GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] (i,ii,iv). Udregn første fundamentalform af følgende flader

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] 6.1.1 (i,ii,iv). Udregn første fundamentalform af følgende flader"

Transkript

1 GEOMETRI-TØ, UGE Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til Opvarmningsopgave, [P] 5... Find parametriseringer af de kvadratiske flader i delene (i (xi i Sætning 5.. (fjern origo fra (vi. Løsning. Lad os betragte dem fra en ende. (i Kan ses at være diffeomorf med sfæren, og man kan få en lokal parametrisering derfra (eller lave den fra bunden f.eks. ved en variation af sfæriske koordinater, ved at dække den med 6 symmetrisk konstruerede kort eller en pendant til stereografisk projektion. (ii Denne er en omdrejningsflade. (iii Lav et atlas bestående af to grafparametriseringer. (iv Denne er en graf. (v Også en graf. (vi Som i (iii: Betragt fladen som en forening af to grafer af funktioner defineret på R \{(0, 0}. (vii Omdrejningsflade (homøomorf med en cylinder. (viii Forening af to grafer (set som en funktion af enten (x, z eller (y, z, som ikke afhænger af z. (ix Som (viii men med blot en enkelt parametrisering. (x σ(u, v = (0, u, v. (xi σ ± (u, v = (± p, u, v. Opvarmningsopgave, [P] 6.. (i,ii,iv. Udregn første fundamentalform af følgende flader Hvilke typer flader er disse? Løsning. For den første er Det følger, at σ(u, v = (sinh u sinh v, sinh u cosh v, sinh u, σ(u, v = (u v, u + v, u + v, σ(u, v = (u, v, u + v. σ u = (cosh u sinh v, cosh u cosh v, cosh u, σ v = (sinh u cosh v, sinh u sinh v, 0. E = σ u, σ u = cosh u sinh v + cosh u cosh v + cosh u = cosh u(sinh v + cosh v + = cosh u(cosh v + cosh v = cosh u cosh v, F = σ u, σ v = cosh u sinh u cosh v sinh v = sinh(u sinh(v, G = σ v, σ v = sinh (u(cosh v + sinh v = sinh (u cosh(v. Bemærk, at koordinaterne opfylder x + z = y. Denne flade er den kvadratiske kegle beskrevet på side 99. For den anden finder vi σ u = (,, u, σ v = (,, v, E = 4u +, F = 4uv, G = 4v +.

2 GEOMETRI-TØ, UGE Definer reparametriseringen Φ(u, v = (u + v, u + v. Vi finder, at σ Φ(u, v = (u, v, 4 (u + v + uv + u + v uv = (u, v, (u + v, som er noget, der ligner paraboloiden. Endelig gælder for den sidste, at Fladen her er paraboloiden. σ u = (, 0, u, σ v = (0,, v, E = 4u +, F = 4uv, G = 4v +. Opvarmningsopgave 3, [P] Lad Edu + F dudv + Gdv være første fundamentalform for en fladelap σ(u, v for en flade S. Vis at hvis p er et punkt i billedet af σ, og v, w T p S, så er v, w = Edu(vdu(w + F (du(vdv(w + du(wdv(v + Gdv(vdv(w. Bevis. Skriv v = du(vσ u +dv(vσ v og w = du(wσ u +dv(wσ v. Resultatet følger umiddelbart. [P] 6.. (iii. Find første fundamentalform for σ(u, v = (cosh u, sinh u, v og beskriv fladen. Bevis. Vi finder, at σ u = (sinh u, cosh u, 0, σ v = (0, 0,, E = sinh u + cosh u = cosh(u, F = 0, G =. Bemærk at koordinaterne i denne opfylde x y =. En flade med den egenskab kaldes en hyperbolsk cylinder og ses på side 00. [P] Lad σ(ũ, ṽ og være en reparametrisering af σ(u, v, og lad Ẽdũ + F dũdṽ + Gdṽ, være deres første fundamentalformer. Vis at Vis at hvis J = ( du = dṽ, Edu + F dudv + Gdudv dv = dṽ. er Jacobimatricen af reparametriseringen (ũ, ṽ (u, v, så er (Ẽ F F G ( = J t E F J. F G Bevis. Lad Φ(ũ, ṽ = (u, v være reparametriseringsafbildningen, så σ = σ Φ. Da er ( σũ σṽ = D σ(ũ,ṽ = Dσ (u,v DΦ (ũ,ṽ = ( ( σ u σ v. Læses ligningen søjlevist, fås Det følger, at σũ = σ u + σ v, σṽ = σ u + σ v du( σũ = ( = du( σṽ = = Da σũ, σṽ udgør en basis, kan vi konkludere, at dṽ ( dṽ du = dṽ ( σũ, ( σṽ.

