Kom godt i gang med Maple 12 (Document mode)

Størrelse: px
Starte visningen fra side:

Download "Kom godt i gang med Maple 12 (Document mode)"

Transkript

1 Kom godt i gang med Maple 12 (Document mode) Adept Scientific 2008 I Document mode har du en helt blank side at skrive på, og altså ingen røde >. Når du åbner en ny side, ser øverste venstre hjørne således ud Cursoren står skråt, og er således klar til at modtage en 'matematik'-indtastning (math-mode). Et tryk på F-knappen stiller cursoren lodret og klar til at modtage en tekst-indtastning (text-mode) Skriver du tekst, kan du ved at trykke F skifte til math-mode, skrive en formel eller lignende, og skifte tilbage til text-mode med F når du er færdig med formlen. Indtastning af taludtryk - simple beregninger Indtast i math-mode: 2 C2 4 (1) Dette blev indtastet ved i math-mode at taste 2 C2 efterfulgt af Enter. Du kan også få beregningen foretaget in-line: 2 C2 = 4. Her er 2 C2 indtastet i math-mode, og selve beregningen er foretaget ved at taste Ctrl+=. Efter resultatet er der skiftet til text-mode med F. Det er vigtigt, at du bliver fortrolig med Maples formeleditor. Skal du fx indtaste et udtryk som kan du naturligvis taste ind ved at sætte en parentes om tælleren, altså som (17-2)/ 17 K2, 17 K2 = 3 Det ser bare ikke så kønt ud med denne overflødige parentes i tælleren. Men Maple kan gøre det bedre: 1. Sørg for, at du befinder dig i math-mode (tast evt. F)

2 2. 3. Marker hele tælleren ved at trække med musen - eller alternativt: Hold Shift-tasten nede, og tryk på pil-venste et par gange til hele udtrykket er markeret. 4. Med hele tælleren markeret taster du / for division. Straks vil en pæn brøk komme frem med cursoren stående i nævneren.. Indtast først tælleren 17 K2. Indtast nævneren, og tast Ctrl+= 17 K2 3 = Arbejdsområde 1 1. Indtast ovenstående brøk og check, at alt virker som det skal C17 Indtast også udtrykket C 3. Der opstår sikkert et problem, når du skal indtaste C4, idet din cursor er placeret i nævneren i den første brøk. Her gør pil-højre tasten underværker. Skal du indtaste mere komplicerede udtryk, fx potenser, kvadratrødder, n-te rødder mv., så klik på pilen i Expression-knappen (i skærmens højre side):

3 Dette vil åbne Expression-paletten, hor du finder skabeloner til at lette indtastningen. Skal du fx skrive potens 2 4, så klikker du på knappen a b. Dette vil give dig denne skabelon i indtastningslinjen: du indtaster et 2-tal, og trykker herefter på TAB-knappen på tastaturet. Eksponenten b vil så blive markeret med blåt, og du kan indtaste 4-tallet. Sådan virker i princippet alle skabeloner med mere end én pladsholder. 2 4 = 16

4 Arbejdsområde 2 Eksperimenter med potens-skabelonen, og indtast herefter udtrykkene K3.17 C 2.32 K K2 3 2 C 3 C3 2 Som du sikkert har bemærket, så returnerer Maple altid - om muligt - det eksakte resultat. Dvs., at hvis der forekommer et decimaltal i udtrykket, så returneres resultatet som et decimaltal, ellers returneres det eksakte resultat. Du kan tvinge Maple til at aflevere et tilnærmet resultat således: Hvis du skal lave en tilnærmet beregning af fx 1 C så højre-klikker du på udtrykket, hvorved en 2 kontekst sensitiv menu kommer frem. Denne menu rummer det, der vil være relevant at gøre ved udtrykket:

5 Prøv at højre-klikke på udtrykket her: 1 C 2 Vælger du, som vist ovenfor, at approksimere med cifre, får du 1 C 2 Du kan oversætte teksten 'at digits' til dansk 1 C 2 at digits med decimaler Nu er en pil måske ikke den bedste måde at vise, at der er sket en approksimation, så slet pilen med tekst, og indsæt i stedet et (findes i Common Symbols paletten): 1 C z Men kan det så stadig regne? Ja! Prøv at ændre lidt i udtrykker (erstat fx 2 med 3 i nævneren). Der sker tilsyneladende ingenting, men hvis du genberegner ved at lade cursoren stå i udtrykket og trykker på!- knappen, så vil udtrykket blive korrekt genberegnet:

6 Endvidere kan du skrive tekst i stedet: 1 C 3 z C 2 giver med cifre Selv dette vil opdatere korrekt, hvis du ændrer i udtrykket og efterfølgende trykker på!-knappen. Endelig kan du også selv skrive kommandoen evalf, og beregne in-line: evalf 1 C 2 = Arbejdsområde 3 Udregn nedenstående udtryk, og afgør, om de er hele tal. OBS: π og e (den naturlige logaritmes grundtal) skal skrives vha. Common Symbols-paletten sin 2017$ 2 e π$ 163 K Regning med symbolske udtryk Nogle symbolske udtryk reduceres automatisk - andre ikke. Fx vil automatisk reduktion ske i udtrykkene (in-line beregning er benyttet): x C2 x C3 x C4 y C y C6 y = 6 x C1 y 23 x C2 = 6 x C4 men ikke i x$ 3 x C2 Det meget vigtigt at du skriver et gange-tegn mellem parentesen. I modsat fald vil Maple opfatte udtrykket som funktion med navnet x, der skal udregnes på 3 x C4. Du kan tvinge Maple til at gange parenteser ud ( - altså at omskrive til ledform) ved at højre-klikke på udtrykket, og vælge expand i kontekstmenuen:

