Forslag til løsning af Opgaver om areal (side296)

Størrelse: px
Starte visningen fra side:

Download "Forslag til løsning af Opgaver om areal (side296)"

Transkript

1 Forslag til løsning af Opgaver om areal (side96) Opgave Vi kan beregne arealet af s 4. ved hjælp af Heron s formel: ( ) Parallelogrammets areal er det dobbelte af trekantens areal: Opgave real af må være: ½ lle 4 sider er lige store, når diagonalerne står vinkelret på hinanden. Vi får:

2 Opgave 0 1 h E 0 Linjestykket E er tegnet parallel med. et betyder, at E er et parallelogram, hvorved sidernes længder bliver, som angivet på tegningen. Vi kan beregne areal af s 1. E ved hjælp af Heron s formel: ( E) Vi kan nu beregne højden h i trekanten. enne er samtidig trapezets højde: ½ h h 1. Trapezets areal kan beregnes ud fra formlen for dette eller ved addition af trekantens og parallelogrammets arealer. ( ) ½ Opgave og er begge retvinklede, og vi kan ved brug af Pythagoras sætning få:

3 ( ) ½ Opgave 5 Her skal vi igen bruge Herons formel: s 187 ( ) Opgave 6 realet må være lig med ½ Opgave 7 x 1 x+ er en retvinklet trekant, så vi får følgende:, 1 x x 144 x x 6 x 9 6 x 15 x 5 et betyder:, 5 og, 5 5, 5. Rektanglets areal: 1, Opgave er retvinklet, og dermed kan diagonalen beregnes: 1

4 I kender vi nu alle sider, og vi kan bruge Herons formel til at beregne arealet s realet af er summen af de trekanters arealer. ( ) ½ Trods de forholdsvis store tal fik vi igen pæne tal ved brug af Herons formel. Man skal imidlertid ikke tro, at dette altid er tilfældet. et er absolut nøje konstruerede tal, der her er valgt. Opgave 9 Vi sætter de sidetal til henholdsvis: x og 4 x. Herved bliver arealet: x 4 x 1x. Vi har da: 1x 691 x 576 x 4 (idet kun den positive værdi kan bruges). Rektanglets sider er da: 4 7 og Opgave 10 7, 5 0, 75 18, 75 0, , 5. edet i midten har dimensionerne: Grusgangens areal må være differensen mellem havens areal og bedets areal: Grusgangens areal,,,, m. Rumfang af gruset må ligge mellem følgende tal: 7, 15 0, 04 1, 485 m og ,,, m. er skal derfor købes m. Grusets vægt: kg. 1 Traileren skal køre: 500 : vs. 10 ture. 75 kg grus har rumfanget: m.

5 Vi bestemmer højden ved at dividere rumfanget med bundens areal: højden : (, 05 1, ) 0, , 05 1, Gruset må altså maksimalt stå i en højde af ca. 8 cm. (Mon det bliver overholdt?). Opgave 11 Endevæggen kan deles op i et rektangel og et trapez: real af endevæggen: ,, ½ (,, ) (,, ), m. For at beregne skråvæggens areal skal vi kende dens dimensioner, og her mangler vi den skrå linje på tegningen. en er hypotenusen i en retvinklet trekant med kateterne:, 5, 5 0, 75 m og, 5-1, 5 1 m. et giver: 0, , 5 m. real af den malede flade bliver summen af endevægge, væggen med skråvæg og endnu en væg. Herfra skal fratrækkes areal af vindue og dør. et giver: ,,,,,,,,,,,, m. En bøtte maling rækker til: 8 5 0, m m. er skal derfor købes bøtter. Opgave 1 48 H 144 G 8,8 F 6 E EF G i forholdet: 8, 8 : 144 1: 5 esuden gælder: H G. Også her er forholdet 1: 5 Heraf følger: og Vi kan nu beregne de store trekanter areal, og vejens areal er differensen mellem disse. real real (fskåret trekant) ( ) ½ m.