3 GEOMETRI-TØ, UGE 3 som ønsket. Tilsvarende vises identiteten for dv. Hvad angår første fundamentalform finder vi, at Ẽ = σ u + σ v, σ u + ( ( σ v = E + + og tilsvarende formler for F og G. Matrixligningen følger ved indsættelse. F + ( G, [P] 6... Skriv en isometri fra den cirkulære kegle (fraregnet en linje σ(u, v = (u cos v, u sin v, u, u > 0, 0 < v < π, til en åben delmængde af x-y-planen. Løsning. Definer afbildningen ved f(u cos v, u sin v, u = ( u cos v, u cos v, 0. At denne afbildning er en lokal diffeomorfi er intet under, så lad os vise, at den er en isometri. Ifølge Korollar 6..3 er det tilstrækkeligt at tjekke, at σ og f σ har samme første fundamentalform, for f kan let ses at være en diffeomorfi, da afbildningen er det. For σ finder vi For f σ finder vi så det stemmer. (u, v ( u cos v, u cos v σ u = (cos v, sin v,, σ v = ( u sin v, u cos v, 0, E =, F = 0, G = u. (f σ u = ( cos v, sin v, 0, (f σ v = ( u sin v, u cos v, 0, E =, F = 0, G = u, [P] 6... Er afbildningen fra den cirkulære halvkegle x + y = z, z > 0 til x-y-planen, givet ved (x, y, z (x, y en isometri? Svar. At dømme på sidste opgave er den nok ikke. Linjestykket fra (,, til (,, 8 i halvkeglen har længde 38 men sendes i linjestykket fra (, til (, som har længde 38. En anden måde at vise det på ville være at observere, at projektionen ikke bevarer første fundamentalform. Ugeseddelopgave. Betragt S = {(cos u, sin(u, v u, v R}. Bestem T 0 S og brug resultatet til at vise, at S ikke er en regulær flade. Bevis. Lad os for modstrid finde 3 kurver i S, der går gennem 0 og hvis tangenter er lineært uafhængige. Sæt γ (t = γ (t = (cos t, sin(t, 0, γ 3 (t = (0, 0, t, hvor γ er defineret på ( π ε, π + ε, γ er defineret på ( 3π ε, 3π ε, og γ 3 er defineret på (,. Bemærk først, at γ ( π = γ ( 3π = γ 3(0 = (0, 0, 0. Deres tangenter er i punktet givet ved der ses at være lineært uafhængige. γ ( π = ( sin π, cos π, 0 = (,, 0, γ ( 3π = ( sin 3π, cos(3π, 0 = (,, 0, γ 3(0 = (0, 0,, Ugeseddelopgave 3. For λ 0 er vindelfladen S = {(v cos u, v sin u, λu u, v R}. Bekræft at S er en regulær flade og vis at projektionsafbildningen π : σ(r R \ {0} R {0} givet ved π(x, y, z = (x, y, 0 er en lokal diffeomorfi af flader. Er π en diffeomorfi?

