Prøveeksamen december 2010 matematik studiet med svar

Størrelse: px
Starte visningen fra side:

Download "Prøveeksamen december 2010 matematik studiet med svar"

Transkript

1 Første studieår Introduktion til matematiske metoder Prøveeksamen december 2010 matematik studiet med svar Varighed: 4 timer Tilladte hjælpemidler: Lærebøger, notater mv. må medbringes. Ikke tilladte hjælpemidler: Elektroniske hjælpemidler som lommeregner og bærbar computer. Andet elektronisk udstyr må heller ikke medbringes. Dette inkluderer alle former for kommunikationsudstyr (mobiltelefon, PDA osv.), musikafspillere osv. Bemærk: Ingen form for kommunikation mellem eksaminanderne er tilladt. Opgavesættet findes på de følgende 5 sider. Vedrørende besvarelse: Svar skal begrundes med udregninger og/eller forklaringer. Sidste side indeholder formler og resultater, der må bruges ved besvarelse af opgaverne. Bemærk: Korte svar er indsat efter hvert spørgsmål. De er ment som en facitliste. En fuldstændig besvarelse kræver begrundelser og udregninger.

2 Opgave 1. Der er givet en anden ordens differensligning x(n + 2) x(n + 1) 6x(n) = 4 2 n. (1) (a) Bestem den fuldstændige løsning til den tilhørende homogene ligning. r 2 r 6 = 0, rødder 2 og 3. Løsning x(n) = c 1 ( 2) n + c 2 3 n, for alle c 1, c 2 R (b) Bestem en partikulær løsning til den givne ligning (1). Gæt på y(n) = c2 n. Partikulær løsning y p (n) = 2 n. (c) Bestem den fuldstændige løsning til den givne ligning (1). x(n) = c 1 ( 2) n + c 2 3 n 2 n, for alle c 1, c 2 R (d) Bestem den løsning til den givne ligning (1), der opfylder betingelserne x(0) = 5, x(1) = 1. x(n) = 3( 2) n n 2 n (e) Vis, at x p (n) = n + 1 er en partikulær løsning til differensligningen x(n + 2) x(n + 1) 6x(n) = 6n 5. (2) Indsæt x p (n) = n + 1 i venstre side og regn ud altså en løsning. (n ) (n ) 6(n + 1) = 6n 5 (f) Bestem den fuldstændige løsning til differensligningen x(n + 2) x(n + 1) 6x(n) = 6n n. (3) x(n) = c 1 ( 2) n + c 2 3 n 2 n + n + 1, for alle c 1, c 2 R, p.g.a. linearitet. Opgave 2. Denne opgave omhandler flere forskellige emner. (a) Vis, at x(n) = 1 n + 1 er en løsning til første ordens differensligningen x(n + 1) = n + 1 n + 2 x(n). Side 1 af 5

3 Sæt ind n + 1 n + 2 x(n) = n n + 2 n + 1 = 1 n altså en løsning. Findes der andre løsninger til denne differensligning? = x(n + 1) Ja, alle (b) Der er givet to følger c, c R, er løsninger. n + 1 x 1 (n) = 3 n, x 2 (n) = n3 n. Bestem koefficienterne b og c i differensligningen x(n + 2) + bx(n + 1) + cx(n) = 0, således at begge følger er løsninger til denne differensligning. Metode 1: Indsæt i ligningen. Det giver systemet med løsningerne b = 6 og c = b + c = b = 0 Metode 2: Ifølge teorien må 3 være en dobbeltrod i den karakteristiske ligning, altså (r 3) 2 = r 2 6r + 9, som giver b = 6 og c = 9. (c) Vis, at de tre følger i denne opgave, er lineært uafhængige følger. x(n) = 1 n + 1, x 1(n) = 3 n, x 2 (n) = n3 n Beregn Casorati determinanten for n = W (0) = = Ifølge teorien er de tre følger lineært uafhængige. Side 2 af 5