6 real E ( ) ½ m. real Vej ( ) m. Opgave 1 Q 8 P 6 E R 8 S 6 Ved diagonalen deles real ( ) (½ 6 8) 48. i kongruente retvinklede trekanter. a begge trekanter: og er ligebenede, er midtnormal for. erfor gælder:. a er retvinklet, har vi: I en retvinklet trekant er produktet af kateterne lig med produktet af højde og hypotenuse (underforstået længderne af disse). a er retvinklet, får vi: E 6 8 E 10 E 4, 8. Og hermed: 9, 6. PQ er midtpunktstransversal i, og derfor halv så stor som. Tilsvarende er QR midtpunktstransversal i, og derfor er QR det halve af. imensionerne i rektanglet PQRS er således: 5 4, 8. et betyder, at arealet er 4, der i øvrigt er det halve af arealet af. ette sidste er et generelt resultat, når punkterne P, Q, R og S betegner midtpunkter af firkantens sider. 4

7 Opgave E 10 1 F E er retvinklet. f Pythagoras sætning følger: E og dermed: E a F (ensliggende vinkler ved parallelle linjer) må der gælde: F E i forholdet 10 : 15 :. Heraf følger: F 1 8 og F 9 6. Højden fra F i FE står vinkelret på s forlængelse. Men er parallel med. erfor er højden fra F i F en del af den søgte højden. Resten udgøres af afstanden (på 1) mellem de parallelle linjer og. Om højden h fra F i FE gælder: h h 4, 8. Højden fra F i FE : 4, , 8. real( FE )=½ 16, 8 1 8, 4. Opgave 15 " 8, 5 cm. ette tal er hypotenusen i en retvinklet trekant, hvor kateternes forhold er 16 : 9. Idet vi sætter kateterne til henholdsvis 16 x og 9 x, får vi: 16 x 9 x 8, 5 56 x 81x 6975, x 6975, 5904 x ca. 4, 55. Skærmens dimension bliver ca.: 4, , , 8 cm 40, 95 cm. 5

8 Opgave 16 E O F M N bliver delt i trekanter med samme areal, idet de har samme højde (på ) og samme grundlinje. e har derfor hver et areal på 1 6 af kvadratets areal EN FM har et areal på: real( N) real E realet af femkanten NEFM er lig med:

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

GEOMETRI I PLAN OG RUM

GEOMETRI I PLAN OG RUM LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige

Læs mere

Mattip om. Arealer 1. Tilhørende kopier: Arealer 1, 2 og 3. Du skal lære om: De vigtigste begreber. Arealberegning af et kvadrat eller rektangel

Mattip om. Arealer 1. Tilhørende kopier: Arealer 1, 2 og 3. Du skal lære om: De vigtigste begreber. Arealberegning af et kvadrat eller rektangel Mattip om realer 1 Du skal lære om: De vigtigste begreber Kan ikke Kan næsten Kan realberegning af et kvadrat eller rektangel Tegning/konstruktion af kvadrater og rektangler realberegning af et parallelogram

Læs mere

Geometri med Geometer II

Geometri med Geometer II hristian Madsen & Frans Kappel Øre, Morsø Gymnasium Geometri med Geometer II I det første forløb om geometri med Geometer beskæftigede i os især med at konstruere på skærmen. Ved hjælp af konstruktionerne

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Opgave 1 A. Opgave 2 A m 2 B. 125,66 m 2 C m 2 D m 2

Opgave 1 A. Opgave 2 A m 2 B. 125,66 m 2 C m 2 D m 2 Opgave 1 Opgave 2 21 000 m 2 B. 125,66 m 2 C. 1200 m 2 D. 185 540 m 2 Opgave 3 Det betyder, at en centimeter på tegningen svarer til 100 cm i virkeligheden B. 22m 2 C. D. E. Hvis længdeforholdet ændres

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Forslag til løsninger til opgaver i. Matematik En grundbog for lærerstuderende

Forslag til løsninger til opgaver i. Matematik En grundbog for lærerstuderende Forslag til løsninger til opgaver i Matematik En grundbog for lærerstuderende Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave Vi skal tegne alle de linjestykker, der forbinder

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

Trekantsberegning 25 B. 2009 Karsten Juul

Trekantsberegning 25 B. 2009 Karsten Juul Trekantsberegning 7,0 3 5 009 Karsten Juul ette häfte indeholder den del af trekantsberegningen som skal kunnes på - niveau i gymnasiet (stx) og hf ra sommer 0 kräves mere remstillingen undgår at forudsätte

Læs mere

Løsningsforslag til Geometri 4.-10. klasse

Løsningsforslag til Geometri 4.-10. klasse Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem

Læs mere

Geometri med Geometer I

Geometri med Geometer I f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller

Læs mere

dvs. vinkelsummen i enhver trekant er 180E. Figur 11

dvs. vinkelsummen i enhver trekant er 180E. Figur 11 Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.