4 4 GEOMETRI-TØ, UGE Bevis. Lad σ : R S være σ(u, v = (v cos u, v sin u, λu. Hvis σ(u, v = σ(u, v, giver tredjekoordinaten, at u = u. Da enten cos(u eller sin(u er forskellig fra 0, giver den ene af de to første koordinater, at v = v, så σ er injektiv. Lad (x, y, z = σ(u, v ligge på fladen. Idet vi bemærker, at x + y er konstant lig v på fladen, lader vi v = x + y og u = z λ. Da er σ(u, v = (x, y, z, og det er klart, at både u og v er kontinuerte i (x, y, z. Endelig er σ u = ( v sin u, v cos u, λ, σ v = (cos u, sin u, 0, som er lineært uafhængige. Lad os vise, at π er en lokal diffeomorfi for v 0, så lad σ(u 0, v 0 S, v 0 0. Bemærk, at π σ(, v er parametriseringen af et stykke af en cirkel med radius v. Hvis v 0 > 0 får vi derfor, at π σ((u0 π,u 0+π (v 0/,v 0 er injektiv. Tilsvarende gælder for v 0 < 0, at π σ((u0 π,u 0+π (v 0,v 0/ er injektiv. Endelig kan vi observere, at π i hvert fald ikke er en diffeomorfi, da den ikke er injektiv. [P], Vis at de følgende er ækvivalente: ( E v = G u = 0. ( σ uv er parallel med enhedsnormalen N. (3 De modstående sider i en firkant af parameterkurverne fra σ har samme længde. Vis også, at hvis disse betingelser er opfyldt, så har σ en reparametrisering σ(ũ, ṽ med første fundamentalform dũ + cos θdũdṽ + dṽ, hvor θ er en glat funktion af (ũ, ṽ. Vis at θ er vinklen mellem parameterkurverne i σ. Vis ydermere at hvis û = ũ + ṽ, ˆv = ũ ṽ, så har den resulterende reparametrisering ˆσ(û, ˆv første fundamentalform hvor ω = θ/. cos ωdû + sin ωdˆv, Bevis. Lad os første vise, at de to første betingelser er ækvivalente. Vi har, at E v = ( σ u, σ u v = σ uv, σ v, G u = ( σ v, σ v u = σ vu, σ u. Her står, at hvis E v = G u = 0, så er σ uv vinkelret på span(σ u, σ v og derfor parallel med N. Omvendt står her også, at hvis σ uv er parallel med N, så er E v = G u = 0. Lad os nu vise, at betingelse ( og (3 er ækvivalente. Lad os antage at firkanten i opgaven har hjørner med i billedet af de fire punkter (u 0, v 0, (u 0, v, (u, v 0 og (u, v. Antag først, at E v = G u = 0 og betragt kurven γ(t = σ(u(t, v(t. Antag først, at v(t = v 0 er konstant og at u(t = t, så γ er parameterkurven fra (u 0, v 0 til (u, v 0. Længden af γ fra til t (tegning er if. formel (6. givet ved E(t, v0 u (t + F (t, v 0 u (tv (t + G(t, v 0 v (t dt = E(t, v0 dt. Da E udelukkende afhænger af u (idet vi har antaget E v = 0, er dette integral også lig E(t, v dt, som præcis er længden af parameterkurven fra (u 0, v til (u, v. Helt tilsvarende vises, at kurverne fra (u 0, v 0 til (u 0, v og (u, v 0 til (u, v har samme længde. Antag omvendt, at de relevante sider i firkanten har samme længde. Det betyder så pr. samme argument, at t E(t, v dt ikke afhænger af v. Det vil sige, at 0 d dv E(t, v dt = E v E dt.

5 GEOMETRI-TØ, UGE 5 Da dette gælder for alle, t, betyder det, at Ev = 0, så E E v = 0. På samme måde kan det vises, at G u = 0. Lad os nu betragte sidste del af opgaven. Sæt ũ = u v u 0 E(u du og ṽ = v 0 G(v dv. Da er reparametriseringsafbildningen Φ(u, v = (ũ, ṽ en diffeomorfi, da dens jacobiant er ( E 0 ( det DΦ (u,v = det = EG 0. 0 G Pr. kædereglen er σũ = σ u + σ v, σṽ = σ u + σ v. Vi ved allerede fra udregningen i (, at de blandede led forsvinder, og det følger, at ( ( Ẽ = σũ, σũ = σ u, σ u = E =, E F = σũ, σṽ = E du ( du dũ dṽ + F + + G, = F = F, E G EG G = σṽ, σṽ = ( σ v, σ v =. Bemærk, at vi fra Cauchy Schwarz har F < EG, så < F EG <, og vi kan vælge θ glat, så cos(θ = F EG. Med dette valg bliver første fundamentalform på den ønskede form, og θ får ydermere den rigtige fortolkning, da vinklen mellem parameterkurverne generelt er σũ, σṽ σũ, σũ σṽ, σṽ = Ẽ F = cos θ. G Lad os nu betragte sidste del af opgaven og lad os bare udregne Ê. De øvrige koefficienter kan findes på lignende vis. Bemærk først, at ũ = (û + ˆv, ṽ = (û ˆv. Vi finder, at Ê = û σ ũ + û σ ṽ, û σ ũ + û σ ṽ = ( 4Ẽ F G = + ( θ cos θ = cos.

GEOMETRI-TØ, UGE 12. A σ (R) = A f σ (f(r))

GEOMETRI-TØ, UGE 12. A σ (R) = A f σ (f(r)) GEOMETRI-TØ, UGE 12 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1, [P] 632 Vis at Ennepers flade σ(u, v) = ( u u 3 /3

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Teorien. solkompasset

Teorien. solkompasset Teorien bag solkompasset Preben M. Henriksen 31. juli 2007 Indhold 1 Indledning 2 2 Koordinatsystemer 2 3 Solens deklination 4 4 Horisontalsystemet 5 5 Solkompasset 9 6 Appendiks 11 6.1 Diverse formler..............................

