Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger"

Transkript

1 Vaansanalyse (ANOVA) Repetton, ANOVA Tjek af model antagelse Konfdensntevalle fo mddelvædene Tukey s test fo pavse sammenlgnnge

2 ANOVA - defnton ANOVA (ANalyss Of VAance), også kaldet vaansanalyse e en statstsk metode tl at bestemme, om de e foskel på mddelvædene flee (end to) populatone. Gunden tl at det hedde vaansanalyse, e at man analysee foskellge vaanse fo at bestemme om, de e foskel på mddelvædene. SÅ USK - vaansanalyse faktsk handle om at fnde foskelle mellem mddelvæde og det gø man ved at analysee vaansene! ypotesene e gvet som 3 Ikke alle mddelvæde e ens Smpel stkpøve fa hve af de populatone. Stkpøvestøelsen e gvet som n n +n +n 3 + +n

3 Antagelse fo at buge ANOVA V antage uafhængge stkpøve fa hve af de populatone V antage, at de populatone e nomalfodelte, med mddelvæde som e ens elle foskellge, men med ens vaanse, σ. σ 3 Populaton Populaton Populaton 3

4 Ideen ANOVA Total vaaton vaatonen ndenfo guppene + vaatonen mellem guppene Vaatonen ndenfo guppene Vaatonen af obsevatonene hve guppe omkng guppens gennemsnt (dvs. vaansen en guppe, som v jo ha antaget e ens fo alle guppene!) Vaatonen mellem guppene Vaatonen af guppenes gennemsnt omkng det totale gennemsnt vs vaatonen ndenfo guppene e llle fohold tl vaatonen mellem guppene, så e mddelvædene de foskellge guppe kke ens.

5 Sum of Squaes SST Sum of Squaes fo Teatment SSTR n ( ) n t ( n SSE Sum of Squaes fo Eo SSE ) s n j + ( n ( j ) s ) + L+ ( n e j ) s SST SST Sum of Squaes total n j ( j ) n j Tot j

6 The Sum-of-Squaes pncp Total vaaton Vaaton mellem guppe + Vaaton ndenfo guppe SSTR SSE SST SST SSTR + SSE n ( ) + n j ( j )

7 Mean squaes Lad MSTR SSTR - og MSE SSE n - Man kan vse, at E(MSE) σ n( ) E(MSTR) σ + - Nå e sand, e L og demed e MSE og MSTR to centale estmatoe af σ. vs kke e sand, vl MSTR væe støe end MSE på gund af det eksta postve led E(MSTR).

8 ANOVA MSTR Unde følge en F - fodelng, F( -,n - ). MSE MSTR Unde vl væe tæt på og nå kke e sand, MSE vl den væe støe end. Defo et "høje - halet" test. FDstbutonwth3and5Degeesof Feedom f(f) α F (3,5).79 ANOVA tabel Vaatons klde Sum of Squaes Fhedsgade Mean Squae F Rato Behandlng SSTR ( - ) MSTR Fejl SSE (n - ) MSE Total SST (n -) MST MSTR/MSE

9 SÅ alt alt L Ikke alle 'ene e ens.7.6 Sgnfkansnveau Teststøelse Ktsk væd Beslutnngsegel α MSTR F MSE F ( -,n - ) α Fokast F > F α ( hvs -,n - ) f(f) Fokastelses omåde F α (-,n-)

10 Eksemplet med fly Pototype A Pototype B Pototype C Descptves y 3 Total 95% Confdence Inteval fo Mean N Mean Std. Devaton Std. Eo Lowe Bound Uppe Bound Mnmum Mamum 447, 4,99 33, 433,89 448, , 6,77 33, ,6 436, , 7,995, ,5 486, ,33 47,343 6,9 4,3 43,

11 Eksemplet med fly ANOVA y Between Goups Wthn Goups Total Sum of Squaes df Mean Squae F Sg. 386,7 9563,333,78, 4846, 7 9, 69586,7 9 Så fokastes da.78 > 3.35 de e altså foskel på mddelvædene. Næste gang vodan e de foskellge?

12 Tjek af modelantagelse - nomalfodelng Nomalfodelng Tegn hstogamme ove data ndenfo hve guppe skal lgne en nomalfodelng.

