Eksamensopgaver datalogi, dl/vf 2010 side 1/5. 1. Lodtrækningssystem

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Eksamensopgaver datalogi, dl/vf 2010 side 1/5. 1. Lodtrækningssystem"

Transkript

1 Eksamensopgaver datalogi, dl/vf 2010 side 1/5 1. Lodtrækningssystem Der skal fremstilles et program, som kan foretage en lodtrækning. Programmet skal kunne udtrække en eller flere personer (eller andet) fra en liste af navne, og det skal kunne udtrække et eller flere numre i et givet interval. Det skal altså være en form for elektronisk hat, hvor man lægger sedler i hatten og trækker en eller flere af disse. Da lodtrækninger ofte gennemføres i fuld offentlighed pga. spændingselementet, skal programmet laves med henblik på at det er spændende for tilskuerne at overvære en lodtrækning. Løsning af opgaven involverer bl.a. specifikation af programmets brugerflade og herunder krav til hvordan input henholdsvis output skal foreligge fastlæggelse af datastruktur og repræsentation af disse beskrivelse af programmets algoritmer valg af platform og værktøjer til udviklingen programmering gennemførsel af test overvejelser omkring forbedringer af programmet

2 Eksamensopgaver datalogi, dl/vf 2010 side 2/5 2. Body Mass Index I biologi vil man gerne kunne beregne en persons BMI (Body Mass Index), der er udtryk for dennes placering i forhold til normalvægten. Der skal laves et program, der kan gøre dette. BMI beregnes ud fra vægt og højde. BMI = vægt (i kilo) divideret med højde (i meter) i anden potens, altså: vægt BMI = højde højde Hvis BMI er under 18,5 er man undervægtig; mellem 18,5 og 25 har man normalvægt; mellem 25 og 30 er man overvægtig; og over 30 er man fed! Programmet skal kunne gemme resultatet samt registrere et træningsmål, altså en ønsket ny vægt efter 14 dage. Programmet skal kunne kontrollere om målet er opnået ved næste kørsel. Løsning af opgaven involverer bl.a. specifikation af programmets brugerflade og herunder krav til hvordan input henholdsvis output skal foreligge fastlæggelse af datastruktur og repræsentation af disse beskrivelse af programmets algoritmer valg af platform og værktøjer til udviklingen programmering gennemførsel af test overvejelser omkring forbedringer af programmet

3 Eksamensopgaver datalogi, dl/vf 2010 side 3/5 3. Datastruktur og programstruktur I sandsynlighedsregning i matematik arbejder man blandt andet med sandsynligheden for bestemte udfald af kast med én terning. For at simulere (efterligne) terningkast kan man med fordel benytte et edb-program, som indeholder en tilfældighedsgenerator. Der skal laves et program, der kan simulere et antal terningkast med én terning. Efter alle kastene skal vises, hvor mange kast der er foretaget i alt, hvor mange der blev ettere, hvor mange toere osv. Og endelig skal programmet beregne og vise den procentvise fordeling af ettere, toere osv. Programmet kan videreudbygges til kast med to eller flere terninger. Du skal gøre rede for: events (hændelser) strukturerede datatyper der er anvendt i programmet (arrays) programstruktur, hvormed menes den rækkefølge programmets instruktioner udføres i, især når der fraviges fra sekventiel struktur procedurer og funktioner: du skal kunne forklare dem linie for linie

4 Eksamensopgaver datalogi, dl/vf 2010 side 4/5 4. Sortering af navneliste Der skal fremstilles et program, som kan sortere en liste med personnavne, hvor denne foreligger i en tekstfil. Programmet skal kunne indlæse tekstfilen, vise navnene i sorteret form og gemme en sorteret liste i en tekstfil. I skal bl.a. forholde jer til: programmets brugerflade hvilke krav skal eller kan der stilles til format af navnelisten i tekstfilen datastruktur for programmet algoritme for programmet og herunder specielt sorteringsalgoritmen implementering af programmet (redskaber og anvendelse af disse) strategi for test af programmet