7 expand x 3 x C4 = 3 x 2 C4 x - altså en slags selv-dokumenterende beregning, hvor du kan naturligvis ændre 'expand' til noget mere dansk. Den almindelige kommando-syntaks kombineret med in-line beregning kan også benyttes: expand x 3 x C4 = 3 x 2 C4 x Brøken a2 Kb 2 kan forkortes a Kb. Det ses nemmest ved at omskrive tælleren til a Cb $ a Kb. a Cb Men kan vi få Maple til det? Der sker ingen automatisk forkortning (det ville ske, hvis der kun indgik tal): a 2 Kb 2 a Cb = a2 Kb 2 a Cb Expand giver heller ikke det ønskede, men naturligvis det forventede, idet brøken nu er skrevet som en differens af to led (altså bragt på ledform). a 2 Kb 2 a Cb Derimod er kommandoen normal skabt til opgaven. expand a 2 = a Cb K b2 a Cb a 2 Kb 2 a Cb normal a Kb Kommandoen simplify kan også bruges her (Prøv!). Denne forenkler - om muligt - udtrykket mest muligt. Dette kan også indbefatte at gange parenteser ud. Den almindelige kommando-syntaks kombineret med in-line beregning kan også benyttes: normal a 2 Kb 2 a Cb = a Kb Den sidste kommando til manipulation af symbolske udtryk, vi vil se på her, er factor, der faktoriserer et symbolsk udtryk: a 2 Kb 2 factor = a Kb a Cb x 2 C4 x C3 factor = x C3 x C1 Arbejdsområde 4 Omskriv med passende Maple kommandoer kvadratet på en to-leddet størrelse a Cb 2 til formen

8 a 2 Cb 2 C2 a$b Addition af talbrøker, fx 2 3 C, vil altid ske automatisk i Maple. Prøv! Derimod er der ingen 7 automatik, hvis du forsøger dig med fx 1 a C 1. Hvordan skal man så få dem på fælles brøkstreg? b Variabler og formler Du gemmer et udtryk i en variabel ved at benytte tildelingssymbolet :=, der er et kolon efterfulgt af et lighedstegn. Fx vil tildelingen (der er sat et kolon efter tildelingen for at undgå Maples respons på tildelingen): abc d 14 x 3 C 7 x$y 3 : bevirke, at udtrykket 14 x 3 C 7 gemmes i variablen abc. Herefter kan abc benyttes i stedet for det 3 x$y oprindelige udtryk. Fx abc 7 = 2 x 3 C 1 x y 3 Læg mærke til, at det er det symbolske udtryk, der gemmes i variablen abc. Hvis x og y får tildelelt talværdier, så vil abc beregnes til en talværdi. Tildel x værdien 2, og y værdien 3. Dette sker også med tildelingssymbolet := x d 2: y d 3: hvor kolon (:) efter tildelingerne betyder, at vi ikke ønsker at se output, der jo blot ville være i stil med x = 2 og y = 3. Beregner du nu abc, får du et tal: abc = 60 4 Når du tildeler værdi med x d 2 og y d 3, så har x og y disse værdier indtil du giver dem nye værdier ved en ny tildeling. Da specielt x og y ofte benyttes i beregninger, er det ikke smart, at de har faste værdier. Du kan rense x og y ved at skrive: x d'x': y d'y': Du kan lave en tildeling af værdier til x og y, der kun er aktiv så længe beregningen af abc står på. Dette kaldes en lokal tildeling. Hertil kan du benytte eval - kommandoen: eval abc, x =2,y =3 = 60 4 Alternativt kan du benytte skabelonen

9 fra Expression-paletten. Denne udfyldes således: abc x =2,y =3 = 60 4 Arbejdsområde Prøv at tildele nye værdier til x og y ovenfor (husk at trykke på!-knappen efter tildelingen mens du stadig befinder dig i linjen - ellers bliver linjen ikke udført). Beregn så abc ved at gå til linjen med abc, og tryk på!-knappen Rumfanget af en tønde med højde h, radius R og endefladeradius r beregnes med formlen: V = π$h 1 8 R 2 C4 r$r C3r 2 Find rumfanget af en tønde, når h = 11, r = 4 og R =. Prøv med begge former for tildeling. Undertiden får du behov for at få Maple til at glemme alle tildelinger, du har lavet. Dette klarer du nemt ved at fyre restart kommandoen af (der kommer ingen output fra denne kommando): restart abc, r, R abc, r, R (2) Som det ses, har Maple glemt alt om tildelingen af værdier til variablerne abc, r og R. Du kan føje kommentarer til en kommando linje ved at placere # foran kommentaren, fx restart #Maple glemmer alt Ligningsløsning Ligningsløsning går for det meste let og smertefrit i Maple, men dog langt fra altid! Du skal nu løse ligningen

10 x = 1 x K1 Højre-klik på ligningen, og vælg menupunktet solve. Så ser du en liste over de muligheder du har: Vi nøjes her med at se på de 3 sidste muligheder: x = 1 x K1 solutions for x 1 2 C 1 2, 1 2 K 1 2 x = 1 x K1 solve x = 1 2 C 1 2, x = 1 2 K 1 2 x = 1 x K1 solve for x x = 1 2 C 1 2, x = 1 2 K 1 2 Blandt disse vælger man den, der i den konkrete situation giver den mest bekvemme form. Men hvordan får vi plukket en specifik løsning ud, fx den positive, og får denne tildelt navnet L1: x = 1 x K1 solve x = 1 2 C 1 2, x = 1 2 K 1 2 select entry 1 x = 1 2 C 1 2 assign to L1 x = 1 2 C 1 2 Dette laves således: 1. Højre-klik på resultatet af solve, og vælg menupunktet Select Element > Højre-klik på resultatet af select entry 1, og vælg menupunktet Assign to a Name. Dette kalder en dialogboks frem, hvor du skal indtaste det ønskede navn

11 Du kan checke, om alt er i orden ved at udregne L1: L1 = x = 1 2 C 1 2 Alternativ metode: L d solve x = 1 x K1, x = 1 2 C 1 2, 1 2 K 1 2 L 1 = 1 2 C 1 2 Her navngives løsningerne, der returneres fra solve, med L. Elementerne i L udtrækkes med L 1 for det første element, og L 2 for det andet. I stedet for L 1 kan du skrive L 1, hvor indekset er lavet med L_1. Løsning af flere ligninger med flere ubekendte sker tilsvarende, blot skal du samle ligningerne i krøllede parenteser {}, og tilsvarende for de variabler, du løser med hensyn til. Et eksempel: Løs ligningssystemet: x 2 C2 x Cy 2 K4 y =3 y =4 x Af hensyn til overskueligheden (og senere reference), navngiver vi ligningerne: lign1 d x 2 C2 x Cy 2 K4 y =3: lign2 d y =4 x : L d solve lign1, lign2, x, y x = K 3 17, y = K12 17, x =1,y =4 (3) Løsningerne er altså K 3 17,K12 og 1, 4. Geometrisk svarer denne opgave til at finde 17 skæringspunkterne mellem en cirkel og ret linje.