13 Tjek af modelantagelse ens vaans Test fo ens vaans de foskellge populatone. SPSS buge en test støelse, de hedde Levene s test. I skal bae kunne vudee, om de e ens vaans elle ej. vs p-væden e mnde end.5, e vaansene foskellge, og ANOVA kan altså kke buges. I fly-eksemplet e p-væden.67 og demed e vaansene ens. y Test of omogenety of Vaances Levene Statstc df df Sg.,49 7,67

14 Vdee analyse Data ANOVA Fokast kke Stop Fokast Stkøve mddelvædene e centale estmatoe af populatons mddelvædene. MSE e en cental estmato af den fælles populatons vaans. ANOVA Dagam Vdee Analyse Konfdens ntevalle fo Populatons Mddelvæde Tukey s Pavse Sammenlgnngs Test

15 Konfdens ntevalle fo populatons mddelvæde Et (-α)% konfdensnteval fo, mddelvæden populaton hvo t α e α/ faktlen ± t α MSE n t - fodelngen med (n - ) fhedsgade. vs konfdens ntevallene ovelappe, e mddelvædene ens og hvs de kke ovelappe, e de foskellge. Buges dog kke pakss som en test, da det kke e et smultant test og de defo e pobleme med hvlket sgnfkansnveau man teste på.

16 Konfdensntevalle fo fly eksemplet Descptves y 3 Total 95% Confdence Inteval fo Mean N Mean Std. Devaton Std. Eo Lowe Bound Uppe Bound Mnmum Mamum 447, 4,99 33, 433,89 448, , 6,77 33, ,6 436, , 7,995, ,5 486, ,33 47,343 6,9 4,3 43, MSE9, n, og t.5 (7).5 95% konfdens nteval fo de te foskellge mddelvæde Type A 447 ±.5 9 [ 433,89; 448,] Type B 43 ±.5 9 [ 453,6; 436,38] Type C 435 ±.5 9 [ 483,5; 486,5]

17 Tukey s test fo pavse sammenlgnnge En måde at sammenlgne populatons mddelvæde på smultant, på et gvet sgnfkansnveau, e Tukey s test. mddelvæde at sammenlgne. populatons pa af )!!(! De e Fo flytype, kan v sammenlgne A - B, A - C og B C hvs Fo eksempel,

18 Tukey s test fo pavse sammenlgnnge Test støelsen e den absolutte dffeence V ha at T hvo q α j q α (, n ) MSE n (, n ) e den "studentseede ange"fodelng med fhedsgade og n -, på sgnfkansnveau α.(append c Tabel 6) j Ktske væde e, nå den absolutte dffeence blve fo sto, så et høje - halet test. det e vs de kke e lge mange obsevatone hve guppe, vælges n mndste af de foskellge stkpøve støelse. tl den

19 Eksemplet med fly ANOVA y Between Goups Wthn Goups Total Sum of Squaes df Mean Squae F Sg. 386,7 9563,333,78, 4846, 7 9, 69586,7 9 Så fokastes da.78 > 3.35 de e altså foskel på mddelvædene. Men hvodan e de foskellge?

20 Eksempel - flytype ypotesene A B A B A A C C B C B C vs v teste på sgnfkansnveau α q α (, n ) q.5 (3,7) 3.5.5, så e MSE 9 og n T q α (, n ) n fo,,3 MSE

21 Eksempel - flytype B A B A B A B A > 7. T så, 6 fokastes Da T y 447, 43, 435, 3 457,33 3 Total N Mean S C B C B C B C B C A C A C A C A < > så kke, 6 fokastes Da T så, 6 fokastes 7 Da 7. T

22 SPSS

23 SPSS

24 SPSS

25 Resultate fa SPSS Descptves med konfdens ntevalle Descptves Km 3 Total 95% Confdence Inteval fo Mean N Mean Std. Devaton Std. Eo Lowe Bound Uppe Bound Mnmum Mamum 447, 4,99 33, 433,89 448, , 6,77 33, ,6 436, , 7,995, ,5 486, ,33 47,343 6,9 4,3 43, Test fo ens vaans Test of omogenety of Vaances Km Levene Statstc df df Sg.,49 7,67 Anova tabel Km Between Goups Wthn Goups Total ANOVA Sum of Squaes df Mean Squae F Sg. 386,7 9563,333,78, 4846, 7 9, 69586,7 9

26 Resultate fa SPSS Tukey s test Dependent Vaable Km Tukey SD Multple Compasons (I) Pototype 3 (J) Pototype 3 3 *. The mean dffeence s sgnfcant at the.5 level. Mean Dffeence 95% Confdence Inteval (I-J) Std. Eo Sg. Lowe Bound Uppe Bound 77,* 4,9, 7,63 83,37 7,* 4,9, 65,63 378,37-77,* 4,9, -83,37-7,63 95, 4,9,87 -,37,37-7,* 4,9, -378,37-65,63-95, 4,9,87 -,37,37 Tukey s test, hvlke guppe e foskellge Tukey SD a Pototype 3 Sg. Km Subset fo alpha.5 N 435, 43, 447,,87, Means fo goups n homogeneous subsets ae dsplayed. a. Uses amonc Mean Sample Sze,.