Læs mere

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen (MEL) Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på

Læs mere

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse. Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen

Læs mere

Om første og anden fundamentalform

Om første og anden fundamentalform Geometri, foråret 2005 Jørgen Larsen 9. marts 2005 Om første og anden fundamentalform 1 Tangentrummet; første fundamentalform Vi betragter en flade S parametriseret med σ. Lad P = σu 0, v 0 være et punkt

Læs mere

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål.

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. Labøvelse 2, fysik 2 Uge 47, Kalle, Max og Henriette Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. 1. Vi har to forskellige størrelser: a: en skive

Læs mere

Vektorfelter langs kurver

Vektorfelter langs kurver enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

2.9. Dette er en god simpel projektion for områder nær Ækvator. Hvad er den inverse afbildning, f -1?

2.9. Dette er en god simpel projektion for områder nær Ækvator. Hvad er den inverse afbildning, f -1? 2.9 2.4 Kortprojektioner og kort. Den matematiske baggrund for kortprojektioner er differentialgeometri. Det basale begreb her er mangfoldighed, dvs. om ethvert punkt ligger en omegn, der ligner en del

Læs mere

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α )

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α ) GEOMETRI-TØ, UGE 8 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad X være en mængde og T familien af alle delmængder

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

Lektion 6 Logaritmefunktioner

Lektion 6 Logaritmefunktioner Lektion 6 Logaritmefunktioner Den naturlige logaritmefunktion Andre logaritmefunktioner log() Regneregler Integration ln() =, ln(e) = ln(a b) = ln(a) + ln(b) ln(a r ) = r ln(a) d = ln + C En berømt grænseværdi

Læs mere

Minilex Geom1 (Gak til myren og bliv viis)

Minilex Geom1 (Gak til myren og bliv viis) Minilex Geom1 (Gak til myren og bliv viis).. Henrik Dahl hdahl@tdc-broadband.dḳ.. Resumé ADVARSEL - dette er et total underground-dokument! Det er livsfarligt at bruge ukritisk. Der er næsten sikkert graverende

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Bevægelsens Geometri

Bevægelsens Geometri Bevægelsens Geometri Vi vil betragte bevægelsen af et punkt. Dette punkt kan f.eks. være tyngdepunktet af en flue, et menneske, et molekyle, en galakse eller hvad man nu ellers har lyst til at beskrive.

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

1. Vis, at hvis realdelen af en holomorf (analytisk) funktion er konstant (på et åbent område) er funktionen konstant.

1. Vis, at hvis realdelen af en holomorf (analytisk) funktion er konstant (på et åbent område) er funktionen konstant. Matematik F2 - sæt 2 af 7 blok 4 f(z)dz = 0 1 I denne uge vil vi studere Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en

Læs mere

Stx matematik B december 2007. Delprøven med hjælpemidler

Stx matematik B december 2007. Delprøven med hjælpemidler Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem

Læs mere

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2. Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Kortprojektioner og forvanskninger. Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet

Kortprojektioner og forvanskninger. Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet Kortprojektioner og forvanskninger Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet Juni 2006 Chapter 1 Forord Disse noter er skrevet til landinspektørstudiet ved Aalborg Universitet.

Læs mere

Kortprojektioner L mm Analytisk beskrivelse af egenskaber ved kort Første fundamentalform og forvanskninger.

Kortprojektioner L mm Analytisk beskrivelse af egenskaber ved kort Første fundamentalform og forvanskninger. Kortprojektioner L4 2016 2.mm Analytisk beskrivelse af egenskaber ved kort Første fundamentalform og forvanskninger. Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet L4 April 2016 Lisbeth

Læs mere

Matematikkens mysterier - på et højt niveau. Kenneth Hansen. 5. Kurver og keglesnit

Matematikkens mysterier - på et højt niveau. Kenneth Hansen. 5. Kurver og keglesnit Matematikkens mysterier - på et højt niveau af Kenneth Hansen 5. Kurver og keglesnit 5. Kurver og keglesnit 5.1 Kurver: Parameterfremstilling og ligning 5. Hastighed, acceleration og tangenter 7 5.3 Kurveundersøgelser

Læs mere

2. Funktioner af to variable

2. Funktioner af to variable . Funktioner af to variable Opgave 1 Grafisk udformning af de to funktioner,, Opgave f (, y) = z = 5 y N(0) = z = 0 0 = 5 y + y = 5 C = ( ; y) = (0;0) r = 5 Dette medfører som vist en cirkel, med centrum

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Opgaver til Maple kursus 2012

Opgaver til Maple kursus 2012 Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, jojep07@student.sdu.dk Martin Gyde Poulsen, gyde@nqrd.dk October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Lineære Afbildninger. enote 8. 8.1 Om afbildninger

Lineære Afbildninger. enote 8. 8.1 Om afbildninger enote 8 enote 8 Lineære Afbildninger Denne enote undersøger afbildninger mellem vektorrum af en bestemt type, nemlig lineære afbildninger Det vises, at kernen og billedrummet for lineære afbildninger er

Læs mere

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at GEOMETRI-TØ, UGE 3 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad γ : (α, β) R 2 være en regulær kurve i planen.

