt bruger i matematikundervisningen. At oprette et diagram i fx Excel er herudover en ret lang proces, hvor man skal foretage mange valg og fravalg, hvilket er en svær færdighed, som kræver en del tid at lære især for den ikke-erfarne computerbruger. At Excel alligevel er langt det mest brugte program i matematikundervisningen, kan skyldes flere forhold: Alle skoler har Excel (eller eventuelt et andet lignende regneark), som er købt i samme pakke som tekstbehandlingsprogrammet. Excel er det eneste matematikrelevante program, som indgår i det pædagogiske it-kørekort (Skole-it), og således det program, som flest matematiklærere er fortrolige med. Der er efterhånden udgivet en del undervisningsmateriale til Excel. Eleverne møder regneark forskellige steder udenfor skolen, hvilket giver disse en autenticitet, som er af stor betydning især i de ældste klasser. Elever har derfor også en formodning om, at de vil komme til at bruge Excel i deres fremtidige uddannelses- arbejds- og fritidsliv, hvilket naturligvis er motiverende. Et dynamiske geometriprogram er helt nødvendigt, for at kunne opfylde de formelle mål, som er citeret i afsnit 2.1. Allerede med Klare Mål (Undervisningsministeriet 2001) skulle eleverne benytte computeren til tegning, undersøgelser og beregninger vedrørende geometriske figurer, hvilket er svært at opfylde, uden at bruge et dynamisk geometriprogram. Alligevel er denne type program stadig forbavsende lidt brugte i folkeskolen. Et af målene i udviklingsarbejdet blev derfor af gøre eleverne fortrolige med et sådan program, for at undersøge muligheder og potentialer. Man kan læse mere om dette i Jon Lissner og Lars Juelsgaard Nielsens afsnit og i elevevalueringerne (kap 5, 6 og 4). Den sidste type værktøjsprogram, som skal nævnes her, er de såkaldte CASprogrammer, der meget langsomt er ved at vinde indpas i folkeskolen. Mathcad er efterhånden kommet ned i en prisklasse, som har gjort, at nogle få skoler har købt det, der er i år gennemført et meget omtalt forsøgsarbejde på Statens Pædagogiske Forsøgscenter (http://www.inet-spf.dk/) med MathCad (Nielsen og Grode 2005), som umiddelbart har meget lovende resultater, og sidst men ikke mindst er det første

12 dansksprogede CAS-program, MatematiKan, så småt på vej til at blive udgivet (Enggaard 2004). I forhold til undervisningsprogrammer, som ofte er lige til at gå til, har værktøjsprogrammer en forholdsvis høj indgangstærskel. Det er nødvendigt at læreren bruger en del tid, og eleverne bruger nogen tid, på at sætte sig ind i programmets funktioner, inden man får det fulde matematiskfaglige udbytte af programmerne. Det er med denne baggrund at nogle lærere angiver manglende tid eller Det er for svært at bruge, som begrundelse for ikke at bruge denne type programmer. Der er imidlertid også en række gode grunde til at vælge værktøjsprogrammer: For det første har hvert enkelt program flere forskellige anvendelsesmuligheder, således at eleven kun skal lære at anvende et lille antal programmer. Et dynamisk geometriprogram som GeoMeter kan introduceres allerede tidligt i skoleforløbet til eksperimenter med geometriske former, og bruges videre helt frem til universitetsniveau. For det andet er det forholdsvis uproblematisk at skifte mellem forskellige værktøjsprogrammer (fx Excel, og Works og Lotus 1-2-3), da brugerfladen ligner hinanden meget. Den tredje og helt afgørende fordel ved værktøjsprogrammer er dog pædagogisk. Værktøjsprogrammerne giver eleven mulighed for at eksperimentere og prøve sig frem med matematiske sammenhænge, samtidig med at eleven kan udtrykke matematiske ideer og sammenhænge programmerne kan bruges til kommunikation. Noss og Hoyles bruger Illich s udtryk convivial : Og videre: To the degree that he masters his tools, he can invest the world with his meaning; to the degree that he is mastered by his tools, the shape of the tool determines his own self-image. Convivial tools are those which give each person who uses them the greatest opportunity to enrich the environment with the fruits of his or her vision. (Illich i Noss and Hoyles side 57) The extent to which a tool may be seen as convivial is the extent to which the use of the tool creates meaning for its users, catalyses intellectual experience and growth. (Noss and Hoyles side 57) Skal et computerprogram være et convivial redskab for eleverne, skal de være helt fortrolige med programmet. Da værktøjsprogrammer generelt er noget sværere at bruge end undervisningsprogrammer, fordi de har mange flere funktioner, forudsætter en sådan fortrolighed, at de bruger det samme program i forskellige sammenhænge mange gange gennem skoleforløbet. Programmet skal blive et redskab på lige fod med lommeregneren eller vinkelmåleren, således at opmærksomheden flyttes fra den rent tekniske beherskelse af programmet til det matematiske indhold. Det er klart, at dette begrænser antallet af programmer, læreren kan præsentere eleverne for, betydeligt. Først når elevens opmærksomhed fjernes fra programmet og computeren og henledes på det matematiske indhold, opnås en situation, hvor eleven kan begynde at eksperimentere, afprøve og udtrykke forskellige ideer