27 Opgave Kaptel 9 3, 8, 9, 6 Opgave fa skftlg eksamen 3 Eksamensopgave Opgave og facts fndes på hjemmesden fo Opgave og facts fndes på hjemmesden fo denne kususgang

Variansanalyse (ANOVA) Repetition, sammenligning af to grupper Variansanalyse: Sammenligning af flere end to middelværdier.

Variansanalyse (ANOVA) Repetition, sammenligning af to grupper Variansanalyse: Sammenligning af flere end to middelværdier. Vaaaalye (ANOVA) Reetto, ammelgg af to gue Vaaaalye Sammelgg af flee ed to mddelvæde. Sammelgg af to mddelvæde kedte vaae og toe tkøve elle oulatoe omalfodelte Hyotee H H µ µ ( µ µ ) µ µ ( µ µ ) Tettøele

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Generel Lneær Model Y afhængg skala varabel 1,, k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet =( 1,, k

Læs mere

Afdeling for Virksomhedsledelse. Uge 47

Afdeling for Virksomhedsledelse. Uge 47 B4 - egnsab og Fnanseng -. del Efteå 005 Esben Kolnd Laustu (mal@ezben.d Afdelng fo Vsomhedsledelse Uge 47 Fnancal Maets and Cooate Stategy af Ma Gnblatt og Shedan Ttman (G&T e en sædeles god læebog, som

Læs mere

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio Logstsk regresson Logstsk regresson Odds/Odds rato Probt model Fortolknng udfra latent varabel En varabel Y parameter p P( Y 1 Bernoull/bnomal fordelngen 1 1 p. er Bernoull- fordelt med sandsynlgheds hvs

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Den smple regressonsmodel 9. februar 007 Regressonsmodel med en forklarende varabel (W..3-5) Varansanalyse og goodness of ft Enheder og funktonel form af varabler modellen

Læs mere

Statistik Lektion 15 Mere Lineær Regression. Modelkontrol Prædiktion Multipel Lineære Regression

Statistik Lektion 15 Mere Lineær Regression. Modelkontrol Prædiktion Multipel Lineære Regression Statstk Lekton 15 Mere Lneær Regresson Modelkontrol Prædkton Multpel Lneære Regresson Smpel Lneær Regresson - repetton Spørgsmål: Afhænger y lneært af x?. Model: y = β + β x + ε ε d N(0, σ 0 1 2 ) Systematsk

Læs mere

Arealet af en sfærisk trekant m.m.

Arealet af en sfærisk trekant m.m. ealet af en sfæisk tekant m.m. Tillæg til side 103 104 i Matematik højniveau 1 fa TRI, af Eik Vestegaad. Sfæisk tokant Givet en kugle. En plan, de passee igennem kuglens centum, skæe kuglen i en såkaldt

Læs mere

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag Afdelng for Epdemolog Afdelng for Bostatstk 6. SEESTER Epdemolog og Bostatstk Opgaver tl 3. uge, fredag Data tl denne opgave stammer fra. Bland: An Introducton to edcal Statstcs (Exercse 11E ). V har hentet

Læs mere

Bilag 6: Økonometriske

Bilag 6: Økonometriske Marts 2015 Blag 6: Økonometrske analyser af energselskabernes omkostnnger tl energsparendsatsen Energstyrelsen Indholdsfortegnelse 1. Paneldataanalyse 3 Specfkaton af anvendte panel regressonsmodeller

Læs mere

Løsninger til kapitel 11. Opgave 11.1 a) I Excel-udskriften ses bl.a. p-værdien for testen med nulhypotesen.

