ITS MP 013. Talsystemer V009. Elevens navn. IT Skolen Boulevarden 19A-C 7100 Vejle Tel.:

Størrelse: px
Starte visningen fra side:

Download "ITS MP 013. Talsystemer V009. Elevens navn. IT Skolen Boulevarden 19A-C 7100 Vejle Tel.:+45 76 42 62 44"

Transkript

1 ITS MP 013 V009 Elevens navn IT Skolen Boulevarden 19A-C 7100 Vejle Tel.:

2 ITS MP 013 Udarbejdet af Søren Haahr, juni 2010 Copyright Enhver mangfoldiggørelse af tekst eller illustrationer er forbudt i henhold til Lov om ophavsret. Forbuddet gælder alle former for mangfoldiggørelse ved trykning, fotografering og elektronisk databehandling.

3 Indholdsfortegnelse Titalssystemet Potenser Totalssystemet Index Ottetalssystemet Sekstentalssystemet Regneregler i andre talsystemer Konverterings tabel Sammenhængen og omregninger mellem totalssystemet og det hexadecimale system Konvertering fra decimalsystemet til andre systemer Metode 1: Del med grundtallet Metode 2: Del med potenser af grundtallet Metode 3: Del med potenser af grundtallet med hjælp af en tabel IP adresser Datatyper Opgaver Øvelse i omsætning decimal- til binærtal Øvelse i omsætning binær- til decimal tal Øvelse i omsætning decimal- til hexadecimaltal Øvelse i omsætning hexadecimal- til decimaltal Øvelse i omsætning hexadecimal- til binærtal Øvelse i omsætning binær- til hexadecimaltal

4 1 Når man arbejder med digitale teknikker, vil man støde på forskellige talsystemer. Her vil vi omtale: Titalssystemet (det decimale systemet) Totalssystemet (det binære system) Ottetalssystemet (det oktale system) Sekstentalssystemet (det hexadecimale system) Alle disse systemer er positionssystemer, hvor tallets position i rækken angiver dens værdi. I modsætning til dette system ses romertal. 1.1 Titalssystemet Systemets opbygning Det talsystem, som vi er vant til at arbejde med, og som vi bruger til at lægge sammen og trække fra med og til at regne vores løn ud efter, kaldes titalssystemet eller det det decimale system. Dette skyldes to ting. For det første består titalssystemet af præcis ti forskellige tal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 For det andet er hvert ciffers placering i et helt tal baseret på potenser af 10. Tusinder Hundreder Tiere Enere Som det ses af eksemplet, er det ikke kun tallet egen værdi, der tæller. Tallets placering spiller også en rolle. Tager vi totallet, betyder det ikke bare to, men angiver antallet af tusinder, nemlig to tusinde. 1.2 Potenser Årstallets enkelte cifres betydning kan også anskueliggøres med titalspotenser: Derfor kan årstallet deles med hver ciffer for sig: 2

5 = = = = Totalssystemet Systemets opbygning Alle computersystemer arbejder med totalssystemet, som også kaldes det binære talsystem. Dette talsystem har kun to forskellige cifre at arbejde med: 0, 1 Et tal i totalssystemet kaldes ofte for en bit. Ordet stammer fra BInary digit. Et tal, som er skrevet i totalssystemet, kan anskueliggøres i totalspotenser: 2 5 = = = = = = Index Når man arbejder med forskellige talsystemer, er det klogt at sætte et index på tallet for at fortælle, hvilket talsystem man arbejder med. På engelsk kaldes talsystemet radix D = Titalssystemet ( ) 2010 O = Ottetalssystemet 1010 B = Totalssystemet A01F0 H = Sekstentalssystemet (Hexadecimaletalssystemet) (A01F0 16 ) Hexadecimale tal kan også være mærket med begyndelses tegnene 0x i stedet½ for et index, som f. eks: 3

6 0xBB = BB H Et eksempel fra totalssystemet til decimalsystemet: B = 50 D = = = = = = D Til totalssystemet finder der ganske specielle regneregler som kaldes Booles algebra, som udnytter at der kun er to mulige tilstande: 1 og 0. Totalssystemet er vanskeligt for mennesker at anvende, der er for mange ettere og nuller til at vi kan holde styr på dem ved større tal, derfor indførte man ottetalssystemet, og senere sekstentalssystemet. 1.5 Ottetalssystemet Systemets opbygning Et tal, som er skrevet i ottetalssystemet, også kaldet oktalsystemet, kan beskrives med ottetalspotenser. Dette talsystem har kun otte forskellige cifre at arbejde med: 0, 1, 2, 3, 4, 5, 6, = = = = = O Ottetalssystemet blev ofte tidligere anvendt i simple styringsprogrammer, men anvendes i dag ikke ret meget. 4

7 1.6 Sekstentalssystemet Systemets opbygning Sekstentalssystemet, eller det hexadecimale system, forkortet til Hex er i dag enerådede i computersystemer. Dette talsystem har seksten forskellige cifre at arbejde med. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F Da vi kun har ti forskellige talsymboler, har det været nødvendigt at tage nogle bogstaver til hjælp = = = = = 1 7 A 3 F 9 H Fra sekstentalssystemet til decimalsystemet: 7A3F9 H = D 7 A 3 F 9 H 9 1= = = = = D 1.7 Regneregler i andre talsystemer De almindelige regneregler for addition, subtraktion, multiplikation og division (lægge sammen, trække fra, gange og dividere) gælder også i andre talsystemer. Eksempler