4 Opgave 3. (a) Løs følgende problem grafisk Minimér y 1,y 2 y 1 + 2y 2 y 1 + 6y 2 15, y 1 + y 2 5, y 1 + y 2 5, y 1 0, y 2 0 Minimumspunktet fås ved først at tegne de tre linier der umiddelbart fås af de tre øverste uligheder. Det brugbare område fås så umiddelbart (begrænset nedad) af tre linier samt den første kvadrant (y 1 0, y 2 0). Niveaulinierne for objektfunktionen har hældningskoefficient 1. Det mindste niveau, der overholder 2 begrænsningerne, er det hvor linien går igennem punktet (ȳ 1, ȳ 2 ) = (3, 2) Værdien af objektfunktionen i optimum er 7. (b) Opstil det duale problem og løs det vha. simplexmetoden. Maximér y 1,y 2 15x 1 + 5x 2 5x 3 x 1 + x 2 x 3 1, 6x 1 + x 2 + x 3 2, x 1 0, x 2 0, x 3 0 Simplextabellerne bliver (med lidt hovedregning og passende bibeholdelse af sjettedele og femtedele ) x 1 x 2 x 3 x 4 x 5 M x 1 x 2 x 3 x 4 x 5 M 0 5/6-7/6 1-1/6 0 4/6 1 1/6 1/6 0 1/6 0 2/ /6 5+15/6 0 15/6 1 5 x 1 x 2 x 3 x 4 x 5 M 0 1-7/5 6/5-1/5 0 4/ /6+7/30-1/5 1/6+1/30 0 2/6 4/30 = 1/ /6 21/6 } {{ } /6 } {{ } Vi ser, at maksimumspunktet er ( x 1, x 2, x 3 ) = (1/5, 4/5, 0). (c) Hvad sker der med den optimale duale løsning, hvis bibetingelsen y 1 + 6y 2 15 ændres til y 1 + 6y ? Optimumsværdien vil blive forøget med x = Side 3 af 5

5 (d) Betragt problemet Maksimér x 1,x 2 x 1 + 3x x 1 + 2x 2 6, x 2 1 4, x 1 0, x 2 0 To aspekter ved dette problem skiller sig ud fra et sædvanligt LP problem. Hvilke? Der er lagt en konstant (5) til det sædvanlige skalarprodukt i objektfunktionen. Dette ændrer tydeligvis intet. Desuden er anden bibetingelse ikke-lineær: x (e) Find løsningen til problemet ved at løse et tilsvarende LP-problem grafisk. Det tilsvarende LP problem er Maksimér x 1,x 2 x 1 + 3x 2 x 1 + 2x 2 6, x 1 2, x 1 0, x 2 0 Grafisk løsning giver optimalpunktet ( x 1, x 2 ) = (0, 3) med maksimalværdien af den oprindelige objektfunktion lig med 14. Opgave 4. Denne opgave omhandler systemer af differensligninger. Der er givet et system x 1 (n + 1) = 4x 1 (n) + 2x 2 (n), x 2 (n + 1) = x 1 (n) + x 2 (n). (a) Opskriv systemet på vektor-matrix form ved at bestemme en 2 2 matrix A, således at systemet skrives som x(n + 1) = Ax(n). A = [ 4 ] (b) Beregn udtryk for potenserne A n for alle n 1. Egenværdier for A: λ 1 = 2 og λ 2 = 3. Putzers algoritme giver efter simplifi- [ ] [ ] A n = 2 n + 3 n kation (c) Bestem den løsning til det givne system, der opfylder begyndelsesbetingelserne x 1 (0) = 4 og x 2 (0) = 1. Side 4 af 5

6 [ ] [ ] [ ] x1 (n) 2 6 = 2 n + 3 n x 2 (n) 2 3 (d) Bestem den fuldstændige løsning til det tilhørende inhomogene system x 1 (n + 1) = 4x 1 (n) + 2x 2 (n) + 2, x 2 (n + 1) = x 1 (n) + x 2 (n) + 3. [ ] [ ] [ ] x1 (n) 1 2 = 2 n c1 x 2 (n) 1 2 c 2 [ n 1 1 ] [ ] [ c1 3 + for alle c 1, c 2 R. Bemærk, at løsningen kan skrives på andre (ækvivalente) måder. c ] Side 5 af 5

matematik-økonomi-studerende

matematik-økonomi-studerende matematik-økonomi-studerende Første studieår Introduktion til matematiske metoder i økonomi Skriftlig prøveeksamen december 2012 med korte svar Dato: selvvalgt Tidspunkt: varighed 4 timer Tilladte hjælpemidler:

Læs mere

Varmeligningen og cosinuspolynomier.