Læs mere

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL 8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = 25 61 x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x + 1 5 = 9 4x

Læs mere

KonteXt +5, Kernebog

KonteXt +5, Kernebog 1 KonteXt +5, Lærervejledning/Web Facit til KonteXt +5, Kernebog Kapitel 3: Vinkler og figurer Version september 2015 Facitlisten er en del af KonteXt +5; Lærervejledning/Web KonteXt +5, Kernebog Forfattere:

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Geometri, (E-opgaver 9b & 9c)

Geometri, (E-opgaver 9b & 9c) Geometri, (E-opgaver 9b & 9c) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER...

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

1 Trekantens linjer. Indhold

1 Trekantens linjer. Indhold Geometri - Teori og opgaveløsning Formålet med disse noter er at give en grundig introduktion til geometri med fokus på hvad man har brug for til internationale matematikkonkurrencer. Noterne forudsætter

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen og Katrine Rude Laub Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

Forslag til løsninger til opgaver i. Matematik En grundbog for lærerstuderende

Forslag til løsninger til opgaver i. Matematik En grundbog for lærerstuderende Forslag til løsninger til opgaver i Matematik En grundbog for lærerstuderende 1 Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der

Læs mere

Forslag til løsning af Opgaver til analytisk geometri (side 338)

Forslag til løsning af Opgaver til analytisk geometri (side 338) Forslag til løsning af Opgaver til analytisk geometri (side 8) Opgave Linjerne har ligningerne: a : y x 9 b : x y 0 y x 8 c : x y 8 0 y x Der må gælde: a b, da Skæringspunkt mellem a og b:. Det betyder,

Læs mere

Formel- og tabelsamling

Formel- og tabelsamling Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens håndbogsserie 2005 Grundskolen Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens

Læs mere

Plangeometri FORHÅNDSVIDEN. I dette kapitel skal du arbejde med plangeometri. Plangeometri handler om figurer og egenskaber ved figurer i en plan.

Plangeometri FORHÅNDSVIDEN. I dette kapitel skal du arbejde med plangeometri. Plangeometri handler om figurer og egenskaber ved figurer i en plan. Plangeometri I dette kapitel skal du arbejde med plangeometri. Plangeometri handler om figurer og egenskaber ved figurer i en plan. I den første del af kapitlet skal du arbejde med trekanter, hvor du skal

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

Løsningsforslag til Geometri 1.-6. klasse

Løsningsforslag til Geometri 1.-6. klasse 1 Løsningsforslag til Geometri 1.-6. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser,

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil

Læs mere

Trigonometri at beregne Trekanter

Trigonometri at beregne Trekanter Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 )

Læs mere

Matematisk argumentation

Matematisk argumentation Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.

Læs mere

Formel- og tabelsamling

Formel- og tabelsamling Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens håndbogsserie nr. 2-2005 Folkeskolen Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens

Læs mere

Thomas Kaas Heidi Kristiansen. Gyldendal MATEMATIK KOPIMAPPE

Thomas Kaas Heidi Kristiansen. Gyldendal MATEMATIK KOPIMAPPE Thomas Kaas Heidi Kristiansen 8 KO L O R I T Gyldendal MATEMATIK KOPIMAPPE Thomas Kaas Heidi Kristiansen KOLORIT 8 Gyldendal KOLORIT 8 KOLORIT 8 MATEMATIK KOPIMAPPE 1. udgave, 1. oplag 2011 2011 Gyldendal