5 Eksamensopgaver datalogi, dl/vf 2010 side 5/5 5. Kryptologi Konstruer et program, der kan foretage en kryptering/dekryptering ved hjælp af monoalfabetisk substitution (f.eks. Cæsar kryptering) og Blaise de Vigenéres polyalfabetiske kryptosystem. Du skal lægge vægt på Den overordnede programstruktur. En beskrivelse af programmets vigtigste variable, konstanter, procedurer og funktioner. Hvilken opgave udfylder de, og hvordan de fungerer i deres sammenhæng. En beskrivelse af testresultater. Her skal beskrives input, output, forventede og faktiske testresultater, evt. fejl og deres årsager. Giv eksempler på mere moderne kryptosystemer og redegør kortfattet for hovedpunkterne i et af disse systemer.

Eksamensopgaver datalogi, dlc 2011 side 1/5. 1. Lodtrækningssystem

Eksamensopgaver datalogi, dlc 2011 side 1/5. 1. Lodtrækningssystem Eksamensopgaver datalogi, dlc 2011 side 1/5 1. Lodtrækningssystem Der skal fremstilles et program, som kan foretage en lodtrækning. Programmet skal kunne udtrække en eller flere personer (eller andet)

Læs mere

Matador. Hvert hus koster: 2000 Et hotel koster: 2000 + 4 huse Pantsætningsværdien er 2000 kr.

Matador. Hvert hus koster: 2000 Et hotel koster: 2000 + 4 huse Pantsætningsværdien er 2000 kr. Matador Problembeskrivelse Matador består af en spilleplade med 40 felter, biler (som udgør spillebrikker), to terninger, huse, hoteller, lykkekort, pengesedler og skødekort. Hvert felt har et nummer og

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Øvelse 2. SPSS og sandsynlighedsregning

Øvelse 2. SPSS og sandsynlighedsregning Øvelse 2 SPSS og sandsynlighedsregning Der er flere forskellige formål med opgaverne i denne øvelse. Det væsentligste formål er at arbejde lidt med sandsynlighedsregningen, binomialfordelingen og de store

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

dpersp Uge 40 - Øvelser Internetalgoritmer

dpersp Uge 40 - Øvelser Internetalgoritmer Øvelse 1 dpersp Uge 40 - Øvelser Internetalgoritmer (Øvelserne 4 og 6 er afleveringsopgaver) a) Hver gruppe får en terning af instruktoren. Udfør 100 skridt af nedenstående RandomWalk på grafen, som også

Læs mere

Michael Jokil 11-05-2012

Michael Jokil 11-05-2012 HTX, RTG Det skrå kast Informationsteknologi B Michael Jokil 11-05-2012 Indholdsfortegnelse Indledning... 3 Teori... 3 Kravspecifikationer... 4 Design... 4 Funktionalitet... 4 Brugerflade... 4 Implementering...

Læs mere

Statistik og sandsynlighed

Statistik og sandsynlighed Statistik og sandsynlighed Statistik handler om at beskrive og analysere en stor mængde data. som I eller andre har indsamlet. Det kan fx være tal, der fortæller om, hvor mange lynnedslag der er i Danmark

Læs mere

Projekt 4.8. Kerners henfald (Excel)

Projekt 4.8. Kerners henfald (Excel) Projekt.8. Kerners henfald (Excel) Når radioaktive kerner henfalder under udsendelse af stråling, sker henfaldet I følge kvantemekanikken helt spontant, dvs. rent tilfældigt uden nogen påviselig årsag.

Læs mere

Fig. 1 Billede af de 60 terninger på mit skrivebord

Fig. 1 Billede af de 60 terninger på mit skrivebord Simulation af χ 2 - fordeling John Andersen Introduktion En dag kastede jeg 60 terninger Fig. 1 Billede af de 60 terninger på mit skrivebord For at danne mig et billede af hyppighederne flyttede jeg rundt

Læs mere

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik.