13 Balacheff illustrerer computerens betydning for den didaktiske situation i nedenstående model: Knowledge Student Milieu Educational softvare Didactical situation Teacher Fig. 2: Balacheffs model af computerens betydning for den didaktiske situation (Fra Blomhøj, 1999) Computerprogrammet er en del af læringsmiljøet, og er dermed med til at danne rammen om den didaktiske situation. Det er i elevens interaktion med læringsmiljøet, at viden opbygges, men det er nødvendigt, at eleven ikke overlader kontrollen til computeren, men selv tager kontrollen med situationen. Ellers kommer eleven til at bruge energien på at afkode, hvad læreren gerne vil opnå, i stedet for at udvikle egne ideer. Lærens opgave er derfor for det første at designe læringsmiljøer, hvor eleven uden lærerens umiddelbare indblanden kan agere, og for det andet at give eleven de nødvendige færdigheder til at bruge redskabet. På baggrund af ovenstående valgte vi fra projektets start at arbejde med værktøjsprogrammer frem for undervisningsprogrammer. På grund af den begrænsede adgang til computere på ES, måtte man her satse på ét program. Lærerne valgte Excel, fordi det var det, de var mest fortrolige med, og umiddelbart så flest muligheder i. På FUS valgte lærerne at introducere både Excel og GeoMeter tidligt på året med henblik på fra starten at gøre disse to programmer til naturlige redskaber i den daglige undervisning. Herefter blev den næste opgave at formulere relevante, åbne problemstillinger med klare faglige mål, som kunne udvikle en eksperimenterende, undersøgende undervisning, hvor et værktøjsprogram indgik som naturligt redskab. 3.2 Tre typer elevvirksomhed På den første mødegang introduceredes Morten Blomhøjs tre forskellige former for elevvirksomhed ved matematikundervisning med inddragelse af IKT: Den usikre og defensive, den løsningsorienterede og den reflekterende elevvirksomhed (Blomhøj, 1999). Ideen var hermed at få en fælles referenceramme, samt at skærpe opmærksomheden på at bringe eleverne hen imod en reflekterende virksomhed. Beskrivelserne er ikke karakteriseringer af enkelte elever, men et forsøg på at indkredse, forskellige typer elevvirksomhed i arbejdet med computere. Karakteriseringen er sket på baggrund af observationer og interviews i et udviklingsarbejde på Holstebro og