Løsninger til kapitel 11. Opgave 11.1 a) I Excel-udskriften ses bl.a. p-værdien for testen med nulhypotesen. Løsninge til kapitel Opgave. a) I Excel-udskiften ses bl.a. p-vædien fo testen med nulhypotesen. Det ses, at denne p-vædi e på, og da dette e minde end signifikansniveauet på %, så konkludes det, at gennemsnittene

Læs mere

Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test

Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test Opsamlng Smpel/Multpel Lneær Regresson Logstsk Regresson Ikke-parametrske Metoder Ch--anden Test Opbygnng af statstsk model Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen

Læs mere

Lineær regressionsanalyse8

Lineær regressionsanalyse8 Lneær regressonsanalyse8 336 8. Lneær regressonsanalyse Lneær regressonsanalyse Fra kaptel 4 Mat C-bogen ved v, at man kan ndtegne en række punkter et koordnatsystem, for at afgøre, hvor tæt på en ret

Læs mere

To-sidet variansanalyse

To-sidet variansanalyse Program 1. To-sidet variansanalyse 2. Hierarkisk princip 3. Tre (og flere) sidet variansanalyse 4. Variansanalyse med blocking 5. Flersidet variansanalyse med tilfældige faktorer 6. En oversigtsslide til

Læs mere

Statistik II Lektion 4 Generelle Lineære Modeller. Simpel Lineær Regression Multipel Lineær Regression Flersidet Variansanalyse (ANOVA)

Statistik II Lektion 4 Generelle Lineære Modeller. Simpel Lineær Regression Multipel Lineær Regression Flersidet Variansanalyse (ANOVA) Statstk II Lekton 4 Generelle Lneære Modeller Smpel Lneær Regresson Multpel Lneær Regresson Flersdet Varansanalyse (ANOVA) Logstsk regresson Y afhængg bnær varabel X 1,,X k forklarende varable, skala eller

Læs mere

Statikstik II 4. Lektion. Generelle Lineære Modeller

Statikstik II 4. Lektion. Generelle Lineære Modeller Statkstk II 4. Lekton Generelle Lneære Modeller Generel Lneær Model Y afhængg skala varabel X 1,,X k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet X + k = E( Y X ) = α + β x + + β

Læs mere

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)?

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)? Dagens program Økonometr Heteroskedastctet 6. oktober 004 Hovedemnet for denne forelæsnng er heteroskedastctet (kap. 8.-8.3) Lneære sandsynlghedsmodel (kap 7.5) Konsekvenser af heteroskedastctet Hvordan

Læs mere

Ensidet variansanalyse

Ensidet variansanalyse Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk StatBK (Uge 47, mandag) Ensidet ANOVA 1 / 18 Program I dag: Sammenligning af middelværdier Sammenligning af spredninger

Læs mere

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie Program Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk I dag: Sammenligning af middelværdier Sammenligning af spredninger Parvise sammenligninger To eksempler:

Læs mere

NOTAT:Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2014

NOTAT:Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2014 Beskæftgelse, Socal og Økonom Økonom og Ejendomme Sagsnr. 271218 Brevd. 2118731 Ref. KASH Dr. tlf. 4631 3066 katrnesh@rosklde.dk NOTAT:Benchmarkng: Rosklde Kommunes servceudgfter regnskab 2014 17. august

Læs mere

Simpel Lineær Regression - repetition

Simpel Lineær Regression - repetition Smpel Leær Regresso - repetto Spørgsmål: Afhæger leært af?. Model: β + β + ε ε d N(0, σ 0 ) Sstematsk kompoet + Stokastsk kompoet Estmato - repetto Vha. Mdste Kvadraters Metode fder v regressosle hvor

Læs mere

2. Sandsynlighedsregning

2. Sandsynlighedsregning 2. Sandsynlghedsregnng 2.1. Krav tl sandsynlgheder (Sandsynlghedens aksomer) Hvs A og B er hændelser, er en sandsynlghed, hvs: 1. 0 ( A) 1 n 2. ( A ) 1 1 3. ( A B) ( A) + ( B), hvs A og B ngen udfald har

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 1 Ensidet variansanalyse Bartlett s test Tukey s test PROC

Læs mere

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelsøgnng Modelkontrol Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E[ y] = α...

Læs mere

Scorer FCK "for mange" mål i det sidste kvarter?

Scorer FCK for mange mål i det sidste kvarter? Uge 7 I Teoretsk Statstk, 9. aprl 2004. Hvor er v? Hvor var v: opstllg af statstske modeller Hvor skal v he: tro om estmato og test 2. Eksempel: FCK Estmato (tutvt) Test Maksmum lkelhood estmato Scorer

Læs mere

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelkontrol Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E y] = α... [ 3 3 4 4

Læs mere

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen Rentesegning: Lektion A1 Foentningsfakto, Diskonteingsfakto, og Pete Ove Chistensen Foå 2012 1 / 49 Oveodnede spøgsmål i Rentesegning Hvoledes kan betalinge sammenlignes, nå betalingene e tidsmæssigt adskilte?

