Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff"

Transkript

1 Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Oversigt 1 Tæthedsfunktion Fordelingsfunktion Middelværdi af en kontinuert stokastisk variabel Varians af en kontinuert stokastisk variabel Kovariansen af to stokastiske variable 2 Eksempel 1 Eksempel 3 Eksempel 4 Eksempel 5 Eksempel 6 Eksempel 7 Eksempel 8 3 Regneregler for stokastiske variable Eksempel 9 Eksempel 1 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Tæthedsfunktion Tæthedsfunktion Tæthedsfunktion (probability density function (pdf)) Tæthedsfunktion for en kontinuert variabel Tæthedsfunktionen for en stokastisk variabel betegnes ved f() f() siger noget om hyppigheden af udfaldet for den stokastiske variabel X For kontinuerte variable svarer tætheden ikke til sandsynligheden, dvs. f() P (X = ) Et godt plot af f() er et histogram (kontinuert) f() P (a < X b) a b Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55

2 Tæthedsfunktion Fordelingsfunktion Tæthedsfunktion for en kontinuert variabel Fordelingsfunktion (distribution function eller cumulative density function (cdf)) For en kontinuert stokastisk variabel skrives tæthedsfunktionen som: f() Der gælder: f() for alle mulige f()d = 1 Fordelingsfunktion for en kontinuert stokastisk variabel betegnes ved F (). Fordelingsfunktionen svarer til den kumulerede tæthedsfunktion: F () = P (X ) F () = f(u)du f() = F () Et godt plot for fordelingsfunktionen er den kumulative fordeling Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Fordelingsfunktion Fordelingsfunktion Fordelingsfunktion (distribution function eller cumulative density function (cdf)) Den empiriske cumulative distribution function - ecdf Student height eample from Chapter 1: F () P (a < X b) = F (b) F (a) a b <- c(168,161,167,179,184,166,198,187,191,179) plot(ecdf(), verticals = TRUE) p <- seq(.9*min(), 1.1*ma(), length.out = 1) lines(p, pnorm(p, mean(), sd())) Fn() ecdf() Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55

3 Middelværdi af en kontinuert stokastisk variabel Varians af en kontinuert stokastisk variabel Middelværdi (mean) af en kontinuert stokastisk variabel Varians af en kontinuert stokastisk variabel Middelværdien af en kontinuert stokastisk variabel µ = f()d Variansen af en kontinuert stokastisk variabel: σ 2 = ( µ) 2 f()d Sammenlign med den diskrete definition: Sammenlign med den diskrete definition: µ = i f( i ) i=1 σ 2 = ( i µ) 2 f( i ) i=1 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Kovariansen af to stokastiske variable Kovariansen af to stokastiske variable Konkrete statistiske fordelinger Kovariansen af to stokastiske variable: Let X and Y be two random variables, then the covariance between X and Y, is Cov(X, Y ) = E[(X E[X])(Y E[Y ])] Der findes en række statistiske fordelinger, som kan bruges til at beskrive og analysere forskellige problemstillinger med Vi betragter nu kontinuerte fordelinger Normal fordelingen Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55

4 Skrivemåde: X U(α, β) Tæthedsfunktion: f() = 1 β α Middelværdi: µ = α+β 2 Taethed, f() Uniform fordeling U(4,5) Varians: σ 2 = 1 12 (β α)2 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Eksempel 1 Eksempel 1 - forts. Medarbejdere på en arbejdsplads ankommer mellem klokken 8. og 8.3. Det antages, at ankomsttiden kan beskrives ved en uniform fordeling. Hvad er sandsynligheden for at en tilfældig udvalgt medarbejder (Hans) ankommer mellem 8.2 og 8.3? 1/3=1/3 punif(3,,3)-punif(2,,3) Hvad er sandsynligheden for at en tilfældig udvalgt medarbejder (Martin) ankommer efter 8.3? 1-punif(3,,3) [1] [1] Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55

5 Taethed, f() Normalfordeling Normal fordelingen Skrivemåde: X N(µ, σ 2 ) Tæthedsfunktion: f() = 1 σ 2π ( µ) 2 e 2σ Middelværdi: µ = µ Varians: σ 2 = σ 2 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Normalfordeling N(,1 2 ) Sammenligning af to normalfordelinger med forskellig middelvardi og ens varians N(,1 2 ) N(5,1 2 ) Taethed, f() σ 2σ σ µ σ 2σ 3σ Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55