Varmeligningen og cosinuspolynomier. Varmeligningen og cosinuspolynomier. Projekt for MM50 Marts 009 Hans J. Munkholm 0. Praktiske oplysninger Dette projekt besvares af de studerende, som er tilmeldt eksamen i MM50 uden at være tilmeldt eksamen

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan

Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan så vælge tegnet. - For at definere noget, eks en x værdi,

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Faglige delmål og slutmål i faget Matematik. Trin 1

Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål for matematik i 1. og 2. klasse. Undervisningen skal lede frem mod, at eleverne efter 2. klasse har tilegnet sig kundskaber og færdigheder,

Læs mere

BASE. Besvarelse til individuel skriftlig test

BASE. Besvarelse til individuel skriftlig test BASE Besvarelse til individuel skriftlig test Tirsdag d. 21. marts 2006 Tinne Hoff Kjeldsen Bitten Plesner 1 Opgave 1 Vandet i en pool med et volumen på 10.000 gallon indeholder 0,01% klor. Til tiden t

Læs mere

Differensligninger og populationsstørrelser

Differensligninger og populationsstørrelser Differensligninger og populationsstørrelser Søren Højsgaard Department of Mathematical Sciences Aalborg University, Denmark October 5, 2014 Printed: October 5, 2014 File: differensligninger-slides.tex

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2011 HTX

Læs mere

P2-projektforslag Kombinatorik: grafteori og optimering.

P2-projektforslag Kombinatorik: grafteori og optimering. P2-projektforslag Kombinatorik: grafteori og optimering. Vejledere: Leif K. Jørgensen, Diego Ruano 1. februar 2013 1 Indledning Temaet for projekter på 2. semester af matematik-studiet og matematikøkonomi-studiet

Læs mere

Differensligninger og populationsstørrelser

Differensligninger og populationsstørrelser Differensligninger og populationsstørrelser Søren Højsgaard Department of Mathematical Sciences Aalborg University, Denmark October 22, 2015 Printed: October 22, 2015 File: differensligninger-slides.tex

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

Matematik på Humlebæk lille Skole

Matematik på Humlebæk lille Skole Matematik på Humlebæk lille Skole Matematikundervisningen på HLS er i overensstemmelse med Undervisningsministeriets Fælles Mål, dog med få justeringer som passer til vores skoles struktur. Det betyder

Læs mere

1RWHWLOGLIIHUHQWLDOOLJQLQJHU

1RWHWLOGLIIHUHQWLDOOLJQLQJHU ote til differentialligninger rik Bennike marts 00 ROGIIUQOOJQQJU Først skal man naturligvis gøre sig klart hvilken orden differentialligningen er af. G G,? Indgår,, ( ) kun, eller er der også, ( ) 'IIUQOOJQQJUII

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Årsplan/aktivitetsplan for matematik i 6.c 2012-2013

Årsplan/aktivitetsplan for matematik i 6.c 2012-2013 Årsplan/aktivitetsplan for matematik i 6.c 2012-2013 Undervisere: Marianne Kvist (MKV) & Asger Poulsen (APO) Omfang: mandag kl. 10 00 11 20, onsdag kl. 10 00 11 20 4 lektioner pr. uge Matematikken i 6.c

Læs mere

MOGENS ODDERSHEDE LARSEN. Lineær Planlægning (programmering) med Excel

MOGENS ODDERSHEDE LARSEN. Lineær Planlægning (programmering) med Excel MOGENS ODDERSHEDE LARSEN Lineær Planlægning (programmering) med Excel 2. udgave 2007 1 Indhold FORORD Denne bog forklarer ved anvendelse af nogle typiske eksempler, hvad der er karakteristisk ved LP -

Læs mere

Skriftlig prøve i matematik 4

Skriftlig prøve i matematik 4 Matematik 4 for E4+D4/08 Opgavesæt 03 080527HEb Skriftlig prøve i matematik 4 Prøve d. 4. juni 2008 kl. 09.00-13.00. Ved bedømmelsen vægtes de 6 opgaver således: Opgave 1: 17% (Kompleks funktionsteori

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

Lineær programmering. med Derive. Børge Jørgensen

Lineær programmering. med Derive. Børge Jørgensen Lineær programmering med Derive Børge Jørgensen 1 Indholdsfortegnelse. Forord ---------------------------------------------------------------------------------- 2 Introduktion til lineær programmering

Læs mere

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX MATEMATIK NOTAT. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: MAJ 04 Michel Mandi (00).Gradsligningen Side af 9 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... INTRODUKTION:... 3 KOEFFICIENTER...