Læs mere

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller Statkstk II 3. Lekton Multpel Logstsk regresson Generelle Lneære Modeller Defntoner: Repetton Sandsynlghed for at Ja tl at være en god læser gvet at man er en dreng skrves: P( God læser Ja Køn Dreng) Sandsynlghed

Læs mere

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen Introduktion til Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Appendiks B: Korrosion og restlevetid for trådbindere

Appendiks B: Korrosion og restlevetid for trådbindere Appendiks B: Koosion og esleveid fo ådbindee I de følgende omales koosionspocessene fo ådbindee og hvodan man beegne esleveiden fo en koodee ådbinde. Tådbindee ha i idens løb væe udfø af: messing (en legeing

Læs mere

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen,

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen, ekommandation ovespændingsafledee til højspændingsnet Udabejdet af: Enst Boye Nielsen & Pete Mathiasen, DESITEK A/S Denne publikation e en ekommandation fo valg af ovespændingsafledee til højspændingsnet

Læs mere

Marco Goli, Ph.D, & Shahamak Rezaei. Den Sociale Højskole København & Roskilde Universitetscenter

Marco Goli, Ph.D, & Shahamak Rezaei. Den Sociale Højskole København & Roskilde Universitetscenter Marco Gol, Ph.D, & Shahamak Rezae Den Socale Højskole København & Rosklde Unverstetscenter Folkelg opnon Folkelg opnon Kaptel 1: tdernes morgen Folkelg opnon Folkelg opnon Kaptel 2 : Den ratonelle ndvandrer

Læs mere

Antag X 1,..., X n stokastiske variable med fælles middelværdi µ og varians σ 2. Hvis µ er ukendt estimeres σ 2 ved 1/36.

Antag X 1,..., X n stokastiske variable med fælles middelværdi µ og varians σ 2. Hvis µ er ukendt estimeres σ 2 ved 1/36. Estmaton af varans/sprednng Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - rw@math.aau.dk Insttut for Matematske Fag Aalborg Unverstet Antag X,..., X n stokastske varable med fælles

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Regional Udvikling, Miljø og Råstoffer. Jordforurening - Offentlig høring Forslag til nye forureningsundersøgelser og oprensninger 2016

Regional Udvikling, Miljø og Råstoffer. Jordforurening - Offentlig høring Forslag til nye forureningsundersøgelser og oprensninger 2016 Regional Udvikling, Miljø og Råstoffe Jodfouening - Offentlig høing Foslag til nye foueningsundesøgelse og opensninge 2016 Decembe 2015 Food En jodfouening kan skade voes fælles gundvand, voes sundhed

Læs mere

NOTAT: Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2013

NOTAT: Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2013 Beskæftgelse, Socal og Økonom Økonom og Ejendomme Sagsnr. 260912 Brevd. 1957603 Ref. LAOL Dr. tlf. 4631 3152 lasseo@rosklde.dk NOTAT: Benchmarkng: Rosklde Kommunes servceudgfter regnskab 2013 19. august

Læs mere

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Trivselsundersøgelse 2010

Trivselsundersøgelse 2010 Tivselsundesøgelse, byggeteknike, kot-og landmålingseknike, psteknolog og bygni (Intenatal) Pinsesse Chalottes Gade 8 København N T: Indhold Indledning... Metode... Tivselsanalyse fo bygni... Styke og

Læs mere

Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen

Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen HTX Næstved Matematik A 8 2 Indholdsfotegnelse Indholdsfotegnelse... 2 Indledning... 3 Poblemstilling... 4 Teoi... 5 Vektoe i planet... 5 Vektobestemmelse... 5 Vinkel mellem to vektoe... 6 Vektokoodinate...