12 Arbejdsområde Løs den generelle andegradsligning a$x 2 Cb$x Cc = 0 med hensyn til x. Løs ligningssystemet (med hensyn til x og y): x Cy = a Ky C4 x = b Tildel a og b nogle værdier, og løs ovenstående ligningssystem igen. Isoler R, r og h i ligningen (benyt Isolate Expression for): V = π$h 1 8 R 2 C4 r$r C3r 2 Højre-klik på ligningen 2 x$ x K3 C4 =2 x 2 K3 $ x K2 og vælg Manipulate Equation i kontekstmenuen. Du får da en dialogboks frem, hvor du kan manipulere ligningen. Eksperimenter med mulighederne. Når dialogen afsluttes kan Maple skrive alle skridt: 2 x$ x K3 C4 =2 x 2 K3 $ x K2 manipulate equation 2 x x K3 C4 =2 x 2 K3 x C6 2 x x K3 K2 K2 x 2 C3 x =0 K3 x K2 =0 K3 x =2 x = K 2 3 (4) Uligheder Uligheder løses ligesom ligninger - blot skal du anvende et ulighedstegn: <, >, eller - hvor de første to sidder på tastaturet, mens de to sidste findes i Common-symbols paletten. Lad os se på et eksempel:

13 solve K 1 2 x2 K6 x K16 % 2 x C14, x RealRange KN, K10, RealRange K6, N () Løsningen skal her opfattes som KN,K10 g K6,N. solve K 1 2 x2 K6 x K16! 2 x C14, x RealRange KN, Open K10, RealRange Open K6, N (6) Her skal løsningen tilsvarende opfattes som KN,K10 g K6,N. Labels Du har sikkert bemærket de numre, der står ud for nogle af resultaterne i højre side af skærmen. Disse numre kaldes Labels, og dem kan du bruge, når du vil referere til tidligere resultater. Disse resultater kan være tal, tildelinger, løsninger mv. 2 C3 #resultatet bliver et tal v d x Cy Cz #resultatet bliver en tildeling x Cy Cz solve x 2 C2 x K2 =0,x #resultatet bliver en udtryksfølge K1 C 3,K1 K 3 (7) (8) (9) Hvis du vil referere til et af disse resultater, taster du Ctrl+l (dvs, du holder Ctrl-tasten nede, og trykker på l). Dette bevirker, at en lille boks popper op: I Label Value feltet skriver du nummeret - uden parenteser! Labels opdateres automatisk, hvis du putter en ny udregning ind i en eksisterende følge. For at se, hvad de enkelte labels rummer, udregnes disse (husk, at dette skal foregå i math-mode): (7) (10)

14 (8) x Cy Cz (9) K1 C 3,K1 K 3 Labels kan indgå lige som variabler i udtryk (under forudsætning af, at det giver mening): (11) (12) (7) 2 C(9) C K1 C 3 2 (13) hvor (9) 1 er det første element i udtryksfølgen (9). Funktioner Funktioner i Maple skal defineres efter syntaksen f d x/udtryk i x Du kan benytte skabelonen f := a / y fra Expression-paletten når du skal definere funktioner, men da du skkert ofte kommer ud for at skulle definere en funktion, kan du lige så godt lære genvejen med det samme: Pilen laves ved at taste -> (altså en bindestreg efterfulgt af et 'større end' tegn). Definer en funktion ved: f d x/x 2 K2 x C x/x 2 K2 x C (14) Herefter er funktionen klar til brug. Du kan fx udregne nogle funtionsværdier: f 2 = f C3 = C3 2 K2 K1 f acb = a Cb 2 K2 a K2 b C Der er et væld af funktioner indbgget i Maple. Du kan få en oversigt i hjælpesiderne, som du får adgang til via menuen Help > Maple Help. Prøv her at søge efter function, og find oversigten function,index i søgeresultaterne. Hvis du ved, hvad du skal have fat i fra hjælpesiderne, kan du med?-kommandoen få den ønskede hjælpeside frem straks:?index,function Hvis du prøver at definere en funktion ved f x d udtryk i x, brokker Maple sig, og beder dig bekræfte, at det er en funktion, du er i færd med at definere.

15 Ofte udelader man i matematik at skrive gangetegn mellem en variabel og en parentes, fx skriver man abcc, selvom man faktisk mener a$ b Cc. Den går ikke i Maple! a$ c Cb accb a c Cb accb (1) (16) Læg mærke til forskellen i output. Maple skriver ikke gangetegnet i (1), men sætter i stedet et lille mellemrum ind. I (16) opfattes a som navnet på en funktion, der skal anvendes på summen a Cb. Gør det derfor til en vane, at skrive alle gangetegn - undtagen dem, der står mellem et tal og en variabel, som fx 2 x. I Maple skal du bruge funktionsparenteser. I matematikbøger skriver man ofte fx ln x i stedet for ln x, og tilsvarende sin x i stedet for sin x. Det går ikke i Maple! Arbejdsområde 7 En parabel går gennem punkterne 1, 2, 2, 1 og 3, 3. Find forskriften. Vejledning: Start med i Maple at definere det generelle andengradspolynomium ved px = ax 2 Cbx Cc, og opskriv vha. forskriften de 3 ligninger med 3 ubekendte, de givne punkter giver anledning til. Løs dette ligningssystem. Graftegning Det er meget simpelt at tegne funktionsgrafer i Maple. En enkelt kommando - plot - klarer det meste. Definer en funktion ved f d x/x 2 K6 x/x 2 K6 (17) Grafen kan tegnes i et standardvinduet, hvor x-intervallet er K10, 10, og y-intervallet er tilpasset x- intervallet (Autoskaleret). plot f x

16 K10 K 0 10 x Hvis du vil ændre x-intervallet, angiver du dette som en parameter til plotkommandoen. Fx skal x- intervallet K, angives som x =K.., hvor de to prikker laves med to tryk på punktum-tasten. plot f x, x =K..