Læs mere

Løsning af præmie- og ekstraopgave

Løsning af præmie- og ekstraopgave 52 Læserbidrag Løsning af præmie- og ekstraopgave 23. årgang, nr. 1 Martin Wedel Jacobsen Både præmieopgaven og ekstraopgaven er specialtilfælde af en mere generel opgave: Hvor mange stykker kan en n-dimensionel

Læs mere

Diodespektra og bestemmelse af Plancks konstant

Diodespektra og bestemmelse af Plancks konstant Diodespektra og bestemmelse af Plancks konstant Fysik 5 - kvantemekanik 1 Joachim Mortensen, Rune Helligsø Gjermundbo, Jeanette Frieda Jensen, Edin Ikanović 12. oktober 28 1 Indledning Formålet med denne

Læs mere

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da:

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da: 7. marts 0 FVU AVU HF X FAG : Matematik B ark nr. antal ark 8 Opgave 0 a b 5 a b 5 = b 3 er en løsning til ligningen, da: = 9 = 3 Opgave Andengradsligningen løses, idet a = b = 3 c = 4 d (diskriminanten)

Læs mere

10. Nogle diofantiske ligninger.

10. Nogle diofantiske ligninger. Diofantiske ligninger 10.1 10. Nogle diofantiske ligninger. (10.1). I dette kapitel betragtes nogle diofantiske ligninger, specielt nogle af de ligninger, der kan behandles via kvadratiske talringe. Ligningerne

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2 M å l e p u n k t R i e m a n n s k G e o m e t r i E 8 J a ko b L i n d b l a d B l a ava n d 2 5 3 6 7 5 27 oktober 28 I n s t i t u t fo r M at e m at i s k e Fag A a r h u s U n i v e r s i t e t indledning

Læs mere

Vejledende besvarelse

Vejledende besvarelse Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer

Læs mere

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold.

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Formål Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Teori Et batteri opfører sig som en model bestående af en ideel spændingskilde og en indre

Læs mere

Kortprojektioner L mm Længde og vinkelmåling på flader. Konforme og arealtro kort.

Kortprojektioner L mm Længde og vinkelmåling på flader. Konforme og arealtro kort. Kortprojektioner L4 2016 3.mm Længde og vinkelmåling på flader. Konforme og arealtro kort. Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet L4 maj 2016 Lisbeth Fajstrup (AAU) Kortprojektioner

Læs mere

Opgave 6. Opgave 7. Opgave 8. Peter Harremoës Mat A delprøve med hjælpemidler 15 december 2015

Opgave 6. Opgave 7. Opgave 8. Peter Harremoës Mat A delprøve med hjælpemidler 15 december 2015 Opgave 6 a) Se Bilag 3! b) Funktionen differentieres, sættes lig nul og ligningen løses. g (x) = 0 K ln (x) + K = 0 K ln (x) = K ln (x) = 1 x = e 1. Det stationære punkt har x = e 1. Opgave 7 a) Data indlæses

Læs mere

3. Hold ALT nede, og tryk på F1 (så snart du har gjort det, behøver du ikke længere holde ALT nede).

3. Hold ALT nede, og tryk på F1 (så snart du har gjort det, behøver du ikke længere holde ALT nede). Der er 3 måder at indsætte græske symboler eller andre symboler ind i Notes. Metode 1) For at indtaste græske symboler i Lotus Notes har du følgende muligheder : Hold ALT nede, og tryk på F1 to gange lige

Læs mere

Øvelse i kvantemekanik Måling af Plancks konstant

Øvelse i kvantemekanik Måling af Plancks konstant Øvelse i kvantemekanik Måling af Plancks konstant Tim Jensen og Thomas Jensen 2. oktober 2009 Indhold Formål 2 2 Teoriafsnit 2 3 Forsøgsresultater 4 4 Databehandling 4 5 Fejlkilder 7 6 Konklusion 7 Formål

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Kurver og flader i geometri, arkitektur og design 23. lektion