6 Sammenligning af tre normalfordelinger med ens middelvardi og forskellig varians Normal fordelingen Taethed, f() En standard normal fordeling: Z N(, 1 2 ) En normalfordeling med middelværdi og varians 1. Standardisering: En vilkårlig normal fordelt variabel X N(µ, σ 2 ) kan standardiseres ved at beregne Z = X µ σ Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Målefejl: En vægt har en målefejl, Z, der kan beskrives ved en standard normalfordeling, dvs Z N(, 1 2 ) dvs. middelværdi µ = og spredning σ = 1 gram. Vi måler nu vægten af ét emne pnorm(-2) [1].2275 Spørgsmål a): Hvad er sandsynligheden for at vægten måler mindst 2 gram for lidt? dnorm(z) P (Z 2) = z pnorm(-2) Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55

7 Spørgsmål b): Hvad er sandsynligheden for at vægten måler mindst 2 gram for meget? P (Z 2) =.2275 Spørgsmål c): Hvad er sandsynligheden for at vægten måler højst ±1 gram forkert? P ( Z 1) = P ( 1 Z 1) = P (Z 1) P (Z 1) = pnorm(2) [1].2275 dnorm(z) pnorm(1)-pnorm(-1) [1] dnorm(z) Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 z Per Brockhoff Introduktion til Statistik, z Forelæsning 3 Foråret / 55 Spørgsmål c): Hvad er sandsynligheden for at vægten måler højst ±1 gram forkert? P ( Z 1) = P ( 1 Z 1) = P (Z 1) P (Z 1) =.683 pnorm(1)-pnorm(-1) [1] dnorm(z) Eksempel 3 Indkomstfordeling: Det antages, at blandt en gruppe lærere i folkeskolen, at lønnen kan beskrives ved en normalfordeling med middelværdi µ = 28. og spredning σ = 1.. Spørgsmål a): Hvad er sandsynligheden for at en tilfældig udvalgt lærer tjener mere end 3.? P (X > 3) = P (Z > ) = P (Z > 2) = X N(3, 1 2 ) Z = X 28 1 N(, 1 2 ) Per Brockhoff Introduktion til Statistik, z Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55

8 Eksempel 3 Spørgsmål a): Hvad er sandsynligheden for at en tilfældig udvalgt lærer tjener mere end 3.? 1-pnorm(3, m = 28, s = 1) [1] pnorm((3-28)/1) [1].2275 dnorm(z) Eksempel 4 En mere smal fordeling: Det antages, at blandt en gruppe lærere i folkeskolen, at lønnen kan beskrives ved en normalfordeling med middelværdi µ = 29. og spredning σ = 4.. Spørgsmål a): Hvad er sandsynligheden for at en tilfældig udvalgt lærer tjener mere end 3.? z Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Eksempel 4 Spørgsmål a): Hvad er sandsynligheden for at en tilfældig udvalgt lærer tjener mere end 3.? 1-pnorm(3, m = 29, s = 4) [1].6297 Eksempel 5 Samme indkomstfordeling Det antages, at blandt en gruppe lærere i folkeskolen, at lønnen kan beskrives ved en normalfordeling med middelværdi µ = 29. og spredning σ = 4. Omvendt spørgsmål Angiv det interval, der dækker over 95% af læreres løn dnorm(z) qnorm(c(.25,.975), m = 29, s = 4) [1] z Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55

9 Skrivemåde: X LN(α, β) Tæthedsfunktion: Middelværdi: µ = e α+β2 /2 f() = { 1 β 2π 1 e (ln() α)2 /2β 2 >, β > ellers Taethed, f().25.2 LN(1,1) Log Normalfordeling LN(1,1) Varians: σ 2 = e 2α+β2 (e β2 1) Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Kontinuerte fordelinger i R Lognormal og : En log-normal fordelt variabel Y LN(α, β), kan transformeres til en standard normal fordelt variabel X ved dvs. X = ln(y ) α β X N(, 1 2 ) R norm unif lnorm ep Betegnelse Den uniforme fordeling Log-normalfordelingen Eponentialfordelingen d Tæthedsfunktion f() (probability density function). p Fordelingsfunktion F () (cumulative distribution function). q Fraktil (quantile) i fordeling. r Tilfældige tal fra fordelingen. Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55