8 2 Konverterings tabel Binær Oktal Hex Dec A B C D E F A B C D E F

9 3 Sammenhængen og omregninger mellem totalssystemet og det hexadecimale system. Som tidligere nævnt er totalssystemet velegnet til elektrisk udstyr, men uegnet for mennesker. Ved at indføre det hexadecimalesystem, er der indført en mellemting som er egnet for både computere og mennesker. Et binært tal kan inddeles i grupper af 4 cifre (bagfra), hvert af disse kan nemt konverteres til et hexadecimalt tal B B 3 E 7 5 C H 3 E7 5C H Tilsvarende er det nemt at gå fra et hexadecimalt tal til et binært: B 51 A8 0C 7F H = B B 5 1 A 8 0 C 7 F H B 7

10 4 Konvertering fra decimalsystemet til andre systemer Der er 2-3 forskellige måder til at konvertere fra decimal tal til andre talsystemer. Metode 1: Del med grundtallet Metode 2: Del med potenser af grundtallet Metode 3, som metode 2: Del med potenser af grundtallet med hjælp af en tabel. Alle metoder beskrives. 4.1 Metode 1: Del med grundtallet For at konvertere et tal fra titalssystemet til et andet talsystem, skal tallet divideres med det nye talsystems grundtal. Resten er det mindst betydende ciffer (LSB : least significant bit). Heltallet fra den første division deles igen med grundtallet. Resten er det næstmindst betydende ciffer. Divisionen gentages indtil der kun er en rest tilbage. Denne rest er det mest betydende ciffer. (MSB : most significant bit). Eksempel 1: Konverter D til hexadecimal: D /16 giver 771, resten er 9 Mindst betydende ciffer, LSB 771 D /16 giver 48, resten er 3 48 D /16 giver 3, resten er 0 3 D /16 giver 0, resten er 3 Mest betydende ciffer, MSB Resultat: D = 3039 H Bemærk: Denne metode giver det mindst betydende ciffer først og det mest betydende til sidst. Eksempel 2: Konverter D til binær: D /2 giver 6172, resten er 1. 1 LSB (Bemærk at er ulige, derfor bliver resten 1) 6172 D /2 giver 3086, resten er 0 8

11 3086 D /2 giver 1543, resten er D /2 giver 771, resten er D /2 giver 385, resten er D /2 giver 192, resten er D /2 giver 96, resten er 0 96 D /2 giver 48, resten er 0 48 D /2 giver 24, resten er 0 24 D /2 giver 12, resten er 0 12 D /2 giver 6, resten er 0 6 D /2 giver 3, resten er 0 3 D /2 giver 1, resten er 1 1 D /2 giver 0, resten er 1 MSB Resultat:12345 D = B 4.2 Metode 2: Del med potenser af grundtallet For at konvertere et tal fra titalssystemet til et andet talsystem, skal tallet fratrækkes det største antal af potens af grundtallet, der kan være i tallet. Antallet noteres og er det mest betydende ciffer. Resten fratrækkes igen den næste mindre potens af grundtallet. Antallet noteres og er det næstmest betydende ciffer. Således fortsættes indtil man har divideret med 1. Den sidste division giver det mindst betydende ciffer. Eksempel 1: Konverter D til hexadecimal: D , giver resten 57 3 Mest betydende ciffer, MSB 57 D 0 256, giver resten D 3 16 giver resten D 9 1 giver resten 0 9 Mindst betydende ciffer, LSB Resultat: D = 3039 H 9

12 Bemærk: Denne metode giver det mest betydende ciffer først og det mindst betydende til sidst. Eksempel 2: Konverter 17 D til binær: 17 D 1 16 resten er 1 1 MSB 1 D 0 8 resten er D 0 4 resten er D 0 2 resten er D 1 1 resten er 0 1 LSB Resultat: 17 D = B Eksempel 3: Konverter D til binær: D giver resten MSB 4153 D resten er D resten er D resten er D resten er D resten er D resten er D 0 64 resten er D 1 32 resten er D 1 16 resten er D 1 8 resten er D 0 4 resten er D 0 2 resten er D 1 1 resten er 0 1 LSB Resultat: D = B 10

13 4.3 Metode 3: Del med potenser af grundtallet med hjælp af en tabel Denne metode er en videreudvikling af metode 2, hvor der bruges en tabel som hjælpeværktøj. For at konvertere et tal fra titalssystemet til et andet talsystem, skal tallet fratrækkes det største antal af potens af grundtallet, der kan være i tallet. Tabel til brug ved omsætning mellem decimaltal og hexadecimatal: A B C D E F Eksempel Konverter D til hexadecimalt: I tabellen findes det største tal, som er mindre end tallet, der skal konverteres. I dette tilfælde som er 3*16 3. (Det hexadecimale tal vil da blive 3xxx) = 57 Alle tal i kolonnen 16 2 er for store, så dette ciffer er 0 (Det hexadecimale tal vil da blive 30xx) Det største tal der er mindre end 57 er 48 = 3*16 1. (Det hexadecimale tal vil da blive 303x) = 9 Det største tal der er mindre end 9 er 9 = 9*16 0. Det hexadecimale tal vil da blive = 0 11