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik. Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1 1 Paritet Diskret matematik. I mange matematikopgaver er det en god ide at se på paritet dvs. hvornår en bestemt størrelse er henholdsvis lige

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2016 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 29. februar, 2016 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Rolf Fagerberg. Forår 2014

Rolf Fagerberg. Forår 2014 Forår 2014 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: Format: Programmering og Diskret matematik I (forelæsninger), TE (øvelser), S (arbejde selv og i studiegrupper) Eksamenform: Skriftlig

Læs mere

Læseplan for valgfaget teknologiforståelse. (forsøg)

Læseplan for valgfaget teknologiforståelse. (forsøg) Læseplan for valgfaget teknologiforståelse (forsøg) Indhold Indledning 3 Trinforløb for 7.- 9. klassetrin 4 Design 4 Programmering 5 Indledning Valgfaget teknologiforståelse er etårigt og kan vælges i

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software Engineering BA i Matematik-Økonomi BA i Anvendt Matematik BA

Læs mere

Abstrakte datatyper C#-version

Abstrakte datatyper C#-version Note til Programmeringsteknologi Akademiuddannelsen i Informationsteknologi Abstrakte datatyper C#-version Finn Nordbjerg 1/9 Abstrakte Datatyper Denne note introducerer kort begrebet abstrakt datatype

Læs mere

Module 1: Data og Statistik

Module 1: Data og Statistik Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen og Hans Chr. Petersen Module 1: Data og Statistik 1.1 Hvad er statistik?................................... 1 1.2 Datatyper.......................................

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

HTX, RTG. Rumlige Figurer. Matematik og programmering

HTX, RTG. Rumlige Figurer. Matematik og programmering HTX, RTG Rumlige Figurer Matematik og programmering Vejledere: Jørn Christian Bendtsen og Karl G. Bjarnason Morten Bo Kofoed Nielsen & Michael Jokil 10-10-2011 In this assignment we have been working with

Læs mere

Sammenlign og byt. Et eksempel på dokumentering af et program

Sammenlign og byt. Et eksempel på dokumentering af et program Sammenlign og byt Et eksempel på dokumentering af et program Sammenlign og byt Jeg har valgt, som et eksempel, at dokumentere et meget enkelt program som indlæser to tal, sammenligner dem og udskriver

Læs mere

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen torsdag den 3. juni 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

Introduktion til DM507

Introduktion til DM507 Introduktion til DM507 Rolf Fagerberg Forår 2017 1 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA Forskningsområde: algoritmer og datastrukturer 2 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer

1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer 1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer på disse. Typer af lister: Array Enkelt linket liste Dobbelt linket Cirkulære lister Typer af køer: FILO FIFO

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L RÆSONNEMENT & 1BE V I S F I N N H. K R I S T I A N S E N GNING 2 EGNEARK KUGLE 5 MÅLING SIMULATIONER 3 G Y L D E N D A L MÅLSCORE I HÅNDBOLD Faglige mål: Håndtere simple modeller til beskrivelse af sammenhænge

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2016 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 20. april, 2016 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Allan C. Malmberg. Terningkast

Allan C. Malmberg. Terningkast Allan C. Malmberg Terningkast INFA 2008 Programmet Terning Terning er et INFA-program tilrettelagt med henblik på elever i 8. - 10. klasse som har særlig interesse i at arbejde med situationer af chancemæssig

Læs mere

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller

Læs mere

Automatisering Af Hverdagen

Automatisering Af Hverdagen Automatisering Af Hverdagen Programmering - Eksamensopgave 10-05-2011 Roskilde Tekniske Gymnasium (Kl. 3,3m) Mads Christiansen & Tobias Hjelholt Svendsen 2 Automatisering Af Hverdagen Indhold Introduktion:...