14 Nørresundby gymnasier i perioden Blomhøj antager, at disse former for elevvirksomheder kan genfindes på andre gymnasier, og at analysen og beskrivelserne derfor kan bruges om matematikundervisningen i gymnasiet generelt. Opdelingen har også vist sig at være anvendelig som grundlag for en analyse i folkeskolesammenhæng, specielt på de ældste klassetrin Den usikre og defensive elevvirksomhed Det karakteristiske for den usikre og defensive elevvirksomhed er, at eleverne har en uklar opfattelse af de matematiske begreber. Når disse elever i interviewene bliver spurgt hvorfor, de har gjort, som de har, afviser de at forholde sig til det, som regel med den begrundelse at de ikke kan huske det. Eleverne føler, at det er stærkt følelsesmæssigt belastende at skulle forholde sig til det faglige indhold, fordi de derved bliver konfronteret med deres manglende formåen. De prøver på alle måder at undgå personlig involvering, fordi de er bange for en følgende nederlagsoplevelse, som de har oplevet så ofte før. For disse elever drejer matematik sig om at huske, hvordan man foretager en bestemt beregning, eller hvilken formel man skal bruge. De mangler oftest en mere fundamental forståelse af de matematiske objekter. Elever med en usikker og defensiv elevvirksomhed oplever computeren som et ekstra element, de skal lære at bruge, ved siden af at de skal lære matematikken. Computeren bliver derfor i elevernes forståelse en hindring for læring af matematik og ikke et hjælpemiddel i læringsprocessen. Efterhånden som de lærer at bruge programmerne, bliver computeren dog også et hjælpemiddel i den helt konkrete løsning af opgaver, fordi de lærer at bruge nogle specifikke funktioner i den rigtige sammenhæng, på samme måde som man kan lære at bruge en formel i en bestemt sammenhæng. Den mere grundlæggende forståelse mangler imidlertid stadig, så eleverne vil stadig være meget usikre i deres forklaring af, hvorfor de har valgt den pågældende løsningsmetode. På denne måde opstår der et modsætningsforhold for eleven, hvor computerne både opleves som en barriere for læringen, og som et nødvendigt redskab til løsning af opgaver. Det er klart, at en sådan instrumentel brug af computeren ikke bidrager til elevens læring af matematik, selv om det kan se sådan ud, fordi eleverne i nogle tilfælde vil kunne løse nogle opgavetyper ved hjælp af computeren. Bruges computerprogrammer til løsning af standardiserede opgaver er det helt nødvendigt med en opfølgende dialog, hvor eleverne skal forklare og sætte ord på, hvorfor de har valgt netop de valgte løsningsmetoder Den løsningsorienterede elevvirksomhed For eleven med den løsningsorienterede elevvirksomhed er målet at løse de af læreren stillede opgaver så hurtigt og let som muligt. Matematik handler om at løse opgaver, og det gælder om at hoppe over, hvor gærdet er lavest. IKT er et udmærket hjælpemiddel til at løse opgaver og udnyttes derfor effektivt til dette, men computeren opfattes ikke som en integreret del af matematikken, som kan bruges til at opbygge en begrebsmæssig forståelse. Disse elever tager derfor heller ikke uopfordret udfordringer op fx ved at undersøge, eksperimentere og generalisere problemstillinger, som der arbejdes med. Elever med den løsningsorienterede elevvirksomhed opfatter ikke inddragelse af IKT som et middel til at støtte og øge deres læring af det matematikfaglige indhold, men blot som et hjælpemiddel i løsningen af opgaver. Dette skyldes i høj grad den type opgaver, eleverne er sat til at løse. Skal der skabes sammenhæng mellem opgaveløsning, begrebsdannelse og inddragelse af IKT, skal eleverne, i højere grad end de bliver det i det beskrevne udviklingsarbejde (Blomhøj, 1999), stilles overfor mere åbne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Års- og aktivitetsplan i matematik hold 4 2014/2015

Års- og aktivitetsplan i matematik hold 4 2014/2015 Års- og aktivitetsplan i matematik hold 4 2014/2015 Der arbejdes hen mod slutmålene i matematik efter 10. klassetrin. www.uvm.dk => Fælles Mål 2009 => Faghæfter alfabetisk => Matematik => Slutmål for faget

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

forstå, arbejde med og analysere problemstillinger af matematisk art i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold

forstå, arbejde med og analysere problemstillinger af matematisk art i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold Årsplan for undervisningen i matematik på 4. klassetrin 2006/2007 Retningslinjer for undervisningen i matematik: Da Billesborgskolen ikke har egne læseplaner for faget matematik, udgør folkeskolens formål

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Målsætning. Se hovedmål for scenariet og hovedmål for færdighedslæring her. Økonomi

Målsætning. Se hovedmål for scenariet og hovedmål for færdighedslæring her. Økonomi Målsætning Økonomiske beregninger som baggrund for vurdering af konkrete problemstillinger. Målsætningen for temaet Hvordan får jeg råd? er, at eleverne gennem arbejde med scenariet udvikler matematiske

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Matematik. Læseplan og formål:

Matematik. Læseplan og formål: Matematik Læseplan og formål: Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold.

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Fagplan for faget matematik

Fagplan for faget matematik Fagplan for faget matematik Der undervises i matematik på alle klassetrin (0. - 7. klasse). De centrale kundskabs- og færdighedsområder er: I matematik skal de grundlæggende kundskaber og færdigheder i

Læs mere

Tavleundervisning og samarbejde 2 og 2. Eleverne arbejder selvstændigt med opgaver. Løbende opsamling ved tavlen.