10 Eksponentialfordelingen Tæthedsfunktionen { 1 f() = β e /β >, β > ellers er et special tilfælde af Gamma fordelingen anvendes f.eks. til at beskrive levetider og ventetider kan bruges til at beskrive (vente)tiden mellem hændelser i poisson fordelingen Middelværdi µ = β Varians σ 2 = β 2 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Sammenhæng mellem Eksponential og Poisson fordelingen Eksponential fordeling med β=1 1 Poisson: Diskrete hændelser pr. enhed.8 EXP(1) t 1 t 2 Eksponential: Kontinuert afstand mellem hændelser Taethed, f().6.4 tid t Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55

11 Eksempel 6 Eksempel 6 Kø-model - poisson proces Ep(2) distribution Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ = 2 minutter. En kunde er netop ankommet. Hvad er sandsynligheden for at der ikke kommer flere kunder indefor en periode på 2 minutter? 1-pep(2, rate = 1/2) dep(z, 1/2) P(X<2) =.63 P(X>2) = [1] z Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Eksempel 6 z=seq(,8,by=.1) plot(z,dep(z, 1/2),type = "l", main = "Ep(2) - distribution") polygon(c(2, seq(2, 8, by =.1), 8, 2), c(, dep(seq(2, 8, by =.1), 1/2),, ), col = "pink") tet(3,.7,"p(x>2)") tet(3,.3,"=.37") polygon(c(2, seq(2,, by = -.1),, 2), c(, dep(seq(2,, by =-.1), 1/2),, ), col = "grey") tet(1,.1,"p(x<2)") tet(1,.5,"=.63") Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Eksempel 7 En kunde er netop ankommet. Beregn sandsynligheden for at der ikke kommer flere kunder indefor en periode på 2 minutter vha. Poissonfordelingen λ 2min = 1, P (X = ) = e 1 1! 1 = e 1 dpois(,1) [1] ep(-1) [1] Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55

12 Regneregler for stokastiske variable Eksempel 8 Andre tidsperioder: Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ = 2 minutter. Vi betragter nu en periode på 1 minutter Beregn sandsynligheden for at der ikke kommer nogen kunder i perioden vha. Poissonfordelingen λ 1min = 5, P (X = ) = e 5 1! 5 = e 5 dpois(,5) Regneregler for stokastiske variable (Gælder BÅDE kontinuert og diskret) X er en stokastisk variabel. Vi antager at a og b er konstanter Da gælder: Middelværdi-regel: E(aX + b) = ae(x) + b Varians-regel: V ar(ax + b) = a 2 V ar(x) [1] Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Eksempel 9 Regneregler for stokastiske variable Eksempel 9 Regneregler for stokastiske variable Eksempel 9 Regneregler for stokastiske variable X er en stokastisk variabel. En stokastisk variabel X har middelværdi 4 og varians 6. Beregn middelværdi og varians for Y = 3X + 2 E(Y ) = 3E(X) + 2 = = 1 Var(Y ) = ( 3) 2 Var(X) = 9 6 = 54 X 1,..., X n er stokastiske variable Da gælder (når de er uafhængige): Middelværdi-regel: E(a 1 X 1 + a 2 X a n X n ) = a 1 E(X 1 ) + a 2 E(X 2 ) a n E(X n ) Varians-regel: V ar(a 1 X 1 + a 2 X a n X n ) = a 2 1V ar(x 1 ) a 2 nv ar(x n ) Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55