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen Vægtet model Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervsnng/lf Gvet n uafhængge målnger x,, x n af n størrelser µ,, µ n Målnger

Læs mere

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder Regressonsanalyse Epdemolog og Bostatstk Mogens Erlandsen, Insttut for Bostatstk Uge, torsdag (forelæsnng) 1.Smpel lneær regresson (Kaptel 11) systolsk blodtryk og alder. Multpel lneær regresson (Kaptel

Læs mere

Tabsberegninger i Elsam-sagen

Tabsberegninger i Elsam-sagen Tabsberegnnger Elsam-sagen Resumé: Dette notat beskrver, hvordan beregnngen af tab foregår. Første del beskrver spot tabene, mens anden del omhandler de afledte fnanselle tab. Indhold Generelt Tab spot

Læs mere

Fagblok 4b: Regnskab og finansiering 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 til 31.01 2004 kl. 14.00

Fagblok 4b: Regnskab og finansiering 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 til 31.01 2004 kl. 14.00 Fagblok 4b: Regnskab og fnanserng 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 tl 31.01 2004 kl. 14.00 Dette opgavesæt ndeholder følgende: Opgave 1 (vægt 50%) p. 2-4 Opgave 2 (vægt 25%) samt opgave 3 (vægt

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi Faskalkulatoe Sde /9 Stee Toft Jøgese Faskalkulatoe avaceet etesegg matematske modelle økoom Idholdsfotegelse: Kaptel : Rete Retebegebet Omkostge Retefomle Effektv ete Kotuet foetg Tdsdagam Flytg af kaptal

Læs mere

Atomare egentilstande

Atomare egentilstande Kvantemekank 4 Sde af 7 Atomae egentlstande Unde antagelsen om, at en atomkene e hvle fohold tl atomets massemdtpunkt, e Hamltonopeatoen fo et helumatom gvet ved ˆ e e e H = + + +, = + +, (4.) me me 0

Læs mere

PÆDAGOGISK KVALITETSEVALUERING

PÆDAGOGISK KVALITETSEVALUERING PÆDAGOGISK KVALITETSEVALUERING - E N M E T O D E, D E R V I R K E R I P R A K S I S HVAD ER PÆDAGOGISK KVALITETSEVALUERING? Pædagogisk Kvalitetsevalueing gø det attaktivt fo ledelse og pesonale at gå pædagogikken

Læs mere

Repetition. Forårets højdepunkter

Repetition. Forårets højdepunkter Repetto Forårets højdepukter Forårets højdepukter Smpel Leær Regresso Smpel leær regresso: Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures (X ad Sales (Y Et scatterplot

Læs mere

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen Thomas Jensen og Moten Ovegåd Nielsen Annuitetslån I bogens del 2 kan du læse om Pocent og ente (s. 41-66). Vi vil i mateialet he gå lidt videe til mee kompliceede entebeegninge i fobindelse med annuitetslån.

Læs mere

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Program 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Ensidet variansanalyse: analyse af grupperede data Nedbrydningsrate for tre typer af opløsningsmidler (opgave 13.8 side 523) Sorption

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Inertimoment for arealer

Inertimoment for arealer 13-08-006 Søren Rs nertmoment nertmoment for arealer Generelt Defntonen på nertmoment kan beskrves som Hvor trægt det er at få et legeme tl at rotere eller Hvor stort et moment der skal tlføres et legeme

Læs mere

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1 Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for biokemikere Inge Henningsen Michael Sørensen Oktober 2003 Opgaver til ZAR II Opgave 1 Et datasæt består af 20 observationer.

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Morten Frydenberg Bostatstk verson dato: -4- Bostatstk uge mandag Morten Frydenberg, Afdelng for Bostatstk Resume: Hvad har v været gennem ndtl nu Lneær (normal) regresson en kontnuert forklarende varabel

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Morten Frydenberg Bostatstk verson dato: -03-0 Effektmodfkaton Hvad er det - Kvantfcerng - Test Bostatstk uge 7 mandag Morten Frydenberg, Afdelng for Bostatstk Vægtede gennemsnt - Formler for standard

Læs mere

Forløb om annuitetslån

Forløb om annuitetslån Matema10k C-niveau, Fdenlund Side 1 af 7 Foløb om annuitetslån Dette mateiale fokusee på den tpe lån de betegnes annuitetslån. Emnet kan buges som en del af det suppleende stof, og mateialet kan anvendes

Læs mere

Forberedelse til den obligatoriske selvvalgte opgave

Forberedelse til den obligatoriske selvvalgte opgave MnFremtd tl OSO 10. klasse Forberedelse tl den oblgatorske selvvalgte opgave Emnet for dn oblgatorske selvvalgte opgave (OSO) skal tage udgangspunkt dn uddannelsesplan og dt valg af ungdomsuddannelse.