Tavleundervisning og samarbejde 2 og 2. Eleverne arbejder selvstændigt med opgaver. Løbende opsamling ved tavlen. Fag: Matematik Hold: 21 Lærer: ASH 33-34 35-36 lære at læse og forstå en lønseddel samt vide hvordan deres skat bliver beregnet. Se i øvrigt fælles mål Arbejde med regnehieraki og regneregler. 36-38 Elevere

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Regneark hvorfor nu det?

Regneark hvorfor nu det? Regneark hvorfor nu det? Af seminarielektor, cand. pæd. Arne Mogensen Et åbent program et værktøj... 2 Sådan ser det ud... 3 Type 1 Beregning... 3 Type 2 Præsentation... 4 Type 3 Gæt... 5 Type 4 Eksperiment...

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

Læringsmål Faglige aktiviteter Emne Tema Materialer

Læringsmål Faglige aktiviteter Emne Tema Materialer Uge 33-48 Målsætningen med undervisningen er at eleverne individuelt udvikler deres matematiske kunnen,opnår en viden indsigt i matematik kens verden således at de kan gennemføre folkeskolens afsluttende

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen)

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Bog: Vi bruger grundbogssystemet Format, som er et fleksibelt matematiksystem, der tager udgangspunkt i læringsstile.

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk

Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk Øresunds Internationale Skole læseplan for matematik. Formål for faget matematik Formålet med

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere

VisiRegn: En e-bro mellem regning og algebra

VisiRegn: En e-bro mellem regning og algebra Artikel i Matematik nr. 2 marts 2001 VisiRegn: En e-bro mellem regning og algebra Inge B. Larsen Siden midten af 80 erne har vi i INFA-projektet arbejdet med at udvikle regne(arks)programmer til skolens

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

ÅRSPLAN MATEMATIK 5.KLASSE

ÅRSPLAN MATEMATIK 5.KLASSE ÅRSPLAN MATEMATIK 5.KLASSE Matematiklærerens tænkebobler illustrerer, at matematikundervisning ikke udelukkende handler om opgaver, men om en (lige!) blanding af: Kompetencer Indhold Arbejdsmåder CENTRALE

Læs mere

Årsplan matematik 7.klasse 2014/2015

Årsplan matematik 7.klasse 2014/2015 Årsplan matematik 7.klasse 2014/2015 Emne Indhold Mål Tal og størrelser Arbejde med brøktal som repræsentationsform på omverdenssituationer. Fx i undersøgelser. Arbejde med forskellige typer af diagrammer.

Læs mere

Fag- og indholdsplan 9. kl.:

Fag- og indholdsplan 9. kl.: Fag- og indholdsplan 9. kl.: Indholdsområder: Tal og algebra: Tal - regneregler og formler Størrelser måling, beregning og sammenligning. Matematiske udtryk Algebra - teoretiske sammenhænge absolut og

Læs mere

Fagplan for matematik på Bakkelandets Friskole

Fagplan for matematik på Bakkelandets Friskole Fagplan for matematik på Bakkelandets Friskole Formål for faget matematik: Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører

Læs mere

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen I dette kapitel beskrives det, hvilke Fælles Mål man kan nå inden for udvalgte fag, når man i skolen laver aktiviteter med Space Challenge.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin maj-juni 10/11 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold stx Matematik C Trille Hertz Quist 1.c mac Oversigt over gennemførte undervisningsforløb

Læs mere

Emne Tema Materialer

Emne Tema Materialer 32 36 Uge 35 Fag: Matematik Hold: 20 Lærer: Trine Koustrup Undervisningsmål 9. klasse Læringsmål Faglige aktiviteter Emne Tema Materialer Målsætningen med undervisningen er at eleverne udvikler deres kunnen,opnår

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

Formål for faget Matematik

Formål for faget Matematik Formål for faget Matematik Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold.

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter Fag: Matematik Hold: 26 Lærer: Harriet Tipsmark Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter 33-35 Målet for undervisningen er, at eleverne tilegner sig gode matematiske færdigheder og at

Læs mere

Matematik i AT (til elever)

Matematik i AT (til elever) 1 Matematik i AT (til elever) Matematik i AT (til elever) INDHOLD 1. MATEMATIK I AT 2 2. METODER I MATEMATIK OG MATEMATIKKENS VIDENSKABSTEORI 2 3. AFSLUTTENDE AT-EKSAMEN 3 4. SYNOPSIS MED MATEMATIK 4 5.