13 Eksempel 1 Flypassager-planlægning Regneregler for stokastiske variable Eksempel 1 Vægten af passagerer på en flystrækning antages normalfordelt X N(7, 1 2 ). Et fly, der kan tage 55 passagerer, må ma. lastes med 4 kg (kun passageres vægt betragtes som last). Beregn sandsynligheden for at flyet bliver overlastet Hvad er Y=Total passagervægt? Hvad er Y? I hvert fald IKKE: Y = 55 X!!!!!! Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Eksempel 1 Regneregler for stokastiske variable Eksempel 1 Hvad er Y=Total passagervægt? Y = 55 i=1 X i, hvor X i N(7, 1 2 ) Middelværdi og varians for Y : E(Y ) = E(X i ) = 7 = 55 7 = 385 i=1 i= Var(Y ) = Var(X i ) = 1 = 55 1 = 55 i=1 Bruger normalfordeling for Y : i=1 1-pnorm(4, m = 385, s = sqrt(55)) [1] Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Regneregler for stokastiske variable Eksempel 1 Eksempel 1 - FORKERT ANALYSE Hvad er Y? I hvert fald IKKE: Y = 55 X!!!!!! Middelværdi og varians for Y : E(Y ) = 55 7 = 385 Var(Y ) = 55 2 Var(X) = = 55 2 Bruger normalfordeling for Y : 1-pnorm(4, m = 385, s = 55) [1] Konsekvens af forkert beregning: MANGE spildte penge for flyselskabet!!! Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55 Oversigt Regneregler for stokastiske variable Eksempel 1 1 Tæthedsfunktion Fordelingsfunktion Middelværdi af en kontinuert stokastisk variabel Varians af en kontinuert stokastisk variabel Kovariansen af to stokastiske variable 2 Eksempel 1 Eksempel 3 Eksempel 4 Eksempel 5 Eksempel 6 Eksempel 7 Eksempel 8 3 Regneregler for stokastiske variable Eksempel 9 Eksempel 1 Per Brockhoff Introduktion til Statistik, Forelæsning 3 Foråret / 55

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Modul 3: Kontinuerte stokastiske variable

Modul 3: Kontinuerte stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 3: Kontinuerte stokastiske variable 3.1 Kontinuerte stokastiske variable........................... 1 3.1.1 Tæthedsfunktion...............................

Læs mere

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter.

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Eksempel I Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Per Bruun Brockhoff IMM DTU 02402 Eksempler 1 Eksempel I Tiden mellem kundeankomster på et posthus

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte fordelinger, Afsnit 5.1-5.2: - Fordelingsfunktion - Tæthedsfunktion - Eksempel:

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff. Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 0 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Repetition Stokastisk variabel

Repetition Stokastisk variabel Repetition Stokastisk variabel Diskret stokastisk variabel Udfaldsrum endelige eller tællelige mange antal elementer Sandsynlighedsfunktion f(x) er ofte tabellagt Udregning af sandsynligheder P( a < X

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Nanostatistik: Middelværdi og varians

Nanostatistik: Middelværdi og varians Nanostatistik: Middelværdi og varians JLJ Nanostatistik: Middelværdi og varians p. 1/28 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Ventetider i en Poissonproces Beskrivelse af kontinuerte fordelinger: - Median og kvartiler - Middelværdi - Varians Simultane fordelinger 1 Ventetider i en Poissonproces

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

INSTITUT FOR MATEMATISKE FAG c

INSTITUT FOR MATEMATISKE FAG c INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske

Læs mere

StatDataN: Middelværdi og varians

StatDataN: Middelværdi og varians StatDataN: Middelværdi og varians JLJ StatDataN: Middelværdi og varians p. 1/33 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle egetræer,

Læs mere

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3 Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april

Læs mere

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset

Læs mere

Almindelige kontinuerte fordelinger

Almindelige kontinuerte fordelinger Almindelige kontinuerte fordelinger Den uniforme fordeling Symbol: X Uniform a,b Beskrivelse: Et tilfældigt tal mellem a og b. Støtte: V X a, b. Tæthedsfunktion: f x 1/ b a for x a,b Fordelingsfunktion:

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Forelæsning 1: Intro og beskrivende statistik

Forelæsning 1: Intro og beskrivende statistik Kursus 02402 Introduktion til Statistik Forelæsning 1: Intro og beskrivende statistik Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Sandsynlighedsregning Oversigt over begreber og fordelinger

Sandsynlighedsregning Oversigt over begreber og fordelinger Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)

Læs mere

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Institut for Økonomi Aarhus Universitet Statistik 1, Forår 2001 Allan Würtz 4. April, 2001 En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Uniform fordeling Benyttes som model for situationer,

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 17. december 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 17. december 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider Skriftlig prøve, den: 17. december 015 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte

Læs mere

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................

Læs mere

Teoretisk Statistik, 16. februar Generel teori,repetition

Teoretisk Statistik, 16. februar Generel teori,repetition 1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University

Læs mere

Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel

Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel Kursus 02402/02323 Introducerende Statistik Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Version 1.1

Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Version 1.1 Noter i fejlteori Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen Version 1.1 April 2013 2 Indhold 1 Motivation 3 2 Det matematiske fundament 5 2.1 Lidt sandsynlighedsregning......................