14 5 IP adresser På internettet har alle computere, servere og routere et nummer/ip adressen. IP adressen er et binært tal med 32 cifre. Som tidligere nævnt er vi mennesker ikke glade for totalssystemet, og man har valgt dele de 32 cifre op i 4 grupper af 8 bits, og angive hver gruppe med et decimal tal. Fordelen ved dette system ses når der skal laves sub-netting mv. i netværk. Eksempel: IP adresse: : IP adresse: Hex.: 50 C4 92 BA Binært.: Binært bliver adressen da : B Den højeste mulige adresse i dette system bliver da: svarende til binært: B Der er i alt 2 32 = forskellige mulige adresser (knapt en til hvert menneske på jorden) med den nuværende standard, kaldet Ipv4. I den nye standard IPv6 er adressernes størrelse udvidet til 128 bit. Det betyder at er 2 128, eller 3, , tilgængelige adresser. Med en verdensbefolkning på cirka 6,6 milliarder svarer det til cirka 5, adresser per person. 6 Datatyper 4 bit samlet kaldes ofte en nybble 8 bits samlet kaldes ofte en byte. En byte på 8 bits kan angive en af 2 8 = 256 forskellige tilstande. 12

15 7 Opgaver 7.1 Øvelse i omsætning decimal- til binærtal Omsæt følgende tal til binær: 257 D = 68 D = 7 D = 33 D = 10 D = 6 D = 150 D = 97 D = 615 D = 2436 D = 512 D = D = 7.2 Øvelse i omsætning binær- til decimal tal Omsæt følgende tal til decimal: 1101 B = 1001 B = B = B = B = 101 B = 11 B = B = B = B = 13

16 7.3 Øvelse i omsætning decimal- til hexadecimaltal Omsæt følgende tal til hexadecimal: 16 D = 145 D = 391 D = 56 D = 4032 D = 1024 D = 159 D = 615 D = 68 D = 97 D = 2222 D = 7.4 Øvelse i omsætning hexadecimal- til decimaltal Omsæt følgende tal til decimal: FC0 H = 400 H = C3 H = 1804 H = 91 H = 187 H = 0F H = A8 H = ABC H = ABCD H = H = FFFF H = 14

17 7.5 Øvelse i omsætning hexadecimal- til binærtal Omsæt følgende tal til binærtal ved at opdele i grupper af 4 bits som vist: 2C8 H = 2 C 8 H B FC0 H = 0C3 H = 4F H = AA H = 1234 H = 7.6 Øvelse i omsætning binær- til hexadecimaltal Omsæt følgende tal til hexadecimaltal ved at opdele dem i grupper af 4 bits som vist: B = C 8 H B = B = B = 100 B = 15

Talsystemer I V X L C D M 1 5 10 50 100 500 1000. Hvad betyder halvanden??. Kan man også sige Halvtredie???

Talsystemer I V X L C D M 1 5 10 50 100 500 1000. Hvad betyder halvanden??. Kan man også sige Halvtredie??? Romertal. Hvordan var de struktureret?? Systematisk?? I V X L C D M 1 5 10 50 100 500 1000 Regler: Hvis et lille tal skrives foran et stort tal trækkes tallet fra: IV = 5-1 = 4 Hvis et lille tal skrives

Læs mere

(Positions) Talsystemer

(Positions) Talsystemer (Positions) Talsystemer For IT studerende Hernik Kressner Indholdsfortegnelse Indledning...2 Positions talsystem - Generelt...3 For decimalsystemet gælder generelt:...4 Generelt for et posistionstalsystem

Læs mere

Repræsentation af tal

Repræsentation af tal Repræsentation af tal DM534 Rolf Fagerberg Bitmønstre 01101011 0001100101011011... Bitmønstre skal fortolkes for at have en betydning: Tal (heltal, decimaltal (kommatal)) Bogstaver Computerinstruktion

Læs mere

Boolesk Algebra og det binære talsystem - temahæfte informatik. Oprindelse.

Boolesk Algebra og det binære talsystem - temahæfte informatik. Oprindelse. Boolesk Algebra og det binære talsystem - temahæfte informatik. I dette hæfte arbejdes der med to-tals systemet og logiske udtryk. Vi oplever at de almindelige regneregler også gælder her, og vi prøver

Læs mere

Med TI-89 / TI-92 Plus kan du også sammenligne eller manipulere binære tal bit for bit.

Med TI-89 / TI-92 Plus kan du også sammenligne eller manipulere binære tal bit for bit. Kapitel 20: Talsystemer 20 Resumé af talsystemer... 344 Indtastning og omregning af talsystemer... 345 Udførelse af matematiske beregninger med hexadecimale og binære tal... 346 Sammenligning eller manipulation

Læs mere

Om at udregne enkeltstående hexadecimaler i tallet pi

Om at udregne enkeltstående hexadecimaler i tallet pi Om at udregne enkeltstående hexadecimaler i tallet pi I 996 var det en sensation, da det kom frem, at det var lykkedes D. Bailey, P. Borwein og S. Plouffe at finde en formel for tallet π, med hvilken man

Læs mere

Det binære talsystem og lidt om, hvordan computeren virker

Det binære talsystem og lidt om, hvordan computeren virker Det binære talsystem og lidt om, hvordan computeren virker Det binære talsystem...2 Lidt om, hvorledes computeren anvender det binære talsystem...5 Lyst til at lege med de binære tal?...7 Addition:...7

Læs mere

Repræsentation af tal

Repræsentation af tal Repræsentation af tal DM526 Rolf Fagerberg, 2009 Bitmønstre 01101011 0001100101011011... Bitmønstre skal fortolkes for at have en betydning: Tal (heltal, kommatal) Bogstaver Computerinstruktion (program)

Læs mere

IK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKN. Regnehæfte Elektronik

IK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKN. Regnehæfte Elektronik IK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKN Regnehæfte Elektronik www.if.dk Regnehæfte Elektronik Forord Redaktør Hagen Jørgensen År 2004 Best. nr. Erhvervsskolernes Forlag Munkehatten 28

Læs mere

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 Indholdsfortegnelse Side De fire regningsarter... 3 Flerleddede størrelser... 5 Talbehandling... 8 Forholdsregning... 10 Procentregning...