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget Fælles Mål II MATEMATIK Formål for faget Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Matematik. Evaluering, orientering og vejledning

Matematik. Evaluering, orientering og vejledning Folkeskolens afsluttende prøver Matematik 2014 Evaluering, orientering og vejledning Institut for Læring Evaluering af årets matematikprøver Følgende rapport er udformet således, at resultater fra karakterdatabasen

Læs mere

Årsplan for matematik 4. klasse 14/15

Årsplan for matematik 4. klasse 14/15 Årsplan for matematik 4. klasse 14/15 Status: 4.b er en klasse der består af ca. 20 elever. Der er en god fordeling mellem piger og drenge i klasser. Klassen har 5 matematiktimer om ugen. Vi fortsætter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Mat C Trine Eliasen

Læs mere

Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC

Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Komrapporten Kompetencer og matematiklæring. Ideer og inspiration til udvikling af matematikundervisningen

Læs mere

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik:

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik: TW 2011/12 Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag Formål for faget matematik: Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at

Læs mere

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Nye Fælles Mål og årsplanen Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Interview Find en makker, som du ikke kender i forvejen Stil spørgsmål, så du kan fortælle os andre om vedkommende ift.:

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Interaktiv Whiteboard og geometri

Interaktiv Whiteboard og geometri Interaktiv Whiteboard og geometri Nærværende dokumentation af et undervisningsforløb til undervisning i geometri er blevet til som et resultat af initiativet Spredningsprojektet. Spredningsprojektet er

Læs mere

Læseplan for matematik på Aalborg Friskole

Læseplan for matematik på Aalborg Friskole Læseplan for matematik på Aalborg Friskole LÆSEPLAN FOR MATEMATIK PÅ AALBORG FRISKOLE 1 1. FORLØB 1.-3. KLASSETRIN 2 ARBEJDET MED TAL OG ALGEBRA 2 ARBEJDET MED GEOMETRI 2 MATEMATIK I ANVENDELSE 3 KOMMUNIKATION

Læs mere

Matematik B stx, maj 2010

Matematik B stx, maj 2010 Bilag 36 Matematik B stx, maj 2010 1. Identitet og formål 1.1. Identitet Matematik bygger på abstraktion og logisk tænkning og omfatter en lang række metoder til modellering og problembehandling. Matematik

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen Lærervejledning Træn matematik på computer Materialet består af 31 selvrettende emner til brug i matematikundervisningen i overbygningen. De fleste emner består af 3 sider med stigende sværhedsgrad. I

Læs mere

Dagens program. Velkommen og præsentation.

Dagens program. Velkommen og præsentation. Dagens program Velkommen og præsentation. Evt. udveksling af mailadresser. Forenklede Fælles Mål om geometri og dynamiske programmer. Screencast, hvordan og hvorfor? Opgave om polygoner i GeoGebra, løst

Læs mere

MatematiKan Et matematisk skriveværktøj for hele skoleforløbet

MatematiKan Et matematisk skriveværktøj for hele skoleforløbet MatematiKan Et matematisk skriveværktøj for hele skoleforløbet Tænk, hvis alle elever kunne arbejde med procesorienteret matematik. En arbejdsform, hvor du forsøger at arbejde med matematiske problemstillinger

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

Årsplan for matematik 10. klassetrin. 2012 2013 v. CJU

Årsplan for matematik 10. klassetrin. 2012 2013 v. CJU Årsplan for matematik 10. klassetrin 2012 2013 v. CJU Når dette skoleår er omme, så er det målet, at undervisningen har bidraget til, at formålet for faget er opfyldt: Formålet med undervisningen er, at

Læs mere

Konkrete forslag til hvordan der arbejdes med IT og digitale kompetencer i alle fag.