Læs mere

1. Svar 1. Ja. Rudersdal Kommune afholder alle udgifter i forbindelse med Helbredstjek. 1. Nej 1. Nej

1. Svar 1. Ja. Rudersdal Kommune afholder alle udgifter i forbindelse med Helbredstjek. 1. Nej 1. Nej Udbud af Helbredstjek _ Spørgsmål og Svar _ 8. juni 2010 1. Spørgsmål 1. Betales helbredstjekket af udelukkende af Rudersdal Kommune? 2. Betaler medarbejderen det hele selv? a. Hvis ja er der leverandøren

Læs mere

Appendiks 1: Om baggrund og teori bag valg af skala

Appendiks 1: Om baggrund og teori bag valg af skala Appendiks 1: Om baggrund og teori bag valg af skala De nationale test gav i 2010 for første gang danske lærere mulighed for at foretage en egentlig måling på en skala af deres elevers præstationer på grundlag

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2017 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 6. april, 2017 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Generelt er korrelationen mellem elevens samlede vurdering i forsøg 1 og forsøg 2 på 0,79.

Generelt er korrelationen mellem elevens samlede vurdering i forsøg 1 og forsøg 2 på 0,79. Olof Palmes Allé 38 8200 Aarhus N Tlf.nr.: 35 87 88 89 E-mail: stil@stil.dk www.stil.dk CVR-nr.: 13223459 Undersøgelse af de nationale tests reliabilitet 26.02.2016 Sammenfatning I efteråret 2014 blev

Læs mere

Nordbyskolens evalueringsplan

Nordbyskolens evalueringsplan Nordbyskolens evalueringsplan Evalueringsform Beskrivelse Ansvarlig Hvornår Årsplaner Årsplanen tager udgangspunkt i fagenes fælles mål Lærere (http://ffm.emu.dk/) En årsplan er et planlægningsredskab

Læs mere

SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former.

SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former. SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former. Statistisk sandsynlighed Her finder man sandsynligheden for en hændelse ved at kigge på en

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2010 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 24. april, 2010 (let justeret 10. maj og 21. maj 2010) Dette projekt udleveres i tre

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Programmering C ved mst Termin Juni 117 Institution Uddannelse Fag og niveau Lærer Hold Erhvervsskolerne Aars hhx Programmering C Michael Stenner (mst) 2-3g16 pro Forløbsoversigt

Læs mere

Udleveret 1. oktober, afleveres senest ved øvelserne i uge 44 (29. oktober-1. november)

Udleveret 1. oktober, afleveres senest ved øvelserne i uge 44 (29. oktober-1. november) Hjemmeopgave Basal statistik, efterår 2013 Udleveret 1. oktober, afleveres senest ved øvelserne i uge 44 (29. oktober-1. november) I forbindelse med en undersøgelse af vitamin D status i Europa, har man

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Onsdag den. august 200, kl. 9.00.00 Opgave (25%) Lad A = A[] A[n] være et array af heltal. Længden af det længste

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

BRP 6.9.2006 Kursusintroduktion og Java-oversigt

BRP 6.9.2006 Kursusintroduktion og Java-oversigt BRP 6.9.2006 Kursusintroduktion og Java-oversigt 1. Kursusintroduktion 2. Java-oversigt (A): Opgave P4.4 3. Java-oversigt (B): Ny omvendings -opgave 4. Introduktion til næste kursusgang Kursusintroduktion:

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

19 Hashtabeller. Noter. PS1 -- Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse.

19 Hashtabeller. Noter. PS1 -- Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse. 19 Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse. Sammenligning af hashtabeller og søgetræer. 281 Hashing-problemet (1). Vi ønsker at afbilde n objekter på en tabel

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hhx122-mat/b-17082012 Fredag den 17. august 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Bilagsnotat til: De nationale tests måleegenskaber