Læs mere

1 Bits og Bytes Computere er fortræffelige til at opbevare data og behandle data Af data vil vi i dette afsnit primært beskæftige os med billeder, tekst og lyd, og se på, hvordan sådanne data lagres i

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter: Plus, minus, gange og division... 2 10-tals-systemet... 4 Afrunding af tal... 5 Regning med papir og blyant... 6 Store tal... 8 Negative tal...

Læs mere

Negative cifre n. I et positionssystem skriver man et tal på formen xn a + xn 1a

Negative cifre n. I et positionssystem skriver man et tal på formen xn a + xn 1a Af Peter Harremoës, Herlev Gymnasium Indledning De fleste lærebogssystemer til brug i gymnasiet eller HF indeholder et afsnit om vort positionssystem. Det bliver gerne fremstillet som noget af det mest

Læs mere

Lidt om Bits & Bytes. Talsystemer

Lidt om Bits & Bytes. Talsystemer Lidt om Bits & Bytes En hurtig genopfriskning af: Bits, bytes, kilobytes Megahertz, bps, Bps... Tegnsæt, f.eks. Unicode Hvad er det og hvor bruges det? Moderne og gammelt IT udstyr snakker sammen via 0

Læs mere

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring Hovedemne 1: Talsystemet og at gange kan anvende flercifrede naturlige tal til at beskrive antal og rækkefølge udvikle metoder til multiplikation og division med naturlige tal udføre beregninger med de

Læs mere

Lektion 1 Grundliggende regning

Lektion 1 Grundliggende regning Lektion 1 Grundliggende regning Indholdsfortegnelse Indholdsfortegnelse... Plus, minus, gange og division - brug af regnemaskine... Talsystemets opbygning - afrunding af tal... Store tal og negative tal...

Læs mere

På en digital indgang kan en computer kun se forskel på, om en kontakt er tændt eller slukket. Men til gengæld er den hurtig og god til at regne.

På en digital indgang kan en computer kun se forskel på, om en kontakt er tændt eller slukket. Men til gengæld er den hurtig og god til at regne. Boolesk Algebra og det binære talsystem - temahæfte informatik Dette temahæfte introducerer to-talsystemet og logiske udtryk (Boolesk algebra). Vi oplever, at de almindelige regneregler også gælder i to-talsystemet,

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter uden regnemaskine...2 De fire regnearter nu må du godt bruge regnemaskine...5 10-tals-systemet...7 Decimaler og brøker...9 Store tal...1 Gange

Læs mere

Workshops om netværk

Workshops om netværk Workshops om netværk 1. Intro + netværkslag 2. Transportlag 3. Socket programmering 4. TBA Se evt. www.control.aau.dk/~jens/teaching/itc_2011 Sådan virker Internettet Jens Myrup Pedersen Lektor, jens@es.aau.dk

Læs mere

brikkerne til regning & matematik tal og algebra preben bernitt

brikkerne til regning & matematik tal og algebra preben bernitt brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

Positionssystemet, 2 3 uger (7 lektioner), 2. klasse.

Positionssystemet, 2 3 uger (7 lektioner), 2. klasse. Positionssystemet, 2 3 uger (7 lektioner), 2. klasse. FRA FORENKLEDE FÆLLES MÅL Kommunikation vedrører det at udtrykke sig med og om matematik og at sætte sig ind i og fortolke andres udtryk med og om

Læs mere

Mattip om. Decimaltal 2. Tilhørende kopi: Decimaltal 1 og 2. Du skal lære om: Kan ikke Kan næsten Kan. Decimaltal og titalssystemet

Mattip om. Decimaltal 2. Tilhørende kopi: Decimaltal 1 og 2. Du skal lære om: Kan ikke Kan næsten Kan. Decimaltal og titalssystemet Mattip om Decimaltal 2 Du skal lære om: Decimaltal og titalssystemet Kan ikke Kan næsten Kan Decimaltal skrevet som en brøk Addition med decimaltal Faglig læsning Tilhørende kopi: Decimaltal 1 og 2 2016

Læs mere

Tal i det danske sprog, analyse og kritik

Tal i det danske sprog, analyse og kritik Tal i det danske sprog, analyse og kritik 0 Indledning Denne artikel handler om det danske sprog og dets talsystem. I første afsnit diskuterer jeg den metodologi jeg vil anvende. I andet afsnit vil jeg

Læs mere

BRP Tal. Om computer-repræsentation og -manipulation. Logaritmer

BRP Tal. Om computer-repræsentation og -manipulation. Logaritmer BRP 13.9.2006 Tal. Om computer-repræsentation og -manipulation. Logaritmer 1. Opgaverne til i dag dækker det meste af stoffet 2. Resten af stoffet logaritmer binære træer 3. Øvelse ny programmeringsopgave

Læs mere

De 4 regnearter. (aritmetik) Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 42 Ekstra: 5 Point:

De 4 regnearter. (aritmetik) Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 42 Ekstra: 5 Point: Navn: Klasse: Matematik Opgave Kompendium De 4 regnearter (aritmetik) Aritmetik: kommer af græsk: arithmetike = regnekunst arithmos = tal Aritmetik er læren om tal og operationer på tal som de 4 regnearter.

Læs mere

Vis, hvilke tal pilen peger på.