Læs mere

DiploMat 1 Inhomogene lineære differentialligninger

DiploMat 1 Inhomogene lineære differentialligninger DiploMat 1 Inhomogene lineære differentialligninger Preben Alsholm Uge Efterår 2008 1 Lineære Differentialligninger af anden orden 1.1 Den inhomogene ligning I Den inhomogene ligning I Vi betragter nu

Læs mere

Talrækker. Aktivitet Emne Klassetrin Side

Talrækker. Aktivitet Emne Klassetrin Side VisiRegn ideer 3 Talrækker Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Talrækker 2-4 Elevaktiviteter til Talrækker 3.1 Talrækker (1) M-Æ 5-9 3.2 Hanoi-spillet

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Smuk matematik eller hvorfor vejrudsigten aldrig passer?

Smuk matematik eller hvorfor vejrudsigten aldrig passer? Smuk matematik eller hvorfor vejrudsigten aldrig passer? Indhold 1. Vejrudsigter 2. Solsystemet 3. Lemminger 4. Fraktaler Overordnet handler det hele om kaos. Vejrudsigter Matematikken der beskriver vejret

Læs mere

Matematik, basis. Undervisningen på basisniveau skal udvikle kursisternes matematikkompetencer til at følge undervisningen

Matematik, basis. Undervisningen på basisniveau skal udvikle kursisternes matematikkompetencer til at følge undervisningen avu-bekendtgørelsen, august 2009 Matematik Basis, G-FED Matematik, basis 1. Identitet og formål 1.1 Identitet I matematik basis er arbejdet med forståelsen af de faglige begreber i centrum. Den opnåede

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Jan 2016 - juni 2016 Institution Hotel- og Restaurantskolen Uddannelse Fag og niveau Lærer(e) Hold EUX ernæringsassistent

Læs mere

Definition:... 1 Hældningskoefficient... 3 Begyndelsesværdi... 3 Formler... 4 Om E-opgaver 11a... 5

Definition:... 1 Hældningskoefficient... 3 Begyndelsesværdi... 3 Formler... 4 Om E-opgaver 11a... 5 Lineære funktioner Indhold Definition:... Hældningskoefficient... 3 Begndelsesværdi... 3 Formler... 4 Om E-opgaver a... 5 Definition: En lineær funktion er en funktion, hvor grafen er lineær. Dvs. grafen

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

MODUL 8. Differensligninger. Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN. Modulet er baseret på noter af Peter BEELEN.

MODUL 8. Differensligninger. Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN. Modulet er baseret på noter af Peter BEELEN. MODUL 8 Differensligninger Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN Modulet er baseret på noter af Peter BEELEN. 26. august 2014 2 Indhold 1 Introduktion 5 1.1 Rekursioner og differensligninger.........................

Læs mere

Lærervejledning Modellering (3): Funktioner (1):

Lærervejledning Modellering (3): Funktioner (1): Lærervejledning Formål Gennem undersøgelsesbaseret undervisning anvendes lineære sammenhænge, som middel til at eleverne arbejder med repræsentationsskift og aktiverer algebraiske teknikker. Hvilke overgangsproblemer

Læs mere

ÅRSPLAN MATEMATIK 10 C SKOLEÅRET 2015/2016. 13 piger, 5 tosprogede og 8 etnisk danske (15 17 år) 14 drenge, 7 tosprogede og 7 etnisk danske (15 17 år)

ÅRSPLAN MATEMATIK 10 C SKOLEÅRET 2015/2016. 13 piger, 5 tosprogede og 8 etnisk danske (15 17 år) 14 drenge, 7 tosprogede og 7 etnisk danske (15 17 år) LINIE 10 ÅRSPLAN MATEMATIK 10 C SKOLEÅRET 2015/2016 FAG: KLASSE: LÆRER: Matematik 10C Nicolai Thyssen KLASSEFORUDSÆTNINGER: Holdet består af 27 elever fordelingen af eleverne er: 13 piger, 5 tosprogede

Læs mere

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10.

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10. Form Undervisningen vil veksle mellem individuelt arbejde, gruppearbejde og tavleundervisning. Materialer Undervisningen tager udgangspunkt i følgende grundbøger og digitale lærings- og undervisningsplatforme.