Bilagsnotat til: De nationale tests måleegenskaber Bilagsnotat til: De nationale tests måleegenskaber Baggrund Der er ti obligatoriske test á 45 minutters varighed i løbet af elevernes skoletid. Disse er fordelt på seks forskellige fag og seks forskellige

Læs mere

9 Statistik og sandsynlighed

9 Statistik og sandsynlighed 9 Statistik og sandsynlighed Faglige mål Kapitlet Statistik og sandsynlighed tager udgangspunkt i følgende faglige mål: Enkeltobservationer: kunne skabe overblik over statistisk materiale og anvende udvalgte

Læs mere

Algorithms & Architectures I 2. lektion

Algorithms & Architectures I 2. lektion Algorithms & Architectures I 2. lektion Design-teknikker: Divide-and-conquer Rekursive algoritmer (Recurrences) Dynamisk programmering Greedy algorithms Backtracking Dagens lektion Case eksempel: Triple

Læs mere

DM536. Rapport og debug

DM536. Rapport og debug DM536 Rapport og debug Kilder Vigtig.it (Felix Palludan Hargreaves) http://vigtig.it/dm502/howto_report.pdf http://vigtig.it/blog/teaching/#toc-relevant-tips Peter Schneider-Kamp http://imada.sdu.dk/~petersk/dm536/project2.pdf

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2015 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 3. marts, 2015 Dette projekt udleveres i to dele. Hver del har sin deadline, således

Læs mere

Perspektiverende Datalogikursus

Perspektiverende Datalogikursus Perspektiverende Datalogikursus Algoritmer og kompleksitet Gerth Stølting Brodal 1 Perspektiverende kursus Formål: Vise bredden af Datalogi. Vise fagets anvendelighed. Vise konkrete eksempler på hvad datalogi

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner Stokastiske variable: udfald

Læs mere

Indhold. Maskinstruktur... 3. Kapitel 1. Assemblersprog...3. 1.1 Indledning...3 1.2 Hop-instruktioner... 7 1.3 Input og output...

Indhold. Maskinstruktur... 3. Kapitel 1. Assemblersprog...3. 1.1 Indledning...3 1.2 Hop-instruktioner... 7 1.3 Input og output... Indhold Maskinstruktur... 3 Kapitel 1. Assemblersprog...3 1.1 Indledning...3 1.2 Hop-instruktioner... 7 1.3 Input og output... 9 Kapitel 2. Maskinkode... 13 2.1 Den fysiske maskine... 13 2.2 Assemblerens

Læs mere

PHP guide af Daniel Pedersen

PHP guide af Daniel Pedersen PHP guide af Daniel Pedersen Side 1 af 12 Indholdsfortegnelse PHP guide af Daniel Pedersen Side 2 af 12 Indledning I dette hæfte finder du forklaringer til PHP funktioner, løkker, variabler samt en række

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 0. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6. og 6. Betingede diskrete

Læs mere

Rolf Fagerberg. Forår 2013

Rolf Fagerberg. Forår 2013 Forår 2013 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM536 og DM537 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM536 og DM537 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

Datalogi 1F rapportopgave K2 Anonym datakommunikation

Datalogi 1F rapportopgave K2 Anonym datakommunikation Datalogi 1F rapportopgave K2 Anonym datakommunikation 23. april 2004 1 Administrativ information Rapportopgave K2 stilles fredag den 23. april 2004 og skal afleveres senest fredag den 14. maj kl. 11:00

Læs mere

Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30.

Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30. Hjemmeopgave Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30. oktober) En undersøgelse blandt fødende kvinder

Læs mere

Pædagogisk vejledning til. Materialesæt. Sphero. http://via.mitcfu.dk/99872760

Pædagogisk vejledning til. Materialesæt. Sphero. http://via.mitcfu.dk/99872760 Pædagogisk vejledning til Materialesæt Sphero http://via.mitcfu.dk/99872760 Pædagogisk vejledning til materialesættet Sphero Materialesættet kan lånes hos VIA Center for Undervisningsmidler og evt. hos

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 HTX

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 22. juni 2012, kl. 9.00-13.00 Eksamenslokale: Finlandsgade

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR ATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Algoritmer og atastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. august 0,

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

Beat the Clock Sorteringsnetværk

Beat the Clock Sorteringsnetværk Aktivitet 8 Beat the Clock Sorteringsnetværk Resumé Selvom computer er hurtige, er der en grænse for, hvor hurtigt de kan løse et problem. En måde at speed e det op på er at bruge flere computere til at

Læs mere

Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives. Type Expr = Sumèplus, minus, times, div: Args, const: Int, name: Textè

Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives. Type Expr = Sumèplus, minus, times, div: Args, const: Int, name: Textè Opgave 1 è20èè Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives af fçlgende rekursive Trine-type: Type Expr = Sumèplus, minus, times, div: rgs, const: Int, name: Textè Type

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2016/17 Institution Hansenberg Gymnasium Uddannelse Fag og niveau Lærer Hold htx Programmering,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 14/15

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen Vigtigste nye emner i.,. og.5 Sandsynlighedsregning. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Siene Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Binomialfordelingen

Læs mere

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER G Y L D E N D A L

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER G Y L D E N D A L F I N N H. K R I S T I A N S E N 2 KUGLE SIMULATIONER G Y L D E N D A L Faglige mål: Håndtere simple modeller til beskrivelse af sammenhænge mellem variable og kunne diskutere rækkevidde af sådanne modeller.

Læs mere

Statistik viden eller tilfældighed

Statistik viden eller tilfældighed MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2014 IBC-Kolding

Læs mere

Maple 11 - Chi-i-anden test

Maple 11 - Chi-i-anden test Maple 11 - Chi-i-anden test Erik Vestergaard 2014 Indledning I dette dokument skal vi se hvordan Maple kan bruges til at løse opgaver indenfor χ 2 tests: χ 2 - Goodness of fit test samt χ 2 -uafhængighedstest.

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sandsynlighedsregning Udfaldsrum og hændelser Udfald e:resultatetafetforsøg. Udfaldsrum S: Mængden af de mulige udfald af forsøget. Hændelse A: En delmængde af udfaldsrummet. Tilfældigt fænomen S e (eks.)

Læs mere

Perspektiverende Datalogikursus

Perspektiverende Datalogikursus Perspektiverende Datalogikursus Algoritmer og kompleksitet Gerth Stølting Brodal 1 Perspektiverende kursus Formål: Vise bredden af Datalogi. Vise fagets anvendelighed. Vise konkrete eksempler på hvad datalogi

Læs mere

statistik og sandsynlighed

statistik og sandsynlighed brikkerne til regning & matematik statistik og sandsynlighed trin 1 preben bernitt brikkerne statistik og sandsynlighed 1 1. udgave som E-bog ISBN: 978-87-92488-19-0 2004 by bernitt-matematik.dk Kopiering

Læs mere

c) For, er, hvorefter. Forklar.

c) For, er, hvorefter. Forklar. 1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:

Læs mere

MIU datakonverteringsprogram til brug for radioaflæsning af vandmålere

MIU datakonverteringsprogram til brug for radioaflæsning af vandmålere MIU datakonverteringsprogram til brug for radioaflæsning af vandmålere INDHOLDSFORTEGNELSE: MIU datakonverteringsprogram til brug for radioaflæsning af vandmålere... 1 1 Indledning... 3 2 Understøttede

Læs mere

Årets overordnede mål inddelt i kategorier

Årets overordnede mål inddelt i kategorier Matematik 1. klasse Årsplan af Bo Kristensen, Katrinedals Skole Årets overordnede mål inddelt i kategorier Tallenes opbygning og indbyrdes hierarki Tælle til 100. Kende tælleremser som 10 20 30, 5 10 15,