Kurver og flader i geometri, arkitektur og design 23. lektion Kurver og flader i geometri, arkitektur og design 23. lektion Department of Mathematical Sciences Aalborg University Denmark 9.5.2011 Normal- og hovedkrumninger i et fladepunkt Normalkrumningen k = k n

Læs mere

Differentialkvotient af cosinus og sinus

Differentialkvotient af cosinus og sinus Differentialkvotient af cosinus og sinus Overgangsformler cos( + p ) = cos sin( + p ) = sin cos( -) = cos sin( -) = -sin cos( p - ) = - cos sin( p - ) = sin cos( p + ) = -cos sin( p + ) = -sin (bevises

Læs mere

Formelsamling til MM501 Calculus I MM502 Calculus II MM503 BioMat I MM504 BioMat II

Formelsamling til MM501 Calculus I MM502 Calculus II MM503 BioMat I MM504 BioMat II Formelsamling til MM501 Calculus I MM502 Calculus II MM503 BioMat I MM504 BioMat II Niels Kirkegaard og Peter Damkjær Senest redigeret af Hans J. Munkholm, juli 2009 Forord Denne formelsamling er oprindelig

Læs mere

Andengradsligninger i to og tre variable

Andengradsligninger i to og tre variable enote 0 enote 0 Andengradsligninger i to og tre variable I denne enote vil vi igen beskæftige os med andengradspolynomierne i to og tre variable som også er behandlet og undersøgt med forskellige teknikker

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Lineær uafhængighed 1. Lineær afbildninger 2. Spektralteori 3. Komplekse tal 4. Indeks 8. u 3 = u 1 + u 2 (3) V u3 =

Lineær uafhængighed 1. Lineær afbildninger 2. Spektralteori 3. Komplekse tal 4. Indeks 8. u 3 = u 1 + u 2 (3) V u3 = Goutham Jørgen Surendran3. januar 22 LINEÆR UAFHÆNGIGHED Indhold Lineær uafhængighed Lineær afbildninger 2 Spektralteori 3 Funktionskalkyle for symmetriske kalkyler 4 Komplekse tal 4 (Hvad ethvert dannet

Læs mere

2. ordens differentialligninger. Svingninger.

2. ordens differentialligninger. Svingninger. arts 011, LC. ordens differentialligninger. Svingninger. Fjederkonstant k = 50 kg/s s X S 80 kg F1 F S er forlængelsen af fjederen, når loddets vægt belaster fjederen. X er den påtvungne forlængelse af

Læs mere

Opgaver hørende til undervisningsmateriale om Herons formel

Opgaver hørende til undervisningsmateriale om Herons formel Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og

Læs mere

Funktioner af flere variable

Funktioner af flere variable Funktioner af flere variable Stud. Scient. Martin Sparre Københavns Universitet 23-10-2006 Definition 1 (Definition af en funktion af flere variable). En funktion af n variable defineret på en delmængde,

Læs mere

GU HHX MAJ 2009 MATEMATIK A. Onsdag den 13. maj 2009. Kl. 9.00 14.00 GL091-MAA. Undervisningsministeriet

GU HHX MAJ 2009 MATEMATIK A. Onsdag den 13. maj 2009. Kl. 9.00 14.00 GL091-MAA. Undervisningsministeriet GU HHX MAJ 2009 MATEMATIK A Onsdag den 13. maj 2009 Kl. 9.00 14.00 Undervisningsministeriet GL091-MAA Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og

Læs mere

Varmeligningen og cosinuspolynomier.

Varmeligningen og cosinuspolynomier. Varmeligningen og cosinuspolynomier. Projekt for MM50 Marts 009 Hans J. Munkholm 0. Praktiske oplysninger Dette projekt besvares af de studerende, som er tilmeldt eksamen i MM50 uden at være tilmeldt eksamen

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

Obligatorisk Projekt MM512 Kurver og Flader 4. kvartal 2007

Obligatorisk Projekt MM512 Kurver og Flader 4. kvartal 2007 Institut for Matematik og Datalogi Syddansk Universitet Indhold Obligatorisk Projekt MM512 Kurver og Flader 4. kvartal 2007 1 Vejledning 1 2 Indledning 2 3 Plankurver og deres evolut 2 4 Gaußforskydningen

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag.

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag. VEKTOR I RUMMET PROJEKT 1 Fag Matematik A & Programmering C Tema Avedøre-værket Jacob Weng & Jeppe Boese Roskilde Tekniske Gymnasium 3.4 07-10-2010 1 Vektor i rummet INDLEDNING Projektet omhandler et af

Læs mere

Matematik A studentereksamen

Matematik A studentereksamen Xxxx Side 1 af 11 Opgave 7 Jeg aflæser af boksplottet for personbeskatningen i 2007 medianen til. Første og anden kvartil aflæser jeg til hhv. og. Den mindst observerede personbeskatning i år 2007 var

Læs mere

Den ideelle operationsforstærker.