Læs mere

06 Formler i retvinklede trekanter del 2

06 Formler i retvinklede trekanter del 2 06 Formler i retvinklede trekanter del 2 I del 2 udledes (nogle af) de generelle formler, der gælder for sinus, cosinus og tangens i retvinklede trekanter. Sætning 1 For enhver vinkel v gælder der BEVIS

Læs mere

Geogebra Begynder Ku rsus

Geogebra Begynder Ku rsus Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant

Læs mere

Allan C. Malmberg Matematik i glimt For elever med særlig interesse og evne for faget INFA 2006 Allan C. Malmberg

Allan C. Malmberg Matematik i glimt For elever med særlig interesse og evne for faget INFA 2006 Allan C. Malmberg Allan C. Malmberg Matematik i glimt For elever med særlig interesse og evne for faget INFA 2006 Allan C. Malmberg Matematik i glimt For elever med særlig interesse og evne for faget INFA 2006 Seneste

Læs mere

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 1 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 1 ISBN: 978-87-92488-17-6 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber:

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: 8. 8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: Kvadrat Rektangel Parallelogram Trapez Ligebenet trekant Ligesidet trekant Retvinklet trekant Rombe Polygon Ellipse

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse Inspirationsforløb i faget matematik i 7.- 9. klasse Trekanter et inspirationsforløb om geometri i 8. klasse Indhold Indledning 2 Undervisningsforløbet 3 Mål for forløbet 3 Relationsmodellen 3 Planlægningsfasen

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK)

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK) Matematikundervisningen vil i år ændre sig en del fra, hvad eleverne kender fra de tidligere år. vil få en fælles grundbog, hvor de ikke må skrive i, et kladdehæfte, som de skal skrive i, en arbejdsbog

Læs mere

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 - 2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...

Læs mere

Projekt Beholderkonstruktion. Matematik - A

Projekt Beholderkonstruktion. Matematik - A Projekt Beholderkonstruktion Matematik - A [Skriv et resume af dokumentet her. Resumeet er normalt en kort beskrivelse af dokumentets indhold. Skriv et resume af dokumentet her. Resumeet er normalt en

Læs mere

Indhold. Servicesider. Testsider

Indhold. Servicesider. Testsider Indhold Servicesider Isometrisk papir.................................................... kopiside - Prikpapir............................................................. kopiside - Brøkkort.............................................................

Læs mere

Ligedannede trekanter

Ligedannede trekanter Ib Michelsen: Matematik C, Geometri, 1. kapitel 2011 Version 7.1 22-08-11 Rettet: tempel.png inkorporeret / minioverskrift rettet D:\Appserv260\www\2011\ligedannedeTrekanter2.odt Arven fra Grækenland Arven

Læs mere

Tema: Kvadrattal og matematiske mønstre:

Tema: Kvadrattal og matematiske mønstre: 2 Indholdsfortegnelse: Tema: Kvadrattal og matematiske mønstre: Side 4: Side 5: Side 9: Side 10: Side 12: Side 14: Side 15: Side 16: Side 19: Side 20: Side 21: Side 23: Problemformulering. En nem tilgang

Læs mere

Usædvanlige opgaver Lærervejledning

Usædvanlige opgaver Lærervejledning Mette Hjelmborg Usædvanlige opgaver Lærervejledning Gyldendal Usædvanlige opgaver, lærervejledning af Mette Hjelmborg 008 Gyldendalske boghandel, Nordisk Forlag A/S, København Forlagsredaktion: Stine Kock,

Læs mere

Tal og regning. 1 a 5 b 2 c 2 d 8 e 4 f 3 g 6 h 3. 3 a 2 b 5 c 3 d 3 e 2 f 12 g 2 h 7. 4 a 8 b 2 c 12 d 16 5... 7... 10. 6 2 og 5.