Læs mere

Vejledende årsplan for matematik 5.v 2009/10

Vejledende årsplan for matematik 5.v 2009/10 Vejledende årsplan for matematik 5.v 2009/10 Uge Emne Formål Opgaver samt arbejdsområder 33-36 Geometri 1 Indlæring af geometriske navne Figurer har bestemte egenskaber Lære at måle vinkler med vinkelmåler

Læs mere

Matematik A. Studentereksamen. Torsdag den 22. maj 2014 kl. 09.00-14.00. Digital eksamensopgave med adgang til internettet. 1stx141-MATn/A-22052014

Matematik A. Studentereksamen. Torsdag den 22. maj 2014 kl. 09.00-14.00. Digital eksamensopgave med adgang til internettet. 1stx141-MATn/A-22052014 Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx141-MATn/A-22052014 Torsdag den 22. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Opgaveløsninger til eksamensopgaver. Opgavesæt 11

Opgaveløsninger til eksamensopgaver. Opgavesæt 11 E4+D4/10 H. Ebert BEREGNINGSTEKNIK INDENFOR ELEKTRONIKOMRÅDET 2 Opgaveløsninger til eksamensopgaver Opgavesæt 11 Beregningsteknik for E4+D4/10 Opgavesæt 11 100607HEb Skriftlig prøve i Beregningsteknik

Læs mere

M A T E M A T I K FAGBESKRIVELSE FOR UNDERVISNING I MATEMATIK PÅ HARESKOVENS LILLESKOLE:

M A T E M A T I K FAGBESKRIVELSE FOR UNDERVISNING I MATEMATIK PÅ HARESKOVENS LILLESKOLE: M A T E M A T I K FAGBESKRIVELSE FOR UNDERVISNING I MATEMATIK PÅ HARESKOVENS LILLESKOLE: Udgangspunktet for Hareskovens Lilleskoles matematikundervisning er vores menneskesyn: det hele menneske. Der lægges

Læs mere

MATEMATIK A. Indhold. 92 videoer.

MATEMATIK A. Indhold. 92 videoer. MATEMATIK A Indhold Differentialligninger... 2 Differentialregning... 3 Eksamen... 3 Hvorfor Matematik?... 3 Integralregning... 3 Regression... 4 Statistik... 5 Trigonometriske funktioner... 5 Vektorer

Læs mere

Årsplan 9. Klasse Matematik Skoleåret 2015/16

Årsplan 9. Klasse Matematik Skoleåret 2015/16 Årsplan 9 Klasse Matematik Skoleåret 2015/16 Hovedformål Årsplanen for 9 Klasse i Matematik tager udgangspunkt i Forenklede Fællesmål (Undervisningsministeriet) Formålet med undervisningen er, at eleverne

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen st10-mat/b-108010 Torsdag den 1. august 010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

Folkeskolens skriftlige Matematik Eksamen

Folkeskolens skriftlige Matematik Eksamen Folkeskolens skriftlige Matematik Eksamen (Do & Don ts) Indeholder: Den skriftligprøve generelt Færdighedsprøven Problemregningsprøven http://madsmatik.dk/ d.03-02-2016 1/8 Matematik Skriftlig eksamen:

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede

Læs mere

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515)

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515) Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM55) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 2 Juni 2008, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Lineære ligningssystemer

Lineære ligningssystemer enote 2 1 enote 2 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2017 Marie

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2 GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål:

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formål: Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formålet med undervisningen i matematik er, at eleverne bliver i forstå og anvende matematik i sammenhænge,

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe131-mat/b-31052013 Fredag den 31. maj 2013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Ugeseddel 12(10.12 14.12)

Ugeseddel 12(10.12 14.12) Ugeseddel (..) Matematisk Programmering Niels Lauritzen..7 FORELÆSNINGER I ugen. 7. gennemgik vi algoritmer til løsning af heltalsprogrammer ved hjælp af simplex algoritmen. Dette er heltalsprogrammeringsugesedlen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Side 1 af 11 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold maj-juni 06 Marie Kruses Skole stx matematik

Læs mere

2. Funktioner af to variable

2. Funktioner af to variable . Funktioner af to variable Opgave 1 Grafisk udformning af de to funktioner,, Opgave f (, y) = z = 5 y N(0) = z = 0 0 = 5 y + y = 5 C = ( ; y) = (0;0) r = 5 Dette medfører som vist en cirkel, med centrum

Læs mere

Optimering af New Zealands økonomi. Gruppe G3-115

Optimering af New Zealands økonomi. Gruppe G3-115 Optimering af New Zealands økonomi Gruppe G3-115 Det Teknisk-Naturvidenskabelige Fakultet Matematik og Matematik-Økonomi Frederik bajersvej 7G Telefon 99409940 http://math.aau.dk Titel: Tema: Optimering