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation Statstk Lekto 4 Smpel Leær Regresso Smpel leær regresso Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures ( ad Sales ( Et scatterplot vser par (, af observatoer.

Læs mere

Generering af true ortofoto

Generering af true ortofoto fopojekt Geneeng f tue otofoto -en foundesøgelse Udbejdet f Moten Ødegd Nelsen Infomtk & Mtemtsk Modelleng Dnmks Teknske Unvestet fopojekt Geneeng f tue otofoto -en foundesøgelse Moten Ødegd Nelsen Kgs.

Læs mere

Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1

Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1 Økonometr 1 Avancerede Paneldata Metoder I 24.november 2006 F18: Avancerede Paneldata Metoder I 1 Paneldatametoder Sdste gang: Paneldata begreber og to-perode tlfældet (kap 13.3-4) Uobserveret effekt modellen:

Læs mere

Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol

Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol Udvklng af en metode tl effektvurderng af Mljøstyrelsens Kemkalenspektons tlsyn og kontrol Orenterng fra Mljøstyrelsen Nr. 10 2010 Indhold 1 FORORD 5 2 EXECUTIVE SUMMARY 7 3 INDLEDNING 11 3.1 AFGRÆNSNING

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvanttatve metoder 2 Instrumentvarabel estmaton 14. maj 2007 KM2: F25 1 y = cy ( c 0) Plan for resten af gennemgangen F25: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 y = cy ( c 0) Plan for resten af gennemgangen Kvanttatve metoder Instrumentvarabel estmaton 4. maj 007 F5: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler En regressor,

Læs mere

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kvanttatve metoder 2 Forår 2007 Oblgatorsk opgave 2 Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Opgavens prmære formål er at lgne formen på tag-hjem delen af eksamensopgaven. Der

Læs mere

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol Økonometr lekton 7 Multpel Lneær Regresson Testbaseret Modelkontrol MLR Model på Matrxform Den multple lneære regressons model kan skrves som X y = Xβ + Hvor og Mndste kvadraters metode gver følgende estmat

Læs mere

Beregning af strukturel arbejdsstyrke

Beregning af strukturel arbejdsstyrke VERION: d. 2.1.215 ofe Andersen og Jesper Lnaa Beregnng af strukturel arbedsstyrke Der er betydelg forskel Fnansmnsterets (FM) og Det Økonomske Råds (DØR) vurderng af det aktuelle output gap. Den væsentlgste

Læs mere

FRIE ABELSKE GRUPPER. Hvis X er delmængde af en abelsk gruppe, har vi idet vi som sædvanligt i en abelsk gruppe bruger additiv notation at:

FRIE ABELSKE GRUPPER. Hvis X er delmængde af en abelsk gruppe, har vi idet vi som sædvanligt i en abelsk gruppe bruger additiv notation at: FRIE ABELSKE GRUPPER. IAN KIMING Hvs X er delmængde af en abelsk gruppe, har v det v som sædvanlgt en abelsk gruppe bruger addtv notaton at: X = {k 1 x 1 +... + k t x t k Z, x X} (jfr. tdlgere sætnng angående

Læs mere

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen Kursus 02402/02323 Introducerende Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Oversigt 1 Intro: Regneeksempel og TV-data fra B&O 2 Model og hypotese Per Bruun Brockhoff DTU Compute, Statistik

Læs mere

Projekt 0.5 Euklids algoritme, primtal og primiske tal

Projekt 0.5 Euklids algoritme, primtal og primiske tal Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige

Læs mere

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber.

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber. - 4 - Kap. : Logaitme-, eksponential- og potensfunktione. Gundlæggende egenskabe... Logaitmefunktione. Definition... Ved en logaitmefunktion fostå vi en funktion f, som opfylde følgende te kav: ) Dm(f)

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Notat. 18. oktober 2011. Social & Arbejdsmarked

Notat. 18. oktober 2011. Social & Arbejdsmarked Notat Fovaltning: Social & Abejdsmaked Dato: J.n.: B.n.: 18. oktobe Udf diget af: mbf Vedłende: Fłtidspension Notatet sendes/sendt til: Abejdsmakedsudvalget Fłtidspension De ha i de seneste v et en tendens

Læs mere

Estimation af CES - forbrugssystemet med og uden dynamik: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts

Estimation af CES - forbrugssystemet med og uden dynamik: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts Danmarks Statstk MODELGRUPPEN Arbejdspapr [udkast] Andreas Østergaard Iversen 140609 Estmaton af CES - forbrugssystemet med og uden dynamk: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts

Læs mere

Konfidensinterval for µ (σ kendt)

Konfidensinterval for µ (σ kendt) Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)

Læs mere

Wor King Papers. Management Working Papers. Højere kapitalkrav løfter krav til indtjening i den finansielle sektor en replik 2013-02

Wor King Papers. Management Working Papers. Højere kapitalkrav løfter krav til indtjening i den finansielle sektor en replik 2013-02 Wo Kng Papes Management Wokng Papes 2013-02 Højee kaptalkav løfte kav tl ndtjenng den fnanselle sekto en eplk Ken L. Bechmann, Andes Gosen and Johannes Raaballe Højee kaptalkav løfte kav tl ndtjenng den

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

Cykelfysik. Om udveksling og kraftoverførsel

Cykelfysik. Om udveksling og kraftoverførsel Cykelfysik 1/7 Cykelfysik Om udvekslig og kaftoveføsel Idhold 2. Kaftoveføsel og abejde...2 3. Abejde ved cykelkøsel...4 4. Regeeksemple fo e acecykel...5 5. Det e hådt at køe op ad bakke...6 6. Simple

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen Vægtet model Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervsnng/lf3 Insttut for Matematske Fag Aalborg Unverstet Gvet n uafhængge

Læs mere

SERVICE BLUEPRINTS KY selvbetjening 2013

SERVICE BLUEPRINTS KY selvbetjening 2013 SERVICE BLUEPRINTS KY selvbetjenng 2013 EFTER Desgn by Research BRUGERREJSE Ada / KONTANTHJÆLP Navn: Ada Alder: 35 år Uddannelse: cand. mag Matchgruppe: 1 Ada er opvokset Danmark med bosnske forældre.

Læs mere

Reeksamen i Statistik for Biokemikere 6. april 2009

Reeksamen i Statistik for Biokemikere 6. april 2009 Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på

Læs mere

PRODUKTIONSEFFEKTEN AF AVL FOR HANLIG FERTILITET I DUROC

PRODUKTIONSEFFEKTEN AF AVL FOR HANLIG FERTILITET I DUROC PRODUKTIONSEFFEKTEN AF AVL FOR HANLIG FERTILITET I DUROC MEDDELELSE NR. 1075 Vrknngsgraden (gennemslaget) tl en produktonsbesætnng for avlsværdtallet for hanlg fertltet Duroc blev fundet tl 1,50, hvlket

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

Wear&Care Brugervejledning. A change for the better

Wear&Care Brugervejledning. A change for the better A change fo the bette Intoduktion Wea&Cae e en smat løsning, de give mulighed fo at følge fugtniveauet i bleen, så den kan skiftes efte behov. Infomationen gå fa en sende på bleen til modtageens smatphone

Læs mere

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser Uge 37 I Teoretsk Statstk, 9.sept. 003. Fordelger kyttet tl N-ford. Gvet: uafhægge observatoer af samme N(µ,σ )-fordelte stokastske varabel. Formelt: X,X,,X uafhægge, alle N(µ,σ )-fordelt. Mddelværd µ

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

Forberedelse INSTALLATION INFORMATION

Forberedelse INSTALLATION INFORMATION Forberedelse 1 Pergo lamnatgulvmateraler leveres med vejlednnger form af llustratoner. Nedenstående tekst gver forklarnger på llustratonerne og er nddelt tre områder: Klargørngs-, monterngs- og rengørngsvejlednnger.

Læs mere

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test)

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test) Kursus 02402/02323 Introducerende Statistik Forelæsning 11: Tovejs variansanalyse, ANOVA Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Stadig ligeløn blandt dimittender

Stadig ligeløn blandt dimittender Stadg lgeløn blandt dmttender Kvnder og mænd får stadg stort set lge meget løn deres første job, vser DJs dmttendstatstk for oktober 2012. Og den gennemsntlge startløn er fortsat på den pæne sde af 31.500

Læs mere

Etiske dilemmaer i fysioterapeutisk praksis

Etiske dilemmaer i fysioterapeutisk praksis side 06 fysioteapeuten n. 06 apil 2008 AF: FYSIOTERAPEUT, PH.D.-STUDERENDE JEANETTE PRÆSTEGAARD j.paestegaad@oncable.dk Foto: GITTE SKOV fafo.fysio.dk Etiske dilemmae i fysioteapeutisk paksis Hvis vi ikke

Læs mere