Den ideelle operationsforstærker. ELA Den ideelle operationsforstærker. Symbol e - e + v o Differensforstærker v o A OL (e + - e - ) - A OL e ε e ε e - - e + (se nedenstående figur) e - e ε e + v o AOL e - Z in (i in 0) e + i in i in v

Læs mere

Vektorer og lineær regression

Vektorer og lineær regression Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden

Læs mere

Matematikken bag Parallel- og centralprojektion

Matematikken bag Parallel- og centralprojektion Matematikken bag parallel- og centralojektion 1 Matematikken bag Parallel- og centralojektion Dette er et redigeret uddrag af lærebogen: Programmering med Delphi fra 2003 (570 sider). Delphi ophørte med

Læs mere

Funktionalligninger - løsningsstrategier og opgaver

Funktionalligninger - løsningsstrategier og opgaver Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

Matematik B Klasse 1.4 Hjemmeopaver

Matematik B Klasse 1.4 Hjemmeopaver Matematik B Klasse 1.4 Hjemmeopaver 1) opgave 336, side 23 Opgaven går ud på at jeg skal finde ud af hvor gamle børnene højst kan være, når forældrene tilsammen er 65 år og de skal være 40 år ældre end

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Bjælkeoptimering. Opgave #1. Afleveret: 2005.10.03 Version: 2 Revideret: 2005.11.07. 11968 Optimering, ressourcer og miljø. Anders Løvschal, s022365

Bjælkeoptimering. Opgave #1. Afleveret: 2005.10.03 Version: 2 Revideret: 2005.11.07. 11968 Optimering, ressourcer og miljø. Anders Løvschal, s022365 Bjælkeoptimering Opgave # Titel: Bjælkeoptimering Afleveret: 005.0.0 Version: Revideret: 005..07 DTU-kursus: Underviser: Studerende: 968 Optimering, ressourcer og miljø Niels-Jørgen Aagaard Teddy Olsen,

Læs mere

Vejledende Matematik A

Vejledende Matematik A Vejledende Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og 10D skal kun én opgave afleveres til bedømmelse. Hvis flere end én opgave afleveres, bedømmes

Læs mere

MATEMATIK ( 5 h ) DATO: 8. juni 2009

MATEMATIK ( 5 h ) DATO: 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 5 h ) DATO: 8. juni 2009 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

Opg. 1. Cylinder. Opg. 1 spm. a løses i hånden. Cylinderens radius er 10 cm og keglen er 20 cm høj. Paraboloidens profil kan beskrives med ligningen

Opg. 1. Cylinder. Opg. 1 spm. a løses i hånden. Cylinderens radius er 10 cm og keglen er 20 cm høj. Paraboloidens profil kan beskrives med ligningen Opg. 1 spm. a løses i hånden. Cylinderens radius er 10 cm og keglen er 20 cm høj. Paraboloidens profil kan beskrives med ligningen Opg. 1 a) Bestem de funktioner h(t), der beskriver vandhøjden i beholderen,

Læs mere

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Vektorfunktioner (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse VEKTORFUNKTIONER... Centrale begreber... Cirkler... 5 Epicykler... 7 Snurretoppen... 9 Ellipser... 1 Parabler...

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 20. december 2010. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 20. december 2010. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx103-mat/a-01010 Mandag den 0. december 010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Dette opgavesæt består

Læs mere

Hopf-Rinow s sætning og Bonnet s sætning The Hopf-Rinow Theorem and Bonnet s Theorem

Hopf-Rinow s sætning og Bonnet s sætning The Hopf-Rinow Theorem and Bonnet s Theorem E T N A T U R V I E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T Bachelorprojekt i matematik Søren Frejstrup Grav Petersen Hopf-Rinow s sætning og Bonnet s sætning The

Læs mere

Vektoranalyse INDLEDNING. Indhold. 1 Integraltricks. Jens Kusk Block Jacobsen 21. januar 2008

Vektoranalyse INDLEDNING. Indhold. 1 Integraltricks. Jens Kusk Block Jacobsen 21. januar 2008 Vektoranalyse Jens Kusk Block Jacobsen 21. januar 2008 INLENING ette er en opsamling af ting, jeg synes er gode at have ifbm vektoranalyse som præsenteret i kurset VEKANAE07 ved IMF på AU. Noten er dels