Tal og regning. 1 a 5 b 2 c 2 d 8 e 4 f 3 g 6 h 3. 3 a 2 b 5 c 3 d 3 e 2 f 12 g 2 h 7. 4 a 8 b 2 c 12 d 16 5... 7... 10. 6 2 og 5. Facitliste Tal og regning Tal og regning a 5 b c d 8 e 4 f g 6 h 9 a b 5 c d e f g h 7 4 a 8 b c d 6 5... 7... 0 6 og 5 7 9 cm og cm 8 a 4 b 6 c 0 d 0 e f g 4 h 9, 0 og 0 x 8 a 84 b 0 c d 56 e 44 f 5 g

Læs mere

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne median 50% halvdel geometri i tredje 3 rumfang normal 90 grader underlig indskrevet kilogram (kg) bage forkortelse tusinde (1000) rumfang beholder fylde liter passer ben sds bredde deci centi lineal tiendedel

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 Demo-udgave 2003 by bernitt-matematik.dk Kopiering og udskrift af denne bog er

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

Geometrisk tegning - Facitliste

Geometrisk tegning - Facitliste Geometrisk tegning - Facitliste Om kapitlet I dette kapitel om geometrisk tegning skal eleverne arbejde med forskellige tegneteknikker og hjælpemidler. De skal gengive og undersøge muligheder og begrænsninger

Læs mere

Facitliste til elevbog

Facitliste til elevbog Facitliste til elevbog Algebra a 8x 4 b 6x c 7x 8 d 0 5x e x 54 f 8x 6 x a x 7x + 4 b 48a 4 + 8a c 56x + x d 6a 4 5a e 4x 80x f 6a 4 4a a 8(x + ) b 5x(4x 7) c 4( a) d 9a ( a) e 4( + 7a ) f 6(x + y) 4 a

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Lektion 8s Geometri Opgaver

Lektion 8s Geometri Opgaver Matematik på Åbent VU Lektion 8s Geometri Indholdsfortegnelse Sammensatte figurer Kunstruktionsopgaver Trigonometri Lavet af Niels Jørgen ndreasen, VU Århus. Redigeret af Hans Pihl, KVU Lektion 8s Side

Læs mere

Matematik for malere. praktikopgaver. Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger.

Matematik for malere. praktikopgaver. Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger. Matematik for malere praktikopgaver 3 Tilhører: Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger 2 Indhold: Tegneopgave... side 4 Ligninger... side 8 Areal...

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

1 Oversigt I. 1.1 Poincaré modellen

1 Oversigt I. 1.1 Poincaré modellen 1 versigt I En kortfattet gennemgang af nogle udvalgte emner fra den elementære hyperbolske plangeometri i oincaré disken. Der er udarbejdet både et Java program HypGeo inkl. tutorial og en Android App,

Læs mere

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også?

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Et tal som både består af et helt tal og en brøk, for eksempel. Hvad hedder det? Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Hvad kalder man tallet over brøkstregen

Læs mere

Afstandsformlerne i Rummet

Afstandsformlerne i Rummet Afstandsformlerne i Rummet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

*HRPHWUL PHG *HRPH7ULFNV. - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser

*HRPHWUL PHG *HRPH7ULFNV. - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser *HRPHWUL PHG *HRPH7ULFNV q2nodvvh - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser INFA 1998 1 Forord I den nye læseplan for matematik og i den tilhørende undervisningsvejledning

Læs mere

Projekt 8.12 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter

Projekt 8.12 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Projekter: Kapitel 8 Projekt 8. Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Projekt 8. Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Trigonometrien til beregning af

Læs mere

til undervisning eller kommercielt brug er Kopiering samt anvendelse af prøvetryk El-Fagets Uddannelsesnævn

til undervisning eller kommercielt brug er Kopiering samt anvendelse af prøvetryk El-Fagets Uddannelsesnævn Flerfaset belastning 3-faset vekselstrøm Mindre belastninger tilsluttes normalt 230 V, hvorimod større belastninger, for at begrænse strømmen mest muligt, tilsluttes 2 eller 3 faser med eller uden nul.