Læs mere

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14:

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Udgangspunktet bliver en blød screening, der skal synliggøre summen af elevernes standpunkt. Det betyder i realiteten, at der uddeles 4 klasses

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx13-mat/b-1408013 Onsdag den 14. august 013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Fagplan for faget matematik

Fagplan for faget matematik Fagplan for faget matematik Der undervises i matematik på alle klassetrin (0. - 7. klasse). De centrale kundskabs- og færdighedsområder er: I matematik skal de grundlæggende kundskaber og færdigheder i

Læs mere

Matematik A Delprøven uden hjælpemidler

Matematik A Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 009 HHX091-MAA Matematik A Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

Kommentarer til matematik B-projektet 2015

Kommentarer til matematik B-projektet 2015 Kommentarer til matematik B-projektet 2015 Mandag d. 13/4 udleveres årets eksamensprojekt i matematik B. Dette brev er tænkt som en hjælp til vejledningsprocessen for de lærere, der har elever, som laver

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2012 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg stx

Læs mere

Vedlagt følger en beskrivelse af proceduren ved skriftlig censur samt en vejledning i bedømmelse af besvarelserne.

Vedlagt følger en beskrivelse af proceduren ved skriftlig censur samt en vejledning i bedømmelse af besvarelserne. o Til censor Fagkonsulent Matematik, htx Vedr.: Skriftlig censur i matematik på htx Velkommen som skriftlig censor i matematik på htx. Marit Hvalsøe Schou Oehlenschlægersvej 55 5230 Odense M Tlf: 2565

Læs mere

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb. Termin Aug 10- jun 11

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb. Termin Aug 10- jun 11 Studieplan Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Aug 10- jun 11 Institution Uddannelse Fag og niveau Lærer(e) Hold Grenaa Tekniske Gymnasium HTX Matematik B1 Klavs Skjold

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2017 Institution Hotel- og Restaurantskolen Uddannelse Fag og niveau Lærer(e) Hold HTX Gastro-science

Læs mere

Spontan biologisk mønsterdannelse på basis af reaktions-diffusions mekanismer: Turing strukturer

Spontan biologisk mønsterdannelse på basis af reaktions-diffusions mekanismer: Turing strukturer Spontan biologisk mønsterdannelse på basis af reaktions-diffusions mekanismer: Turing strukturer Axel Hunding Spontan dannelse af komplekse strukturer i biologien kan synes at stride mod sund fornuft (og

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Ugur Kitir HTX - Roskilde 01/05 2009

Ugur Kitir HTX - Roskilde 01/05 2009 Vi har fået opgaven i forbindelse med vores produkt til vores interne prøve. Jeg skal i opgaven konkretisere hvad min målgruppe er og ud fra det skal beskrive et design der passer til målgruppen. Jeg starter

Læs mere

Matlab-kommandoer. Robert Jacobsen. 9. august 2010

Matlab-kommandoer. Robert Jacobsen. 9. august 2010 Matlab-kommandoer Robert Jacobsen 9. august 2010 1 Kommandoer til Matlabs funktionaliteter Ønsker man at køre Matlab fra terminalen, ses de mulige options med matlab -help. For at starte Matlab uden det

Læs mere

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb. Termin Aug 10- jun 11

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb. Termin Aug 10- jun 11 Studieplan Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Aug 10- jun 11 Institution Uddannelse Fag og niveau Lærer(e) Hold Grenaa Tekniske Gymnasium HTX Matematik B1 Klavs Skjold

Læs mere

(UKYHUYV NRQRPL)RUnU &KU+MRUWK$QGHUVHQ

(UKYHUYV NRQRPL)RUnU &KU+MRUWK$QGHUVHQ (UKYHUYV NRQRPL)RUnU &KU+MRUWK$QGHUVHQ (QQRWHRPOLQH USURJUDPPHULQJ Lineær programmering, eller LP-modeller, som de ofte kaldes, var en metode, der blev udviklet i 50'erne og 60'erne. I Danmark var især

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2009 Institution Herningsholm Gymnasium Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B og A (1.år)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Termin hvori undervisningen afsluttes: maj juni 10 HTX Sukkertoppen,

Læs mere

VIA læreruddannelsen Silkeborg. WordMat kompendium

VIA læreruddannelsen Silkeborg. WordMat kompendium VIA læreruddannelsen Silkeborg WordMat kompendium Bolette Fisker Olesen 25-11-2015 Indholdsfortegnelse Ligning... 2 Løs ligning... 2 WordMat som lommeregner... 4 Geometri... 4 Trekanter... 4 Funktioner...