Vis, hvilke tal pilen peger på. Talforståelse opgave 1 Vis, hvilke tal pilen peger på. Opgave 1 Side 1 Fagligt område: Talforståelse Dele lige. Mulige besvarelser Eleven er ikke i stand til at bestemme, hvilket tal pilen peger på. Eleven

Læs mere

Et alfabet er en ordnet mængde af bogstaver og andre tegn

Et alfabet er en ordnet mængde af bogstaver og andre tegn 16. Tegn og alfabet I dette kapitel studerer vi tegn. Tegn udgør grundbestanddelen i enhver form for tekstbehandling. I senere kapitler, nærmere betegnet kapitel 27 - kapitel 31, ser vi på sammensætningen

Læs mere

matematik grundbog Demo trin 2 preben bernitt

matematik grundbog Demo trin 2 preben bernitt matematik grundbog trin preben bernitt matematik grundbog -udgave 00 by bernitt-matematik.dk Kopiering og udskrift af denne bog er kun tilladt efter aftale med bernitt-matematik.dk Læs nærmere om dette

Læs mere

Talforståelse. Du skal veksle mønterne. Vis, hvor mange måder du kan gøre det på. Kopi opgave. Navn:

Talforståelse. Du skal veksle mønterne. Vis, hvor mange måder du kan gøre det på. Kopi opgave. Navn: Talforståelse opgave 1 Du skal veksle mønterne. Vis, hvor mange måder du kan gøre det på. 1 Opgave 1 Fagligt område: Talforståelse Kombinere lægge sammen. Der anvendes kun hele kroner, ellers bliver opgaven

Læs mere

Programmering i maskinkode på AMIGA

Programmering i maskinkode på AMIGA Programmering i maskinkode på AMIGA A.Forness & N.A.Holten Copyright 1989 ARCUS Copyright 1989 DATASKOLEN Hæfte 1 Indhold Introduktion Det binære talsystem Det hexadecimale talsystem Assemblerens funktion

Læs mere

Det Digitale Niveau. Niels Olof Bouvin Institut for Datalogi Aarhus Universitet

Det Digitale Niveau. Niels Olof Bouvin Institut for Datalogi Aarhus Universitet Det Digitale Niveau Niels Olof Bouvin Institut for Datalogi Aarhus Universitet Level : Det digitale niveau Level 5 Problem-oriented language level Translation (compiler) Level 4 Assembly language level

Læs mere

Lille Georgs julekalender 06. 1. december

Lille Georgs julekalender 06. 1. december 1. december Hvad skal der stå på den tomme plads? 11001-10101 - 10011 10111-11011 - 11101 11000-10100 - Svar: 10010 Forklaring: Ydercifrene forbliver de samme. Ciffer nr. rykker mød højre ved først at

Læs mere

Ligeværdige udtryk. Aktivitet Emne Klassetrin Side. Vejledning til Ligeværdige udtryk 2

Ligeværdige udtryk. Aktivitet Emne Klassetrin Side. Vejledning til Ligeværdige udtryk 2 VisiRegn ideer 4 Ligeværdige udtryk Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Ligeværdige udtryk 2 Elevaktiviteter til Ligeværdige udtryk 4.1 Ligeværdige

Læs mere

En uægte brøk er en brøk der stadig kan forkortes ned til et blandet tal og som er større end 1. 17 Eksempel: Uægte brøk: 12

En uægte brøk er en brøk der stadig kan forkortes ned til et blandet tal og som er større end 1. 17 Eksempel: Uægte brøk: 12 7.,. og 9. klasse Regler for brøker Ægte og uægte brøker En ægte brøk er en brøk mellem 0 og. Ægte brøk Ægte brøk til mindste forkortelse (reduktion) 9 En uægte brøk er en brøk der stadig kan forkortes

Læs mere

CPUer og maskinkode DM534. Rolf Fagerberg

CPUer og maskinkode DM534. Rolf Fagerberg CPUer og maskinkode DM534 Rolf Fagerberg CPUers opbygning En CPU er bygget op af elektriske kredsløb (jvf. sidste forelæsning), som kan manipulere bits. En CPU manipulerer flere bits ad gangen, deres antal

Læs mere

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0. Konkrete funktioner Potenser Som udgangspunkt er brugen af potenser blot en forkortelse for at gange et tal med sig selv et antal gange. Hvis a Rskriver vi a 2 for a a a 3 for a a a a 4 for a a a a (1).

Læs mere

Læringsprogram. Talkonvertering. Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen. Klasse 2.4. 1.

Læringsprogram. Talkonvertering. Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen. Klasse 2.4. 1. Læringsprogram Talkonvertering Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen Klasse 2.4 1. marts 2011 Fag: Vejleder: Skole: Informationsteknologi B Karl G. Bjarnason Roskilde

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen.

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke addition bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke - decimaltal bunker osv. Det kan desuden vise decimaler og dermed give eleven visuel støtte

Læs mere

Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet

Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet penge Periode Mål Eleverne skal: Lære at anvende simpel hovedregning gennem leg og praktiske anvende addition og

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9?