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

fs10 1 Cykeltyveri og forsikring 2 Cyklers stelstørrelse 3 Cykelmotion 4 Cykelkonkurrence 5 En stejl strækning 6 Retvinklede trekanter Matematik

fs10 1 Cykeltyveri og forsikring 2 Cyklers stelstørrelse 3 Cykelmotion 4 Cykelkonkurrence 5 En stejl strækning 6 Retvinklede trekanter Matematik fs10 10.-klasseprøven Matematik Ekstraordinær prøve juni 2014 1 Cykeltyveri og forsikring 2 Cyklers stelstørrelse 3 Cykelmotion 4 Cykelkonkurrence 5 En stejl strækning 6 Retvinklede trekanter 1 Cykeltyveri

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig som også findes i en trigonometrisk variant, den såkaldte 'appelsin'-formel: Men da en trekants form

Læs mere

Pythagoras og andre sætninger

Pythagoras og andre sætninger Pythagoras og andre sætninger Pythagoras Pythagoras fra den græske ø Samos levede i det 6. århundrede f.v.t. fra ca. 580 til ca. 500. Han lægger som sagt navn til den sætning, vi tidligere har nævnt,

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også?

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Et tal som både består af et helt tal og en brøk, for eksempel 2 " #. Hvad hedder det? Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Hvad kalder man tallet over brøkstregen

Læs mere

GeomeTricks Windows version

GeomeTricks Windows version GeomeTricks Windows version Elevarbejdsark MI 130 En INFA-publikation - 1998 GeomeTricks - Elevarbejdsark Viggo Sadolin 16 september 1997 Oversigt over elevarbejdsarkene Klassetrin Type ark 3 4 5 6 7 8

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!

Matematik A STX december 2016 vejl. løsning  Gratis anvendelse - læs betingelser! Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da

Læs mere

1. Eksperimenterende geometri og måling

1. Eksperimenterende geometri og måling . Eksperimenterende geometri og måling Undersøgelse Undersøgelsen drejer sig om det såkaldte Firfarveproblem. For mere end 00 år siden fandt man ved sådanne undersøgelser frem til, at fire farver er nok

Læs mere

Plangeometri BEGREBER OG NAVNGIVNING. FORHÅNDSVIDEN Du skal bruge et digitalt værktøj til nogle af opgaverne på dette opslag. PLANGEOMETRI 79 OPGAVE 2

Plangeometri BEGREBER OG NAVNGIVNING. FORHÅNDSVIDEN Du skal bruge et digitalt værktøj til nogle af opgaverne på dette opslag. PLANGEOMETRI 79 OPGAVE 2 Plangeometri KTIVITT OPGV 2 PLNGOMTRI 79 GRR OG NVNGIVNING I en ligesidet trekant er siderne 6 m. realet af trekanten er 1,6 m 2. I dette kapitel skal du arejde med ktivitet for to til tre personer. eregn

Læs mere

Opgaver hørende til undervisningsmateriale om Herons formel

Opgaver hørende til undervisningsmateriale om Herons formel Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og

Læs mere

1 Trekantens linjer. 1.1 Medianer En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. 1.1 Medianer En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter, maj 007, Kirsten Rosenkilde 1 Geometrinoter Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, indskrivelige

Læs mere

4x + 3y + k 4(x + 3y + k) 2(y + x) + 2(xy + k) 7(2y + 3x) 2(k + 2(y + x))

4x + 3y + k 4(x + 3y + k) 2(y + x) + 2(xy + k) 7(2y + 3x) 2(k + 2(y + x)) A.0 A Algebradans x + y + k (x + y + k) (y + x) + (xy + k) (y + x) (k + (y + x)) k + k + k + (y +xy + k) (y + x) + k x + x + x + x + x + k (xy + (y + x) xy + xy + k (k + y + k) (xy + x) + y 6(x + xy) k

Læs mere

Projekt 2.4 Euklids konstruktion af femkanten

Projekt 2.4 Euklids konstruktion af femkanten Projekter: Kapitel Projekt.4 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen af den regulære femkant. 0. Forudsætninger, definitioner og

Læs mere

Animationer med TI-Nspire CAS

Animationer med TI-Nspire CAS Animationer med TI-Nspire CAS Geometrinoter til TI-Nspire CAS version 2.0 Brian Olesen & Bjørn Felsager Midtsjællands Gymnasieskoler Marts 2010 Indholdsfortegnelse: Indledning side 1 Eksempel 1: Pythagoras

Læs mere

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2011 Som bilag til dette opgavesæt er vedlagt et svarark 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole

Læs mere