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere

Sandsynlighedsregning og statistik

Sandsynlighedsregning og statistik og statistik Jakob G. Rasmussen, Institut for Matematiske Fag jgr@math.aau.dk Litteratur: Walpole, Myers, Myers & Ye: Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th ed. Slides

Læs mere

Fagets IT Introduktion til MATLAB

Fagets IT Introduktion til MATLAB Fagets IT Introduktion til MATLAB Mads G. Christensen mgc@kom.auc.dk Afdeling for Kommunikationsteknologi, Aalborg Universitet. MATLAB 2002 p.1/28 Kursusoversigt 1. Introduktion, matrix-indeksering, -operationer

Læs mere

Affine - et krypteringssystem

Affine - et krypteringssystem Affine - et krypteringssystem Matematik, når det er bedst Det Affine Krypteringssystem (Affine Cipher) Det Affine Krypteringssystem er en symmetrisk monoalfabetisk substitutionskode, der er baseret på

Læs mere

Algoritmer og invarianter

Algoritmer og invarianter Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.

Læs mere

Rolf Fagerberg. Forår 2012

Rolf Fagerberg. Forår 2012 Forår 2012 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM502 og DM503 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM502 og DM503 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

ØVELSE 3A. I SAS kan man både bruge {}, [] og () som paranteser til index.

ØVELSE 3A. I SAS kan man både bruge {}, [] og () som paranteser til index. ØVELSE 3A I denne øvelse gennemgår vi: Flere funktioner - udvalgte tilfældigtals generatorer i SAS Eksempler på anvendelse af SAS til statistisk analyse Formål Du får brug for de træk ved SAS-systemet,

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 1 Eventuelle besvarelser laves i grupper af - 3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

Nanostatistik: Opgaver

Nanostatistik: Opgaver Nanostatistik: Opgaver Jens Ledet Jensen, 19/01/05 Opgaver 1 Opgaver fra Indblik i Statistik 5 Eksamensopgaver fra tidligere år 11 i ii NANOSTATISTIK: OPGAVER Opgaver Opgave 1 God opgaveskik: Når I regner

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015/16 Institution Erhvervsgymnasiet Grindsted Uddannelse Fag og niveau Lærer(e) Hold HHx Matematik

Læs mere

Obligatorisk projekt 3.

Obligatorisk projekt 3. Obligatorisk projekt 3. Administration af Regionale Køre-Planer Fag: Projektet omhandler emner fra fagene Softwarearkitektur og Distribuerede Programmer, samt SystemUdviklingsMetoder. Formål: Formålet

Læs mere

Først falder den med 20% af 100 = 20 kr, dernæst stiger den med 30% af 80 = 24 kr. Der er 91 dage mellem datoerne, svarende til 13 uger.

Først falder den med 20% af 100 = 20 kr, dernæst stiger den med 30% af 80 = 24 kr. Der er 91 dage mellem datoerne, svarende til 13 uger. ud af deltagere må være børn, da der er dobbelt så mange børn som voksne. Derfor er der i alt børn med på skovturen. ud af børn må være piger, da der er dobbelt så mange piger som drenge. Det vil sige,

Læs mere

Numerisk differentiation og integration med Python

Numerisk differentiation og integration med Python Numerisk differentiation og integration med Python En uformel prototype til en tutorial, Karl Bjarnason, maj 2010 Vi vil gerne lave et program som numerisk integrerer og differentierer funktionen f(x)=x

Læs mere

MATEMATIK ( 3 h ) DATO : 8. juni 2009

MATEMATIK ( 3 h ) DATO : 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 3 h ) DATO : 8. juni 2009 PRØVENS VARIGHED: 3 timer (180 minutter) TILLADTE HJÆLPEMIDLER: Europaskolernes formelsamling ikke-grafisk, ikke-programmerbar lommeregner

Læs mere