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9? Tip til 1. runde af Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal er deleligt med et andet. Derfor spiller primtallene en helt central rolle i talteori, hvilket vi skal se

Læs mere

Basal Matematik 2. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 67 Ekstra: 7 Mundtlig: 1 Point:

Basal Matematik 2. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 67 Ekstra: 7 Mundtlig: 1 Point: Matematik / Basal Matematik Navn: Klasse: Matematik Opgave Kompendium Basal Matematik Følgende gennemgås De regnearter Afrunding af tal Større & mindre end Enheds omregning Regne hierarki Brøkregning Potenser

Læs mere

MaxiMat og de forenklede Fælles mål

MaxiMat og de forenklede Fælles mål MaxiMat og de forenklede Fælles mål Dette er en oversigt over hvilke læringsmål de enkelte forløb indeholder. Ikke alle forløb er udarbejdet endnu, men i skemaet kan man se alle læringsmålene også de,

Læs mere

Årsplan 5. Årgang

Årsplan 5. Årgang Årsplan 5. Årgang 2016-2017 Materialer til 5.årgang: - Matematrix grundbog 5.kl - Matematrix arbejdsbog 5.kl - Skrivehæfte - Kopiark - Færdighedsregning 5.kl - Computer Vi skal i løbet af året arbejde

Læs mere

HinkeHop DE HURTIGE 5-6 ÅR. Sådan gør du: Prøv at justere aktiviteten sådan her...! Uge 40

HinkeHop DE HURTIGE 5-6 ÅR. Sådan gør du: Prøv at justere aktiviteten sådan her...! Uge 40 HinkeHop Sådan gør du: 1. Print hoppepladerne. 2. Hvis du har kridt og et sted på jorden, der må tegnes, kan du sammen med barnet tegne hoppeplade 1 med kridt på jorden. Sørg for at tegne felterne, så

Læs mere

Matematik 3. klasse Årsplan

Matematik 3. klasse Årsplan Matematik 3. klasse Årsplan Årets overordnede mål inddelt i faglige kategorier: Tal og algebra Kende positionssystemet. Kunne veksle mellem titusinder og hundredetusinder. Kunne gange med 10. Kunne gange

Læs mere

Årsplan for matematik i 2. klasse 2013-14

Årsplan for matematik i 2. klasse 2013-14 Årsplan for matematik i 2. klasse 2013-14 Klasse: 2. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 5(mandag, tirsdag, onsdag, torsdag, fredag) Formål for faget matematik Formålet med undervisningen

Læs mere

i tredje sum overslag rationale tal tiendedele primtal kvotient

i tredje sum overslag rationale tal tiendedele primtal kvotient ægte 1 i tredje 3 i anden rumfang år 12 måle kalender hældnings a hældningskoefficient lineær funktion lagt n resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn formel andengradsligning

Læs mere

Folkeskolereformen nye muligheder Hotel Nyborg Strand 23.04.2014

Folkeskolereformen nye muligheder Hotel Nyborg Strand 23.04.2014 Folkeskolereformen nye muligheder Hotel Nyborg Strand 23.04.2014 Nationale mål, resultatmål og Fælles Mål Tre nationale mål 1. Folkeskolen skal udfordre alle elever, så de bliver så dygtige, de kan 2.

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

Analoge indgange og A/D konvertering. Analoge udgange

Analoge indgange og A/D konvertering. Analoge udgange Programmering for begyndere Brug af Arduino Programmeringskursus Analoge indgange og A/D konvertering Analoge udgange Knud Krogsgaard Jensen OZ1QK Oversigt Oversigt over i aften: A/D konvertering iterations

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

i tredje brøkstreg efter lukket tiendedele primtal time

i tredje brøkstreg efter lukket tiendedele primtal time ægte 1 i tredje 3 i anden rumfang år 12 måle kalender lagt sammen resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn efter bagved foran placering kvart fjerdedel lagkage rationale

Læs mere

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Algebra med Bea Bea Kaae Smit nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende regler 7 3.1 Tal..........................

Læs mere

tråd i matematik Hørsholm Skole har lavet den røde tråd for undervisningen i matematik fra 1.-9. klasse 1. klasse 2. klasse 3.

tråd i matematik Hørsholm Skole har lavet den røde tråd for undervisningen i matematik fra 1.-9. klasse 1. klasse 2. klasse 3. Den tråd i matematik Hørsholm Skole har lavet den røde tråd for undervisningen i matematik fra 1.-9. klasse 1. klasse 2. klasse 3. klasse 4. klasse 5. klasse 6. klasse 7. klasse 8. klasse 9. klasse 1.klasse

Læs mere

Det vigtigste ved læring af subtraktion er, at eleverne

Det vigtigste ved læring af subtraktion er, at eleverne Introduktion Subtraktion er sammen med multiplikation de to sværeste regningsarter. Begge er begrebsmæssigt sværere end addition og division og begge er beregningsmæssigt sværere end addition. Subtraktion

Læs mere

Opgaver - Tele - ISDN-tjenester - evaluering...3

Opgaver - Tele - ISDN-tjenester - evaluering...3 44092 INDHOLDSFORTEGNELSE Opgaver - Tele - ISDN-tjenester - evaluering...3 2-14 Rekv. 7 Prod. 06-12-2005-13:20 Ordre 10759 EFU Evalueringsopgave level 1 1. Hvor mange bit indeholder en ramme ( frame )

Læs mere

ræsonnere og argumentere intuitivt om konkrete matematiske aktiviteter og følge andres mundtlige argumenter (ræsonnementskompetence)

ræsonnere og argumentere intuitivt om konkrete matematiske aktiviteter og følge andres mundtlige argumenter (ræsonnementskompetence) Matematiske kompetencer indgå i dialog om spørgsmål og svar, som er karakteristiske i arbejdet med matematik (tankegangskompetence) løse matematiske problemer knyttet til en kontekst, der giver mulighed

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen.

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke - decimaltal Programmet viser enere, 10-bunker, 100-

Læs mere

En forståelsesramme for de reelle tal med kompositioner.