17 1 10 K4 K x Tilsvarende kan du kontrollere y-intervallet plot f x, x =K.., y =K K

18 10 y K4 K x K K10 Hvis du vil tegne en graf mere i samme koordinatsystem, så skal pakke de to funktioner sammen med [] eller {}. Benyt {}, hvis den rækkefølge, hvori graferne tegnes, er ligegyldig: g d x/k 3 2 x C2 x/k 3 2 x C2 (18) plot f x, gx, x =K.., y =K10..10

19 10 y K4 K x K K10 Arbejdsområde 8 Klik i graffeltet ovenfor. I det aktive grafområde bliver markøren til et sigtekorn. Før sigtekornet hen til et af skæringspunkterne, og du kan aflæse nogle tilnærmede værdier øverst i Maplevinduet: I dette vindue kan du lave en række ændringer i koordinatsystemet. Afprøv nogle af disse muligheder. Hvis du med sigtekornet klikker på en af graferne, markeres denne. Ved et højre-klik kan du så åbne for kontekst-menuen, hvor du finder en række indstillinger for den enkelte graf. Skift fx farve og tykkelse. Klik på Drawing-knappen, så skifter menuen til denne

20 Her kan du fx tilføje tekst til dine grafer. Prøv. Alle ændringer, du har lavet ovenfor, er midlertidige. Hvis du gentegner plottet (gå til plotkommandoen ovenfor, og tast Enter), så forvinder alle dine ændringer. Skal ændringerne være permanente, så skal de tilføjes selve plot-kommandoen. Hvis farverne skal være rød og blå, ændres plot-kommandoen til (fjern : i slutningen af linjen og taste Enter, hvis du vil se plottet) plot f x, gx, x =K.., y =K10..10, color = blue, green Er farverækkefølgen den forventede? Ellers lav de fornødne ændringer. Vil du lave stiplede linjer mm. er kommandoen denne: plot f x, gx, x =K.., y =K10..10, color = blue, green, linestyle = dash, solid Alle detaljer finder du her?plot,options I Document mode findes en helt anden metode, hvor funktionsudtrykkene blot trækkes (kopieres) over i et koordinatsystem. Lad der være givet to funktioner ved: f d x/x 2 K6 x/x 2 K6 g d x/k 3 2 x C2 x/k 3 2 x C2 (20) Indsæt et koordinatsystem via Insert > Plot > 2D:

21 10 K10 K 0 10 K K10 Marker funktionsudtrykket i f - det skal se sådan ud Hold Ctrl-tasten nede og træk det markerede udtryk til koordinatsystemet, og slip det. Da vil grafen for f tegnes. Gør tilsvarende med funktionsudtrykket i g. Resultatet bliver

22 K10 K 0 10 Du kan formatere grafen ved at højre-klikke i den, og vælge menupunktet Axes > Properties, hvis du vil bruge et andet interval end K10, 10. Prøv at ændre intervallet til K,. Eksperimenter med de andre muligheder. Eksempel - Overlevelse Nedenstående funktion er et eksempel på en såkaldt overlevelseskurve (21) restart L d x/100$e Kx K x K x/100 e Kx C K1 $ x K (22) Fx er L 6 = 7,10. Dette skal tolkes således, at ved en alder på 6 år er 7% i live, altså 2% er døde. Grafen ser således ud:

23 Overlevelseskurve % Alder (år) Grafen er fremstillet ved at trække funktionsudtrykket til et indsat koordinatsystem. Indstilling af akser, akselabels, titel mv. laves alt sammen i Plot >, der kan vælges som menupunkt når grafen højre-klikkes. Arbejdsområde 9 1. Hvor stor en procentdel er i live efter 80 år? 2. Hvornår er halvdelen faldet fra? 3. I hvilket år er dødeligheden størst? Vejledning: Se på funktionen dx = LxC1 KL x, og indtegn denne i et nyt koordinatsystem. Vi vil nu prøve at undersøge betydningen af konstanten 0.00 i forskriften for L. Derfor parametriserer vi

24 L med hensyn til denne konstant, og kalder den nye funktion L1. Denne er så en funktion af to variabler: L1 d x, A /100$e A$ 1 Kx K x K x, A /100 e A 1Kx C K1 $ x K (23) L1 x, er således identisk med funktionen L x. Vi tegner L1 for forskellige værdier af A: K0.01 xk x L1 x, 0.01 = 100 e L1 x, 0.00 = 100 e L1 x, = 100 e K0.00 xk x K0.000 xk x Indsæt et koordinatsystem, og træk de tre funktionsudtryk til koordinatsystemet A =0.01 A = 0.00 A = Grafen for L1 bliver en 3D-flade, og de tre kurver, vi har tegnet ovenfor, kan opfattes som snit i denne flade. Lokalisér disse snit i fladen nedenfor. Du kan tegne 3D plots ligesom 2D plots ved at trække funktionsudtrykket over i koordinatsystemet, men

25 her er kommandoversionen den best bekvemme: plot3d L1 x, A, x = , A = , axes = Framed 0,0 0,02 A 100 0, x Du kan rotere fladen ved at trække i den

26 0,0 0,02 A 100 0, x Differentialregning Maple kan naturligvis også differentiere symbolsk. Til udregning af differentialkvotienter benyttes d skabelonen f fra Expression-paletten. Benyt tabulatoren til at hoppe fra pladsholder til pladsholder d x ved udfyldningen: d d x x2 = 2 x d d x 2 x 3 Ce K2 x = 6 x 2 K2 e K2 x Ofte har du allerede defineret en funktion som fx f d x/e x K2 x K2 = x/e x K2 x K2

27 og skal bruge den afledede funktion. Denne har du direkte adgang til via f': f' x = e x K2 Herefter kan du bruge den afledede funktion f' som enhver anden funktion - herunder fx bestemme bestemme nulpunkter f' x =0 isolate for x x =ln 2 Meget illustrativt kan det også være at tegne grafen for f' sammen med grafen for f. Læg mærke til, at der, hvor f' er negativ, er f aftagende, og der, hvor f' er positiv, er grafen for f voksende. Desuden har f vandret tangent i de punkter, hvor f' er lig med K3 K2 K K2 f x df x Du kan nemt finde en tangent til grafen for f i punktet med 1. koordinaten x = 2 vha tangentligningen: t d x/f' 2$ x K2 Cf 2

28 x/ d dx f x x =2 x K2 Cf 2 (24) tx = e 2 K2 x K2 Ce 2 K6 Udtrykket for tangenten kopieres til koordinatsystemet ovenfor. Arbejdsområde 10 Find vha. differentialregning maksimum og minimum for funktionen f x = x x 2 C3 og tegn grafen for f og for den afledede funktion i samme koordinatsystem. Gå dernæst til Tools > Tutors > Calculus - Single Variable > Curve Analysis, og skift standardfunktionen ud med funktionen ovenfor. Udforsk dette værktøj.

Kom godt i gang med Maple 12. (Worksheet mode)

Kom godt i gang med Maple 12. (Worksheet mode) Kom godt i gang med Maple 12 (Worksheet mode) Adept Scientific 2008 Indtastning af taludtryk - simple beregninger Anbring cursoren ved en input-linje, dvs. en linje med symbolet > yderst til venstre. Er

Læs mere

Kom hurtigt i gang Maplesoft, 2014

Kom hurtigt i gang Maplesoft, 2014 Kom hurtigt i gang Maplesoft, 014 Kom hurtigt i gang med Maple Start Maple. Opstartsbilledet sådan ud Klik på knappen New Document, og du får nyt ark altså et blankt stykke papir, hvor første linje starter

Læs mere

2. Ligningsløsning i Maple. Kommandoerne solve, evalf, Digits og with(realdomain).

2. Ligningsløsning i Maple. Kommandoerne solve, evalf, Digits og with(realdomain). En introduktion til Maple i 1.g. 1. En første introduktion til Maple. Kommandoerne expand, factor og normal. 2. Ligningsløsning i Maple. Kommandoerne solve, evalf, Digits og with(realdomain). 3. Uligheder

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Maple 18 B-Niveau Copyright Knud Nissen & Maplesoft 2014

Maple 18 B-Niveau Copyright Knud Nissen & Maplesoft 2014 Maple 18 B-Niveau Copyright Knud Nissen & Maplesoft 2014 Maple 18 B-Niveau Contents 1 Løsning af ligninger i Maple 1 11 Solve-kommandoen og førstegradsligninger 1 metode1 (højreklik - cmd+klik) 1 metode

Læs mere

FlexMatematik B. Introduktion

FlexMatematik B. Introduktion Introduktion TI-89 er fra start indstillet til at åbne skrivebordet med de forskellige applikationer, når man taster. Almindelige regneoperationer foregår på hovedskærmen som fås ved at vælge applikationen

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Kogebog til Maple 18

Kogebog til Maple 18 Kogebog til Maple 18 Indledning Udgave 6, Henrik Just, Hjørring Gymnasium og HF, august 2014 Kogebogen er ikke en lærebog i Maple, men en samling af korte opskrifter på brug af de faciliteter, der er relevante

Læs mere

Grundlæggende færdigheder

Grundlæggende færdigheder Regnetest A: Grundlæggende færdigheder Træn og Test Niveau: 7. klasse Uden brug af lommeregner 1 INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag

Læs mere

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau)

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Matematik i WordMat En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Indholdsfortegnelse 1. Introduktion... 3 2. Beregning... 4 3. Beregning med brøker...

Læs mere

1. Opbygning af et regneark

1. Opbygning af et regneark 1. Opbygning af et regneark Et regneark er et skema. Vandrette rækker og lodrette kolonner danner celler, hvori man kan indtaste tal, tekst, datoer og formler. De indtastede tal og data kan bearbejdes

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Hint: Man kan alternativt benytte genvejstasterne ctrl+6/cmd+6 for at sprede applikationerne og ctrl+4/cmd+4 for at samle applikationer.

Hint: Man kan alternativt benytte genvejstasterne ctrl+6/cmd+6 for at sprede applikationerne og ctrl+4/cmd+4 for at samle applikationer. [OPGAVER I NSPIRE] 1 Opgave 1) Opgaver og sider - dokumentstyring Start et nyt Nspire dokument. Følg herefter nedenstående trin. a) Opret to opgaver i dokumentet, hvor første opgave består to sider, og

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Kom godt i gang. Sluttrin

Kom godt i gang. Sluttrin Kom godt i gang Sluttrin Kom godt i gang Sluttrin Forfatter Karsten Enggaard Redaktion Gert B. Nielsen, Lars Høj, Jørgen Uhl og Karsten Enggaard Fagredaktion Carl Anker Damsgaard, Finn Egede Rasmussen,

Læs mere

Brugervejledning til Graph

Brugervejledning til Graph Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

Åbn Paint, som er et lille tegne- og billedbehandlingsprogram der findes under Programmer i mappen Tilbehør. Åbn også Word.

Åbn Paint, som er et lille tegne- og billedbehandlingsprogram der findes under Programmer i mappen Tilbehør. Åbn også Word. 75 Paint & Print Screen (Skærmbillede med beskæring) Åbn Paint, som er et lille tegne- og billedbehandlingsprogram der findes under Programmer i mappen Tilbehør. Åbn også Word. 1. Minimer straks begge

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

Skabelon til funktionsundersøgelser

Skabelon til funktionsundersøgelser Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Om tastaturgenveje i Noter

Om tastaturgenveje i Noter Om tastaturgenveje i Noter Lad os starte med at præcisere, hvad det er vi har I tankerne: Tastaturgenveje er genveje til at frembringe særlige symboler, særlige skabeloner, særlig layout og særlige handlinger

Læs mere

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING MANDATFORDELING Dette materiale er lavet som supplement til Erik Vestergaards hjemmeside om samme emne. 1 http://www.matematiksider.dk/mandatfordelinger.html I dette materiale er en række øvelser der knytter

Læs mere

Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010

Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010 Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010 Computere er uvurderlige redskaber for personer der ønsker at arbejde med matematiske modeller

Læs mere

Velkommen til TI-Nspire CAS 2.0 (Lærerversion)

Velkommen til TI-Nspire CAS 2.0 (Lærerversion) Velkommen til TI-Nspire CAS 2.0 (Lærerversion) Når du åbner for TI-Nspire CAS i en standardopsætning ser brugerfladen således ud (hvis ikke, så vælg Dialogboks > Indlæs standardområdet): I midterpanelet

Læs mere

Regnearket Excel - en introduktion

Regnearket Excel - en introduktion Regnearket Excel - en introduktion Flytte rundt i regnearket. Redigere celler Hjælp Celleindhold Kopiering af celler Lokalmenu og celleegenskaber Opgaver 1. Valutakøb 2. Hvor gammel er du 3. Momsberegning

Læs mere

Lineær Programmering i GeoGebra Side 1 af 8

Lineær Programmering i GeoGebra Side 1 af 8 Lineær Programmering i GeoGebra Side 1 af 8 Grundlæggende find selv flere funktioner, fx i GG s indbyggede hjælpefunktion. Vær opmærksom på at grænsefladen i GeoGebra ændrer sig med tiden, da værktøjet

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 1. Basis Jorden elektron Hvor mange elektroner svarer Jordens masse til? 1. Basis 1.0 Indledning 1.1 Tal 1. Brøker 1. Reduktioner 11

Læs mere

Differentialligninger med TI Nspire CAS version 3.1

Differentialligninger med TI Nspire CAS version 3.1 Differentialligninger med TI Nspire CAS version 3.1 Der er tilføjet en ny graftype til Graf værkstedet kaldet Diff lign. Denne nye graftype er en implementering af differentialligningerne som vi kender

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

ALMINDELIGT ANVENDTE FUNKTIONER

ALMINDELIGT ANVENDTE FUNKTIONER ALMINDELIGT ANVENDTE FUNKTIONER I dette kapitel gennemgås de almindelige regnefunktioner, samt en række af de mest nødvendige redigerings- og formateringsfunktioner. De øvrige redigerings- og formateringsfunktioner

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

IT/Regneark Microsoft Excel 2010 Grundforløb

IT/Regneark Microsoft Excel 2010 Grundforløb Januar 2014 Indhold Opbygning af et regneark... 3 Kolonner, rækker... 3 Celler... 3 Indtastning af tekst og tal... 4 Tekst... 4 Tal... 4 Værdier... 4 Opbygning af formler... 5 Indtastning af formler...

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende

Læs mere

Indholdsfortegnelse. Regneark for matematiklærere

Indholdsfortegnelse. Regneark for matematiklærere Indholdsfortegnelse Forord... 3 Diskettens indhold... 4 Grafer i koordinatsystemet... 5 Brug af guiden diagram... 5 Indret regnearket fornuftigt... 9 Regneark hentet på Internettet... 15 Læsevenlige tal

Læs mere

MathType 6.7e og 6.8 for elever og lærere på HAKA

MathType 6.7e og 6.8 for elever og lærere på HAKA MathType 6.7e og 6.8 for elever og lærere på HAKA Med årene er der blevet større og større behov for i gymnasiet at kunne skrive formler ind i elektroniske dokumenter, fx når der skal udfærdiges rapporter

Læs mere

Fra Blåt Medlem til Open Office regneark.

Fra Blåt Medlem til Open Office regneark. Fra Blåt Medlem til Open Office regneark. Kopi fra Blåt Medlem til Open Office regneark 1 Eksport fra Blåt Medlem til Open Office regneark 2 Hvad kan du bruge det til 4 Eksempler: Medlemsdelen: Afdelingsopdelt

Læs mere

Et CAS program til Word.

Et CAS program til Word. Et CAS program til Word. 1 WordMat WordMat er et CAS-program (computer algebra system) som man kan downloade gratis fra hjemmesiden www.eduap.com/wordmat/. Programmet fungerer kun i Word 2007 og 2010.

Læs mere

Vejledning til Gym18-pakken

Vejledning til Gym18-pakken Vejledning til Gym18-pakken Copyright Maplesoft 2014 Vejledning til Gym18-pakken Contents 1 Vejledning i brug af Gym18-pakken... 1 1.1 Installation... 1 2 Deskriptiv statistik... 2 2.1 Ikke-grupperede

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

How to do in rows and columns 8

How to do in rows and columns 8 INTRODUKTION TIL REGNEARK Denne artikel handler generelt om, hvad regneark egentlig er, og hvordan det bruges på et principielt plan. Indholdet bør derfor kunne anvendes uden hensyn til, hvilken version

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Om at finde bedste rette linie med Excel

Om at finde bedste rette linie med Excel Om at finde bedste rette linie med Excel Det er en vigtig og interessant opgave at beskrive fænomener i naturen eller i samfundet matematisk. Dels for at få en forståelse af sammenhængende indenfor det

Læs mere

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning Graftegning på regneark. Ved hjælp af Excel regneark kan man nemt tegne grafer. Man åbner for regnearket ligger under Microsoft Office. Så indtaster man tallene fra tabellen i regnearkets celler i en vandret

Læs mere

GeoGebra 3.0.0.0 Quickstart. det grundlæggende

GeoGebra 3.0.0.0 Quickstart. det grundlæggende GeoGebra 3.0.0.0 Quickstart det grundlæggende Grete Ridder Ebbesen frit efter GeoGebra Quickstart af Markus Hohenwarter Virum, 28. februar 2009 Introduktion GeoGebra er et gratis og meget brugervenligt

Læs mere

Bedømmelseskriterier for skriftlig matematik stx A-niveau

Bedømmelseskriterier for skriftlig matematik stx A-niveau Bedømmelseskriterier for skriftlig matematik stx A-niveau Sådan bedømmes opgaverne ved skriftlig studentereksamen i matematik En vejledning for elever Skriftlighedsgruppe 01.04.09 Dette dokument henvender

Læs mere

Kom godt i gang. Mellemtrin

Kom godt i gang. Mellemtrin Kom godt i gang Mellemtrin Kom godt i gang Mellemtrin Forfatter Karsten Enggaard Redaktion Gert B. Nielsen, Lars Høj, Jørgen Uhl og Karsten Enggaard Fagredaktion Carl Anker Damsgaard, Finn Egede Rasmussen,

Læs mere

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse.

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse. Opdateret 28. maj 2014. MD Ofte brugte kommandoer i Geogebra. Generelle Punktet navngives A Geogebra navngiver punktet Funktionen navngives f Funktionen navngives af Geogebra Punktet på grafen for f med

Læs mere

Kom i gang med... Kapitel 11 Math: Formelredigering med OpenOffice.org. OpenOffice.org

Kom i gang med... Kapitel 11 Math: Formelredigering med OpenOffice.org. OpenOffice.org Kom i gang med... Kapitel 11 Math: Formelredigering med OpenOffice.org OpenOffice.org Rettigheder Dette dokument er beskyttet af Copyright 2005 til bidragsyderne som er oplistet i afsnittet Forfattere.

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Introduktion til Calc Open Office med øvelser

Introduktion til Calc Open Office med øvelser Side 1 af 8 Introduktion til Calc Open Office med øvelser Introduktion til Calc Open Office... 2 Indtastning i celler... 2 Formler... 3 Decimaler... 4 Skrifttype... 5 Skrifteffekter... 6 Justering... 6

Læs mere

Indhold Forelæsning Dat-D1: Regneark Matematik og databehandling 2012

Indhold Forelæsning Dat-D1: Regneark Matematik og databehandling 2012 Indhold Forelæsning Dat-D1: Regneark Matematik og databehandling 2012 Henrik L. Pedersen Institut for Matematiske Fag henrikp@life.ku.dk 1 Forberedelsesopgaverne Dat-D-1 og Dat-D-2 2 Regnearks grundprincipper

Læs mere

Opstilling af model ved hjælp af differentialkvotient

Opstilling af model ved hjælp af differentialkvotient Opstilling af model ved hjælp af differentialkvotient N 0,35N 0, 76t 2010 Karsten Juul Til eleven Dette hæfte giver dig mulighed for at arbejde sådan med nogle begreber at der er god mulighed for at der

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Undersøgelse af funktioner i GeoGebra

Undersøgelse af funktioner i GeoGebra Undersøgelse af funktioner i GeoGebra GeoGebra er tænkt som et dynamisk geometriprogram, men det kan også anvendes til undersøgelser og opdagelser omkring funktioner. Eksempel Tegn linjen med ligningen:

Læs mere

Matematik i Word. En manual til elever og andet godtfolk. Indhold med hurtig-links. Kom godt i gang med Word Matematik. At regne i Word Matematik

Matematik i Word. En manual til elever og andet godtfolk. Indhold med hurtig-links. Kom godt i gang med Word Matematik. At regne i Word Matematik Matematik i Word En manual til elever og andet godtfolk. Indhold med hurtig-links Kom godt i gang med Word Matematik At regne i Word Matematik Kom godt i gang med WordMat Opsætning, redigering og kommunikationsværdi

Læs mere

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16 Tak for kaffe! Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Tak for kaffe! Side 1 af 16 Tak

Læs mere

MatematiKan Et matematisk skriveværktøj for hele skoleforløbet

MatematiKan Et matematisk skriveværktøj for hele skoleforløbet MatematiKan Et matematisk skriveværktøj for hele skoleforløbet Tænk, hvis alle elever kunne arbejde med procesorienteret matematik. En arbejdsform, hvor du forsøger at arbejde med matematiske problemstillinger

Læs mere

Vektorregning. Vektorer som lister

Vektorregning. Vektorer som lister 10 Vektorregning Vektorer som lister En vektor laves nemmest som en liste på TI-89 Titanium / Voyage 200. I nedenstående skærmbillede ser du, hvordan man definerer vektorer og laver en simpel udregning

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

Quick guide til Condes 8.

Quick guide til Condes 8. Quick guide til Condes 8. Quick guide til Condes 8.... 1 Starte Condes:... 2 Opret poster.... 6 Opdatere post detaljer:... 7 Finjustere postcirklen.... 8 Flytte postnummer... 9 Sætte poster sammen til

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side 14 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Excel tutorial om indekstal og samfundsfag 2008

Excel tutorial om indekstal og samfundsfag 2008 Excel tutorial om indekstal og samfundsfag 2008 I denne note skal vi behandle data fra CD-rommen Samfundsstatistik 2008, som indeholder en mængde data, som er relevant i samfundsfag. Vi skal specielt analysere

Læs mere

SÅDAN BRUGER DU REGNEARK INTRODUKTION

SÅDAN BRUGER DU REGNEARK INTRODUKTION SÅDAN BRUGER DU REGNEARK INTRODUKTION I vejledningen bruger vi det gratis program Calc fra OpenOffice som eksempel til at vise, hvordan man bruger nogle helt grundlæggende funktioner i regneark. De øvrige

Læs mere

Rybners Teknisk Skole. Tømrer afdeling. Frank Kleemann Aarestrup

Rybners Teknisk Skole. Tømrer afdeling. Frank Kleemann Aarestrup Rybners Teknisk Skole Tømrer afdeling Frank Kleemann Aarestrup Opstart Start programmet og vælg Template måleenhed Millimeters Start Sketchup Velkommen til Sketchup brugerflade! Sketchup Opstart 2 Introduktion

Læs mere

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner FUNKTIONER del Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner -klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse FUNKTIONSBEGREBET... 3 Funktioner beskrevet ved mængder...

Læs mere

Excel-1: kom godt i gang!!

Excel-1: kom godt i gang!! Excel-1: kom godt i gang!! Microsoft Excel er et såkaldt regneark, som selvfølgelig bliver brugt mest til noget med tal men man kan også arbejde med tekst i programmet. Excel minder på mange områder om

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

Manual til hjemmeside i Typo3

Manual til hjemmeside i Typo3 Manual til hjemmeside i Typo3 Gode tips og genvejstaster Ét linieskift Ctrl + A Ctrl + C Ctrl + X Ctrl + V shift + enter (tasten du normalt bruger til linieskift) Markér alt Kopier Klip Sæt ind Oprettelse

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Vejledning til udskrivning af etiketter/labels og konvolutter i Blåt Medlem

Vejledning til udskrivning af etiketter/labels og konvolutter i Blåt Medlem Vejledning til udskrivning af etiketter/labels og konvolutter i Blåt Medlem Blåt Medlem giver mulighed for at udskrive etiketter/labels og kuverter til medlemmerne af den enhed man er medlemsansvarlig

Læs mere

TI-92 / TI-92 Plus. Skærmen består af fire dele: En menulinje, et historikområde, en indtastningslinje og nederst en statuslinje:

TI-92 / TI-92 Plus. Skærmen består af fire dele: En menulinje, et historikområde, en indtastningslinje og nederst en statuslinje: TI-92 / TI-92 Plus TI-92 har et væld af indbyggede funktioner og i dette lille hæfte kan vi kun stifte bekendskab med nogle ganske få udvalgte, der har til formål at vise den regnekraft og fleksibilitet,

Læs mere

TI-Nspire TM CAS. Håndholdt version 2.1. introduktion og eksempler

TI-Nspire TM CAS. Håndholdt version 2.1. introduktion og eksempler TI-Nspire TM CAS Håndholdt version 2.1 introduktion og eksempler TI-Nspire TM CAS introduktion og eksempler Copyright 2010 by Texas Instruments Denne PDF-fil er gratis og må frit bruges til undervisningsformål.

Læs mere

Regneark LibreOffice. Øvelseshæfte. Version: September 2013

Regneark LibreOffice. Øvelseshæfte. Version: September 2013 Regneark LibreOffice Øvelseshæfte Version: September 2013 Indholdsfortegnelse Øvelserne...4 Øvelse 1 Gem en kopi...4 Øvelse 2 Omdøb faneblad + lav en kopi...4 Øvelse 3 - tekstombrydning...5 Øvelse 4 Sorter

Læs mere

Matematik for C niveau

Matematik for C niveau Matematik for C niveau M. Schmidt 2012 1 Indholdsfortegnelse 1. Tal og bogstavregning... 5 De elementære regnings arter og deres rækkefølge... 5 Brøker... 9 Regning med bogstavudtryk... 12 Talsystemet...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Kom godt i gang. Begyndertrin

Kom godt i gang. Begyndertrin Kom godt i gang Begyndertrin Kom godt i gang Begyndertrinnet Forfattere Kirsten Spahn og Karsten Enggaard Redaktion Gert B. Nielsen, Lars Høj, Jørgen Uhl og Karsten Enggaard Fagredaktion Carl Anker Damsgaard,

Læs mere

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul Bogstavregning En indledning for stx og hf 2008 Karsten Juul Dette hæfte træner elever i den mest grundlæggende bogstavregning (som omtrent springes over i lærebøger for stx og hf). Når elever har lært

Læs mere

At indsætte ord og billeder og brug af hjælpefunktionen.

At indsætte ord og billeder og brug af hjælpefunktionen. Udarbejdelse af kommunikationsbøger Noter og øvelser i forbindelse med at udarbejde kommunikationsbøger vha. programmet Phraseit (Genlyd). Følgende øvelser og instruktion er baseret på at Phrase-it 2.1

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

Word-5: Tabeller og hængende indrykning

Word-5: Tabeller og hængende indrykning Word-5: Tabeller og hængende indrykning Tabel-funktionen i Word laver en slags skemaer. Word er jo et amerikansk program og på deres sprog hedder skema: table. Det er nok sådan udtrykket er opstået, da

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Grupperede observationer

Grupperede observationer Grupperede observationer Tallene i den følgende tabel viser antallet af personer på Læsø 1.januar 2012, opdelt i 10-års intervaller. alder antal 0 131 10 181 20 66 30 139 40 251 50 318 60 421 70 246 80

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

WELLPLOT VER. 3 BRUGERMANUAL

WELLPLOT VER. 3 BRUGERMANUAL WELLPLOT VER. 3 BRUGERMANUAL I GIS 2002 Wellplot ver. 3 BRUGERMANUAL Udarbejdet for: I GIS ApS Titel: Wellplot ver. 3 Brugermanual Dokumenttype: Software manual Udgave: 1 Dato: 20-09-02 Udarbejdet af:

Læs mere

Vejledning til Photofiltre nr. 105 Side 1

Vejledning til Photofiltre nr. 105 Side 1 Side 1 Denne vejledning er et smalt grafikbillede man kan bruge i toppen af en mail lavet i PhotoFiltre 7 hvor man nu kan arbejde i lag. Med PhotoFiltre 7 er det nu endnu nemmere at sammensætte grafik

Læs mere

Bookingsystem til hoteller. JTA-Data Jylland JTA. Vinkelvej 108a 8800 Viborg Tlf. 86672024 www.jta-data.dk DATA. Jylland

Bookingsystem til hoteller. JTA-Data Jylland JTA. Vinkelvej 108a 8800 Viborg Tlf. 86672024 www.jta-data.dk DATA. Jylland Bookingsystem til hoteller -Data: C5 bookingsystem til hoteller Indhold 1. Daglig brug af bookingsystemet. 2. Ny booking et værelse 3. Ny booking flere værelser 4. Ankomst 5. Rengøring 6. Afrejse 7. Værelsesoversigt

Læs mere

Introduktion til billeddatabasen

Introduktion til billeddatabasen Introduktion til billeddatabasen Colourbox.dk Colourbox.dk er den billeddatabase som Odense Kommune har købt licens til. Det er vigtigt at bemærke, at der ikke er ubegrænset download af billeder. I materialet

Læs mere

Finans applikationen. Tast O og vælg Finance i listen over Flash-applikationer:

Finans applikationen. Tast O og vælg Finance i listen over Flash-applikationer: 12 Finans applikationen Tast O og vælg Finance i listen over Flash-applikationer: Det sidste skærmbillede viser de finansielle variabler, Finansapplikationen benytter sig af, og hvilke værdier de aktuelt

Læs mere

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling Om brugen af matematiske tegn og objekter i en god matematisk fremstilling af Petur Birgir Petersen Et særpræg ved matematik som videnskab er den udstrakte brug af symboler. Det er vigtigt at symbolerne

Læs mere

Picto Selector. Lav dine egne flotte symbolark på den nemme måde. Version: Oktober 2012

Picto Selector. Lav dine egne flotte symbolark på den nemme måde. Version: Oktober 2012 Picto Selector Lav dine egne flotte symbolark på den nemme måde Version: Oktober 2012 Indholdsfortegnelse Hvad er Picto Selector?...4 USB?...4 Hent programmet...4 Installer programmet på din computer...5

Læs mere