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

3 Stokastiske variable 3.1 Diskrete variable

3 Stokastiske variable 3.1 Diskrete variable 3 Stokastiske variable 3.1 Diskrete variable Punktsandsnligheden benævnes P(x) = P(X = x). {x, P(x)} er en sandsnlighedsfordeling for den stokastiske variabel, X, hvis 1) P(x) $ 0 for alle værdier af x.

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Basal statistik. 30. januar 2007

Basal statistik. 30. januar 2007 Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 40, 2010 Produceret af Hans J. Munkholm bearbejdet af JC 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen s.445-8 dx Eksempler

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0

Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0 Middelværdi og varians Middelværdien af en diskret skalarfunktion f(x), for x = 0, N er: µ = N f(x) N x=0 For vektorfuktioner er middelværdivektoren tilsvarende: µ = N f(x) N x=0 Middelværdien er en af

Læs mere

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg.

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg. Noter til Biomat, 005. Kombinatorik. - eller kunsten at tælle. Alle tal i kombinatorik-afsnittet er hele og ikke-negative. Additionsprincippet enten - eller : Antag vi enten skal lave et valg med m muligheder

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Løsning til eksamen 16/

Løsning til eksamen 16/ 1 IMM - DTU 245 Probability 24-5-11 BFN/bfn Løsning til eksamen 16/12 23 Spørgsmål 1) 2 44% Man benytter formlen for skalering og positionsskift i forbindelse med varians og standardafvigelse, samt formlen

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. maj 05 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfn@dtu.dk Dagens emner afsnit 4.5 og 4.6 (Kumulerede) fordelingsfunktion

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Sandsynlighedsregning Stokastisk variabel

Sandsynlighedsregning Stokastisk variabel Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Simultane fordelinger Kovarians og korrelation Uafhængighed Betingede fordelinger - Middelværdi og varians - Sammenhæng med uafhængighed 1 Figur 1: En tæthedsfunktion

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Afsnit 3.3-3.5 Varians Eksempel: Forventet nytte Kovarians og korrelation Middelværdi og varians af summer af stokastiske variabler Eksempel: Porteføljevalg 1 Beskrivelse af fordelinger

Læs mere

Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@imm.dtu.dk Dagens nye emner afsnit 6.3 (og 6.4 Betingede

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 18. december 2013 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 18. december 2013 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 6 sider Skriftlig prøve, den: 8. december 0 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel:

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel: Normal fordeling Tæthedsfunktion for normalfordeling med middelværdi µ og varians σ 2 : Program (8.15-10): f() = 1 µ)2 ep( ( 2πσ 2 2σ 2 ) E µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4 1. vigtige sandsynlighedsfordelinger:

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Forelæsning 4: Konfidensinterval for middelværdi (og spredning)

Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Introduktion til Statistik Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X.

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X. Opgave I I en undersøgelse af et potentielt antibiotikum har man dyrket en kultur af en bestemt mikroorganisme og tilført prøver af organismen til 20 prøverør med et vækstmedium og samtidig har man tilført

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: XY. december 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

MM501/MM503 forelæsningsslides

MM501/MM503 forelæsningsslides MM501/MM503 forelæsningsslides uge 50, 2009 Produceret af Hans J. Munkholm 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen dx Eksempler = et udtryk, der indeholder

Læs mere

hvor a og b er konstanter. Ved middelværdidannelse fås videre

hvor a og b er konstanter. Ved middelværdidannelse fås videre Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Lineære transformationer, middelværdi og varians Helle Sørensen Uge 8, onsdag SaSt2 (Uge 8, onsdag) Lineære transf. og middelværdi 1 / 15 Program I formiddag: Fordeling

Læs mere

Betingede sandsynligheder Aase D. Madsen

Betingede sandsynligheder Aase D. Madsen 1 Uge 12 Teoretisk Statistik 15. marts 2004 1. Betingede sandsynligheder Definition Loven om den totale sandsynlighed Bayes formel 2. Betinget middelværdi og varians 3. Kovarians og korrelationskoefficient

Læs mere

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro Uge 48 II Teoretisk Statistik 7. november 003 Numerisk modelkontrol af diskrete fordelinger: intro Eksempel: kvalitetskontrol Goodness-of-fit test: generel teori Endeligt udfaldsrum Udfaldsrum uden øvre

Læs mere