En forståelsesramme for de reelle tal med kompositioner. 1 En forståelsesramme for de reelle tal med kompositioner. af Ulrich Christiansen, sem.lekt. KDAS. Den traditionelle tallinjemodel, hvor tallene svarer til punkter langs tallinjen, dækker fornuftigt (R,

Læs mere

Subitizing se et antal op til 4. Tal og antal. Forsøg Forsøg 1

Subitizing se et antal op til 4. Tal og antal. Forsøg Forsøg 1 Subitizing se et antal op til 4 Tal og antal Lynghøjskolen 2016 3 4 uger gamle babyer kan med 80% sikkerhed registrere antal på op til 4 genstande. 1 2 Forsøg 1 4 Forsøg 3 6 1 Forsøg 4 8 Sammenligning

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

ÅRTSPLAN FOR 2. A MATEMATIK 2015/16

ÅRTSPLAN FOR 2. A MATEMATIK 2015/16 ÅRTSPLAN FOR 2. A MATEMATIK 2015/16 Kapitel 1: Tal til 1000 Hvor mange er der? Eleven kan anvende flercifrede naturlige tal til at beskrive antal og rækkefølge Eleven har viden om naturlige tals opbygning

Læs mere

Årsplan for 2.kl i Matematik

Årsplan for 2.kl i Matematik Årsplan for 2.kl i Matematik Vi følger matematiksystemet "Matematrix". Her skal vi i år arbejde med bøgerne 2A og 2B. Eleverne i 2. klasse skal i 2. klasse gennemgå de fire regningsarter. Specielt skal

Læs mere

matematik grundbog trin 2 preben bernitt

matematik grundbog trin 2 preben bernitt matematik grundbog trin 2 preben bernitt matematik grundbog 2 3. udgave som E-bog ISBN: 978-87-92488-29-9 2006 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale med bernitt-matematik.dk

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Statistik og sandsynlighed

Statistik og sandsynlighed Navn: Nr.: Klasse: Prøvedato: mat3 Noter: Kompetencemål efter 3. klassetrin Eleven kan udvikle metoder til beregninger med naturlige tal Tal og algebra Tal Titalssystem Decimaltal, brøker og procent Negative

Læs mere

Mellem mennesker Ny Prisma Fysik og kemi 9 - kapitel 9 Skole: Navn: Klasse:

Mellem mennesker Ny Prisma Fysik og kemi 9 - kapitel 9 Skole: Navn: Klasse: Mellem mennesker Ny Prisma Fysik og kemi 9 - kapitel 9 Skole: Navn: Klasse: Opgave 1 Hvilke egenskaber gælder ikke for radiobølger? Der er 5 svarmuligheder. Sæt et kryds. De kan reflekteres, når de rammer

Læs mere

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK)

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK) Matematikundervisningen vil i år ændre sig en del fra, hvad eleverne kender fra de tidligere år. vil få en fælles grundbog, hvor de ikke må skrive i, et kladdehæfte, som de skal skrive i, en arbejdsbog

Læs mere

MAteMAtIk FoR LæReRStUDeReNDe. tal, algebra og funktioner. 1. 6. klasse

MAteMAtIk FoR LæReRStUDeReNDe. tal, algebra og funktioner. 1. 6. klasse kristine JEss HaNs CHRIsTIaN HaNsEN JOHN schou JEppE skott MAteMAtIk FoR LæReRStUDeReNDe tal, algebra og funktioner 1. 6. klasse Kristine Jess, Hans Christian Hansen, Joh n Schou og Jeppe Skott Matematik

Læs mere

Forenklede Fælles Mål. Matematik i marts 27. marts 2014

Forenklede Fælles Mål. Matematik i marts 27. marts 2014 Forenklede Fælles Mål Matematik i marts 27. marts 2014 Læringskonsulenter klar med bistand Side 2 Forenklede Fælles Mål hvad ligger der i de nye mål? Hvorfor nye Fælles Mål? Hvorfor? Målene bruges generelt

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere

ELEVMÅL FOR KAPITLET HUSKELISTE FÆLLES MÅL FAGLIGE BEGREBER. Målet er, at eleverne: kan forstå sammenhænge og ligheder mellem talmængderne

ELEVMÅL FOR KAPITLET HUSKELISTE FÆLLES MÅL FAGLIGE BEGREBER. Målet er, at eleverne: kan forstå sammenhænge og ligheder mellem talmængderne ELEVMÅL FOR KAPITLET HUSKELISTE Målet er, at eleverne: kan forstå sammenhænge og ligheder mellem talmængderne N, Z, Q og R. kan anvende de naturlige tal, hele tal, rationale tal og reelle tal i forskellige

Læs mere

dcomnet-nr. 8 Simpel aritmetik på maskinniveau Computere og Netværk (dcomnet)

dcomnet-nr. 8 Simpel aritmetik på maskinniveau Computere og Netværk (dcomnet) dcomnet-nr. 8 Simpel aritmetik på maskinniveau Computere og Netværk (dcomnet) Efterår 2009 1 Simpel aritmetik på maskinniveau I SCO, appendix A, er det beskrevet, hvordan man adderer ikke-negative heltal

Læs mere

Tier-venner ærteposegemmeleg

Tier-venner ærteposegemmeleg Tæl til 10 Mål: Eleverne skal kunne tælle til 10 i stigende og faldende rækkefølge. Antal elever: mindst 10 elever. Du har brug for: Kegler med tallene 1 til 10. (Brug kegleovertræk på 0-keglen og skriv