Læs mere

Kurve- og plan-integraler

Kurve- og plan-integraler enote 22 1 enote 22 Kurve- og plan-integraler Vi vil her med udgangspunkt i de metoder og resultater der er opstillet i enote 21 vise, hvordan Riemann-integralerne derfra kan benyttes til blandt andet

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral a f(x) dx = F (b) F (a) Lektion 5 Det bestemte integral Definition Integralregningens Middelværdisætning Integral- og Differentialregningens Hovedsætning Beregning af bestemte integraler Regneregler Areal

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil

Læs mere

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forsøg med digitale eksamensopgaver med adgang til internettet frs102-matn/a-12082010 Torsdag den 12. august 2010 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve

Læs mere

Kort om Eksponentielle Sammenhænge

Kort om Eksponentielle Sammenhænge Øvelser til hæftet Kort om Eksponentielle Sammenhænge 2011 Karsten Juul Dette hæfte indeholder bl.a. mange småspørgsmål der gør det nemmere for elever at arbejde effektivt på at få kendskab til emnet.

Læs mere

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor Rumfang af en cylinder På illustrationen til øjre er indtegnet en lineær funktion indenfor et afgrænset interval, vor 0;. Funktionen () kan skrives på formen: = (vor a er en konstant) Det markerede grå

Læs mere

Funktionsrum. Kapitel 1. 1.1 Funktionsrummet L = L(X, E, µ)

Funktionsrum. Kapitel 1. 1.1 Funktionsrummet L = L(X, E, µ) Kapitel Funktionsrum. Funktionsrummet L = L(X, E, µ) For et vilkårligt målrum (X,E,µ) er mængdenl=l(x,e,µ) afµ-integrable funktioner f :X R et reelt vektorrum ifølge Theorem 7.3 i [EH]. Hvis vi indfører

Læs mere

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere

Dansk Fysikolympiade 2015 Udtagelsesprøve søndag den 19. april 2015. Teoretisk prøve. Prøvetid: 3 timer

Dansk Fysikolympiade 2015 Udtagelsesprøve søndag den 19. april 2015. Teoretisk prøve. Prøvetid: 3 timer Dansk Fysikolympiade 2015 Udtagelsesprøve søndag den 19. april 2015 Teoretisk prøve Prøvetid: 3 timer Opgavesættet består af 15 spørgsmål fordelt på 5 opgaver. Bemærk, at de enkelte spørgsmål ikke tæller

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2017

Besvarelser til Calculus Ordinær Eksamen Juni 2017 Besvarelser til Calculus Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017 Besvarelser til Calculus Ordinær Eksamen - 3. Januar 17 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan

Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan så vælge tegnet. - For at definere noget, eks en x værdi,

Læs mere

Opgaver om koordinater

Opgaver om koordinater Opgaver om koordinater Formålet med disse opgaver er dels at træne noget matematik, dels at give oplysninger om og træning i brug af Mathcad: Matematik: Øge grundlæggende indsigt vedrørende koordinater

Læs mere

er et helt tal. n 2 AB CD AC BD (b) Vis, at tangenterne fra C til de omskrevne cirkler for trekanterne ACD og BCD står vinkelret på hinanden.

er et helt tal. n 2 AB CD AC BD (b) Vis, at tangenterne fra C til de omskrevne cirkler for trekanterne ACD og BCD står vinkelret på hinanden. Opgave Heltalligt Bestem alle hele tal, n >, for hvilke n + n er et helt tal. Opgave Trekantet I en spidsvinklet trekant ABC skærer vinkelhalveringslinien fra A siden BC i punktet L og den omskrevne cirkel

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

1 Oversigt I. 1.1 Poincaré modellen

1 Oversigt I. 1.1 Poincaré modellen 1 versigt I En kortfattet gennemgang af nogle udvalgte emner fra den elementære hyperbolske plangeometri i oincaré disken. Der er udarbejdet både et Java program HypGeo inkl. tutorial og en Android App,

Læs mere

Løsningsforslag til Geometri 4.-10. klasse

Løsningsforslag til Geometri 4.-10. klasse Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem

Læs mere

Er A åben? Er A afsluttet? Er A en Borel-mængde? [Vink: Prøv at skriv A som en tællelig forening af afsluttede mængder.

Er A åben? Er A afsluttet? Er A en Borel-mængde? [Vink: Prøv at skriv A som en tællelig forening af afsluttede mængder. Analyse Øvelser Rasmus Sylvester Bryder 10. og 13. september 013 Supplerende opgave 4 Betragt mængden A = {(x, y) R x + y 1, x < y}. Er A åben? Er A afsluttet? Er A en Borel-mængde? [Vink: Prøv at skriv

Læs mere