Konkrete forslag til hvordan der arbejdes med IT og digitale kompetencer i alle fag. Konkrete forslag til hvordan der arbejdes med IT og digitale kompetencer i alle fag. Arbejdsgruppen har valgt at sætte fokus på de nedenstående tre områder, der både har en naturlig sammenhæng i skolens

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 10/11 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Teknologi i matematik

Teknologi i matematik www.navimat.dk Teknologi i matematik Baggrunden for at beskæftige sig med teknologianvendelse i folkeskolens matematikundervisning, var at der i disse år tales meget om anvendelse og integration af IT

Læs mere

Årsplan matematik 5.klasse - skoleår 12/13- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 5.klasse - skoleår 12/13- Ida Skov Andersen Med ret til ændringer og justeringer BASIS: Klassen består af 22 elever og der er afsat 4 ugentlige timer + 1 time klassens tid, hvor der skal være tid til det sociale i klassen. Grundbog: Vi vil arbejde ud fra Matematrix 5, arbejds- og grundbog,

Læs mere

Scenariet kan benyttes ud fra flere forskellige fokusområder. I udarbejdelsen af scenariet har forfatterne særligt haft følgende mål i tankerne:

Scenariet kan benyttes ud fra flere forskellige fokusområder. I udarbejdelsen af scenariet har forfatterne særligt haft følgende mål i tankerne: Lærervejledningen giver supplerende oplysninger og forslag til scenariet. En generel lærervejledning fortæller om de gennemgående træk ved alle scenarier samt om intentionerne i Matematikkens Univers.

Læs mere

Repetition og eksamensforberedelse.

Repetition og eksamensforberedelse. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) maj-juni 2014 skoleår 13/14 Herning HF og VUC Hf Matematik C

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

It i folkeskolens matematikundervisning Inge B. Larsen Danmarks Pædagogiske Universitet ibl@dpu.dk

It i folkeskolens matematikundervisning Inge B. Larsen Danmarks Pædagogiske Universitet ibl@dpu.dk It i folkeskolens matematikundervisning Inge B. Larsen Danmarks Pædagogiske Universitet ibl@dpu.dk Forum for Matematikkens Didaktik Nyhedsbrevet 6. årgang Nummer 2 April 2002 I det følgende er der ved

Læs mere

Lærervejledning. - til computerprogrammet Google Sketchup og Mathcad

Lærervejledning. - til computerprogrammet Google Sketchup og Mathcad Lærervejledning - til computerprogrammet Google Sketchup og Mathcad Klassetrin/niveau: 4.-6. klasse/ mellemtrinet. Opgaverne kan dog med fordel anvendes i indskolingen og udskolingen. Introduktion: Google

Læs mere

Ideer til matematik-aktiviteter i yngstetrinet

Ideer til matematik-aktiviteter i yngstetrinet Ideer til matematik-aktiviteter i yngstetrinet Følgende ideer er ment som praktiske og konkrete ting, man kan bruge i matematik-undervisningen i de yngste klasser. Nogle af aktiviteterne kan bruges til

Læs mere

matematik Demo excel trin 1 preben bernitt bernitt-matematik.dk 1 excel 1 2007 by bernitt-matematik.dk

matematik Demo excel trin 1 preben bernitt bernitt-matematik.dk 1 excel 1 2007 by bernitt-matematik.dk matematik excel trin 1 preben bernitt bernitt-matematik.dk 1 excel 1 2007 by bernitt-matematik.dk matematik excel 1 1. udgave som E-bog 2007 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

Oversigt over gennemførte undervisningsforløb

Oversigt over gennemførte undervisningsforløb Undervisningsbeskrivelse Termin Maj/juni 2015 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer(e) Hold stx Matematik B Janne Skjøth Winde 2.s mab Oversigt over gennemførte undervisningsforløb

Læs mere

Introduktion til IBSE-didaktikken

Introduktion til IBSE-didaktikken Introduktion til IBSE-didaktikken Martin Krabbe Sillasen, Læreruddannelsen i Silkeborg, VIA UC IBSE-didaktikken tager afsæt i den opfattelse, at eleverne skal forstå, hvad det er de lærer, og ikke bare

Læs mere

Lærervejledning Matematik 1-2-3 på Smartboard

Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning til Matematik 1-2-3 på Smartboard Materialet består af 33 færdige undervisningsforløb til brug i matematikundervisningen i overbygningen. Undervisningsforløbene

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

It i Fælles mål 2009- Matematik

It i Fælles mål 2009- Matematik It i Fælles mål 2009- Matematik Markeringer af hvor it er nævnt. Markeringen er ikke udtømmende og endelig. Flemming Holt, PITT Aalborg Kommune Fælles Mål 2009 - Matematik Faghæfte 12 Formål for faget

Læs mere

5. KLASSE UNDERVISNINGSPLAN MATEMATIK

5. KLASSE UNDERVISNINGSPLAN MATEMATIK Lærer: SS Forord til faget i klassen Vi vil i matematik arbejde differentieret i hovedemnerne geometri, statistik og sandsynlighed samt tal og algebra. Vi vil i 5. kl. dagligt arbejde med matematisk kommunikation

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Mobiltelefoner og matematik

Mobiltelefoner og matematik Mobiltelefoner og matematik Forord og lærervejledning Mobiltelefonen er blevet et meget vigtigt kommunikationsredskab i de sidste år. Mange af skolens elever har i dag en mobiltelefon, som de ofte bruger.

Læs mere

FRISKOLEN I STARREKLINTE. Starreklinte, august 2011 UNDERVISNING. faget MATEMATIK

FRISKOLEN I STARREKLINTE. Starreklinte, august 2011 UNDERVISNING. faget MATEMATIK FRISKOLEN I STARREKLINTE Starreklinte, august 2011 UNDERVISNING i faget MATEMATIK Indholdsfortegnelse: Matematik 1. Generelt for faget matematik..... 3 2. Formål for faget matematik... 4 3. Slutmål.....

Læs mere

Taldata 1. Chancer gennem eksperimenter

Taldata 1. Chancer gennem eksperimenter Taldata 1. Chancer gennem eksperimenter Indhold 1. Kast med to terninger 2. Et pindediagram 3. Sumtabel 4. Median og kvartiler 5. Et trappediagram 6. Gennemsnit 7. En statistik 8. Anvendelse af edb 9.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Der skal være en hensigt med teksten - om tilrettelæggelse og evaluering af elevers skriveproces

Der skal være en hensigt med teksten - om tilrettelæggelse og evaluering af elevers skriveproces Der skal være en hensigt med teksten - om tilrettelæggelse og evaluering af elevers skriveproces Af Bodil Nielsen, Lektor, ph.d., UCC Det er vigtigt at kunne skrive, så man bliver forstået også af læsere,

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

Undervisningsbeskrivelse for matematik C

Undervisningsbeskrivelse for matematik C Termin Termin hvor undervisnings afsluttes: maj-juni skoleåret 12/13 Institution Thisted Gymnasium og HF-kursus Uddannelse STX Fag og niveau Matematik C Lære Mads Lundbak Severinsen Hold 1.d Oversigt over

Læs mere

Mundtlighed i matematikundervisningen

Mundtlighed i matematikundervisningen Mundtlighed i matematikundervisningen 1 Mundtlighed Annette Lilholt Side 2 Udsagn! Det er nemt at give karakter i færdighedsregning. Mine elever får generelt højere standpunktskarakter i færdighedsregning

Læs mere

Årsplan matematik 6.klasse - skoleår 13/14- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 6.klasse - skoleår 13/14- Ida Skov Andersen Med ret til ændringer og justeringer BASIS: Klassen består af 22 elever og der er afsat 5 ugentlige timer til faget. Grundbog: Vi vil arbejde ud fra Matematrix 6, arbejds- og grundbog, tilhørende kopisider + CD-rom, REMA og andre relevante

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Ann Risvang

Læs mere

10 Skitur til Østrig. Faglige mål. Side til side-vejledning. Budget og opsparing. Klubfest. Opsparing til skituren. Penge. Budget og opsparing

10 Skitur til Østrig. Faglige mål. Side til side-vejledning. Budget og opsparing. Klubfest. Opsparing til skituren. Penge. Budget og opsparing 10 Skitur til Østrig Faglige mål Kapitlet Skitur til Østrig tager udgangspunkt i følgende faglige mål: Budget og opsparing: kunne udarbejde budget og regnskab, kende forskel på de to begreber samt vide

Læs mere

Specialhøjskolen 2009-10

Specialhøjskolen 2009-10 Specialhøjskolen 2009-10 Roskilde - skolen for dig der er noget særligt! Vi tilbyder specialundervisning indenfor: Dansk Matematik Engelsk IT Samfundsfag Velkommen Kurser Introforløb Velkommen Den indledende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Afsluttende: Maj-juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Favrskov Gymnasium Stx Matematik

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse. Fag:matematik Hold:18 Lærer:ym Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 33-37 Hovedvægten er elevernes forståelse for matematiske begreber.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Vestegnens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Jack

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 10/11 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2014 Institution Vestegnen HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe MatC Gert Friis Nielsen

Læs mere