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Matematik C. Højere forberedelseseksamen

Matematik C. Højere forberedelseseksamen Matematik C Højere forberedelseseksamen 2hf111-MAT/C-26052011 Torsdag den 26. maj 2011 kl. 9.00-12.00 Opgavesættet består af 7 opgaver med i alt 15 spørgsmål. De 15 spørgsmål indgår med lige vægt ved bedømmelsen.

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau B. Delprøven uden hjælpemidler

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau B. Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 008 HHX08-MAB Matematik Niveau B Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Aug 09- jun 10 Institution Uddannelse Fag og niveau Lærer(e) Hold Grenaa Tekniske Gymnasium htx Matematik

Læs mere

Spektralanalyse. Jan Scholtyßek 09.11.2008. 1 Indledning 1. 2 Formål. 3 Forsøgsopbygning 2. 4 Teori 2. 5 Resultater 3. 6 Databehandling 3

Spektralanalyse. Jan Scholtyßek 09.11.2008. 1 Indledning 1. 2 Formål. 3 Forsøgsopbygning 2. 4 Teori 2. 5 Resultater 3. 6 Databehandling 3 Spektralanalyse Jan Scholtyßek 09..2008 Indhold Indledning 2 Formål 3 Forsøgsopbygning 2 4 Teori 2 5 Resultater 3 6 Databehandling 3 7 Konklusion 5 7. Fejlkilder.................................... 5 Indledning

Læs mere

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014 Institution Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Kapitel 4 ØVELSER. Øvelse 1 a) 100 kr. b) 10 km. c) 6,7 km. d) 63 kr. Øvelse 2 - Øvelse 3 - Øvelse 4 - Øvelse 5 a). b) og. c) d) Højst 6 km.

Kapitel 4 ØVELSER. Øvelse 1 a) 100 kr. b) 10 km. c) 6,7 km. d) 63 kr. Øvelse 2 - Øvelse 3 - Øvelse 4 - Øvelse 5 a). b) og. c) d) Højst 6 km. 1 af 19 FACITLISTE, HHX MAT C, 3. udgave Udskriv siden Kapitel 4 ØVELSER Øvelse 1 a) 100 kr. 10 km. c) 6,7 km. d) 63 kr. Øvelse 2 - Øvelse 3 - Øvelse 4 - Øvelse 5 a). og. c) d) Højst 6 km. Øvelse 6 Kurverne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2015 Institution Kolding HF og VUC, Kolding Åpark 16, 6000 Kolding Uddannelse Flexhold Matematik

Læs mere

Vejledende årsplan for matematik 4.v 2008/09

Vejledende årsplan for matematik 4.v 2008/09 Vejledende årsplan for matematik 4.v 2008/09 Uge Emne Formål Opgaver samt arbejdsområder 33-35 Kendskab og skriftligt arbejde At finde elevernes individuelle niveau samt tilegne mig kendskab til deres

Læs mere

Der anvendes ikke blandet tal, men uægte brøker. Ikke så vigtigt (bortset fra beløb). Alle decimaler skal med i mellemregninger.

Der anvendes ikke blandet tal, men uægte brøker. Ikke så vigtigt (bortset fra beløb). Alle decimaler skal med i mellemregninger. Faglige Områder Tal og brøker Der anvendes blandet tal. Der anvendes ikke blandet tal, men uægte brøker. Anvender brøker Anvender både blandet tal og brøker. Antal cifre Der skal afrundes til et passende

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx101-MAT/B-26052010 Onsdag den 26. maj 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet Forberedelsesmateriale frs-matn/a-270420 Onsdag den 27. april 20 Forberedelsesmateriale til stx-a-net MATEMATIK Der skal afsættes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin 2011-2012 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold stx Matematik B Bente Madsen 1e mab Oversigt over gennemførte undervisningsforløb Titel 1 Titel

Læs mere

Undervisningsplan for faget matematik. Ørestad Friskole

Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2

Læs mere

Opgaver til Maple kursus 2012

Opgaver til Maple kursus 2012 Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, jojep07@student.sdu.dk Martin Gyde Poulsen, gyde@nqrd.dk October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +

Læs mere