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Årsplan for matematik i 4. klasse 2014-15

Årsplan for matematik i 4. klasse 2014-15 Årsplan for matematik i 4. klasse 2014-15 Klasse: 4. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 4(mandag, tirsdag, torsdag, fredag) Formål for faget matematik Formålet med undervisningen er, at

Læs mere

Side til side-vejledning. 1 Tal. Faglige mål. Division. Potenser. Talfølger

Side til side-vejledning. 1 Tal. Faglige mål. Division. Potenser. Talfølger Side til side-vejledning 1 Tal Faglige mål Kapitlet Tal tager udgangspunkt i følgende faglige mål: Division: kunne regne division med decimaltal og negative tal samt kende til anvendelsen af division i

Læs mere

TIN15. Rydning, sletning og nulstilling w. Displayindikatorer. Generelle oplysninger. Grundlæggende operationer. Display og rulning "!

TIN15. Rydning, sletning og nulstilling w. Displayindikatorer. Generelle oplysninger. Grundlæggende operationer. Display og rulning ! TIN15 Regnemaskine med regneøvefunktion Texas Instruments 7800 Banner Dr. Dallas, TX 75251 U.S.A. Texas Instruments Holland B.V. Rutherfordweg 102 542 CG Utrecht - The Netherlands ¾ www.ti.com/calc Copyright

Læs mere

Andreas Nielsen Kalbyrisskolen 2009

Andreas Nielsen Kalbyrisskolen 2009 Andreas Nielsen Kalbyrisskolen 2009 Matematiske kompetencer. Matematiske emner (tal og algebra, geometri, statistik og sandsynlighed). Matematik i anvendelse. Matematiske arbejdsmåder. Tankegangskompetence

Læs mere

Matematik opgave Projekt afkodning Zehra, Pernille og Remuss

Matematik opgave Projekt afkodning Zehra, Pernille og Remuss Matematik opgave Projekt afkodning Zehra, Pernille og Remuss Opgave A Sæt de overstående symboler ind i en matematisk sammenhæng der gør dem forståelige. Det kan være som en sætning eller med tal og bogstaver

Læs mere

Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne

Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne Umulige figurer Periode Mål Eleverne skal: At opdage muligheden for og blive fascineret af gengivelse af det umulige. At få øvelse

Læs mere

REELLE TAL. Tilknytning til Kolorit 9 matematik grundbog. Vejledende sværhedsgrad. Indhold og kommentarer

REELLE TAL. Tilknytning til Kolorit 9 matematik grundbog. Vejledende sværhedsgrad. Indhold og kommentarer LÆRERVEJLEDNING REELLE TAL Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Danskerne og ketchup Medieforbrug Decimaltal, brøker og procent og 2 Procentregning

Læs mere

Specielle tegn. Specielle tegn. Specielle tegn...1 Indhold:...1 Teori og praksis...1 Koder...2 Brug af symboler...5

Specielle tegn. Specielle tegn. Specielle tegn...1 Indhold:...1 Teori og praksis...1 Koder...2 Brug af symboler...5 Siede 1 af 6 Specielle tegn Indhold: Specielle tegn...1 Indhold:...1 Teori og praksis...1 Koder...2 Brug af symboler...5 Teori og praksis Man kan ind i mellem få brug for at kunne skrive specielle tegn.

Læs mere

Oversigt over undervisningen i matematik 1y 07/08

Oversigt over undervisningen i matematik 1y 07/08 Oversigt over undervisningen i matematik 1y 07/08 side1 Der undervises efter: MatC Nielsen & Fogh: Vejen til Matematik C ( Forlaget HAX) EKS Knud Nissen : TI-82 stat introduktion og eksempler Ovenstående

Læs mere

de fire regnearter basis brikkerne til regning & matematik preben bernitt

de fire regnearter basis brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik de fire regnearter basis preben bernitt brikkerne til regning & matematik de fire regnearter, basis ISBN: 978-87-92488-01-5 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Statistik og sandsynlighed

Statistik og sandsynlighed Navn: Nr.: Klasse: Prøvedato: mat Noter: Kompetencemål efter 6. klassetrin Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

brikkerne til regning & matematik tal og algebra F+E+D preben bernitt

brikkerne til regning & matematik tal og algebra F+E+D preben bernitt brikkerne til regning & matematik tal og algebra F+E+D preben bernitt 1 brikkerne. Tal og algebra E+D 2. udgave som E-bog ISBN: 978-87-92488-35-0 2010 by bernitt-matematik.dk Kopiering af denne bog er

Læs mere

Grundlæggende regneteknik

Grundlæggende regneteknik Grundlæggende regneteknik Anne Ryelund, Mads Friis og Anders Friis 14. oktober 2014 Indhold Forord Indledning iii iv 1 Regning med brøker 1 1.1 Faktorisering i primtal.............................. 3 1.2

Læs mere

tal og algebra F+E+D brikkerne til regning & matematik preben bernitt

tal og algebra F+E+D brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik tal og algebra F+E+D preben bernitt brikkerne til regning & matematik tal og algebra E+D ISBN: 978-87-92488-35-0 2. udgave som E-bog 2012 by bernitt-matematik.dk Denne

Læs mere

Medicinsk billeddannelse

Medicinsk billeddannelse Medicinsk billeddannelse Introduktion Billedtyper - Opgaver Billedegenskaber Billedbehandling Lars Møller Albrecht Lars.moeller.albrecht@mt.regionsyddanmark.dk Billedtyper Analog f.eks. billeder, malerier,

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere