Evaluering Matematik A på htx

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Evaluering Matematik A på htx"

Transkript

1 Evaluering af Matematik A på htx Sommeren

2 Indholdsfortegnelse Forord... 3 Generelle bemærkninger... 4 Omsætningstabel... 6 Årets prøve i tal... 6 Vurdering af opgavesættet... 9 Forberedelsesmaterialet... 9 Kommentarer til forberedelsesmaterialet... 9 Kommentarer til elevernes arbejde med forberedelsesmaterialet inden prøven timersprøven Kommentarer til sættet Gennemgang af opgaverne Giv kommentarer til årets opgavesæt

3 Forord Hermed en evaluering af den skriftlige prøve i matematik A ved højere teknisk eksamen, sommeren Der var i år to forskellige matematik A prøver, idet nogle få elever skulle til prøve på gammel ordning. Det drejer sig dog om så få elever, at resultaterne for disse ikke er medtaget her. Årets evaluering er baseret på censorernes kommentarer. Ved matematik A blev censorerne bedt om at: vurdere forberedelsesmaterialet og 5-timersprøven vurdere elevernes muligheder for at vise, at de har opnået kernekompetencerne beskrive positive sider ved besvarelserne beskrive typiske fejl og mangler Det er vort håb, at denne rapport kan være en hjælp og inspiration for matematiklæreren i såvel undervisningen som under retningen af elevbesvarelser. Marit Hvalsøe Schou Fagkonsulent Bente Pihl Formand for opgavekommissionen 3

4 Generelle bemærkninger Ved bedømmelsen af elevbesvarelserne tages udgangspunkt i nedenstående tekst fra opgavesættet: I bedømmelsen vil der blive lagt vægt på, om tankegangen klart fremgår, herunder om der i besvarelsen af den enkelte opgave er: en forbindende tekst, der giver en klar begrundelse for valget af den anvendte løsningsmetode samt en afrunding af hvert spørgsmål med præcise konklusioner, præsenteret i et klart sprog og med brug af korrekt matematisk notation dokumentation af beregninger ved brug af it-værktøjer og/eller mellemregninger samt forklarende tekst benyttet figurer og illustrationer med tydelig sammenhæng mellem tekst og figurer. Det er vigtigt at man løbende i undervisningen og ved skriftlige afleveringer træner ovenstående krav til en besvarelse. Under den afsluttende prøve er eleverne under pres, så det er ikke her, de skal udsættes for kravene for første gang. Begrundelsen for den anvendte løsningsmetode bør være en kort og præcis angivelse af den matematiske begrundelse for hvorfor man udfører nogle bestemte beregninger. Ved bestemmelse af et maksimum kan man fx skrive: nu findes nulpunktet for den afledede funktion, for at finde de punkter, hvor der er vandret tangent. Derefter undersøges det, om det er et maksimum ved at indsætte værdier på hver side af nulpunktet. Skal man bestemme vinklen mellem to planer, kan man fx skrive: for at finde vinklem mellem de to planer, kan man i stedet finde vinklen mellem deres normalvektorer. Løsningen behøver ikke angives med to streger under resultatet. Her vil det ofte være mere læseværdigt at skrive en konklusion, hvor resultatet fremgår (passende afrundet og hvis relevant med den korrekte enhed). Korrekt matematisk notation og symbolbrug volder en del besvær. Nogle elever benytter := eller som lighedstegn i angivelsen af løsninger. Disse tegn skal som hovedregel forbeholdes mellemregninger. I nogle programmer kan det være meget vanskeligt at undgå en hvis programsyntaks og her skal man især lægge mærke til hvordan eleven i øvrigt behersker det matematiske sprog. Hvis der ikke er nogen tvivl om, hvad eleven mener, kan man tillade sig at godtage resultater, der indeholder programmets symboler. Der er fortsat problemer med opskrivning af vektorer/punkter. Her skal det pointeres, at punkter skrives vandret og vektorer lodret. Hvis det er helt umuligt at få programmet til at opskrive vektorer lodret, kan eleven som indledning til opgaven gøre opmærksom på det og fortælle hvordan vedkommende har valgt at løse problemet. Ved navngivning af vektorer benyttes et bogstav med pil over a eller et bogstav med fed skrift a. For de programmer, der skriver punkter lodret bør eleven bruge betegnelsen stedvektor. I resultater, der er tal, kan både, og. benyttes som decimalseparator. En del elever bruger stadig betegnelsen, at solve en ligning. Det gør man ikke, man løser den! Det er i det hele taget vigtigt at lære eleverne at benytte det gængse matematiske sprog og holde sig fra slang- og programudtryk. Et andet eksempel er bestemmelse af hvilken model, der bedst beskriver et givet datasæt. I besvarelsen kan den korrekte ordlyd være: Ved hjælp af lineær regression bestemmes den bedste rette linje gennem punkterne. Derimod skal man IKKE skrive jeg finder en tendenslinje! Det er vigtigt, at man opskriver de ligninger, der skal løses, så personer, der ikke kender et konkret program også forstår, hvad der foregår. Ovenstående er en del af kommunikationskompetencen samt symbol- og formalismekompetencen. 4

5 Dokumentationen af beregninger ved brug af it-værktøjer skaber ikke længere de store diskussioner på censormødet, og der kommer heller ikke mange henvendelser fra undervisere rundt om på skolerne. Skønt det naturligvis er helt i overensstemmelse med reglerne at dokumentere sine resultater vha. udførlige mellemregninger, må man sige, at det er de færreste elever, som har tid til at gøre det ved en eksamen. Vi ser desværre hvert år klasser, der stort set ikke bruger CAS, og som klarer sig meget dårligt, fordi de kun får lavet de første 2-3 opgaver (som til gengæld ofte laves meget flot og grundigt). Overordnet set skal elevernes besvarelse vise, at de forstår og behersker den matematik, der er i spil, og at de kan viderebringe deres viden i et præcist matematisk sprog og med korrekt matematisk notation. Når man holder sig dette for øje også set i relation til brugen af CAS-værktøjer er man godt på vej! I forbindelse med brugen af CAS-værktøjer oplever nogle elever, at ikke alle opgaver kan løses symbolsk, men at de må nøjes med en numerisk løsning. Denne problemstilling er værd at tage op i undervisningen: Hvordan skelner man mellem de to løsningstyper? Hvordan fungerer CAS-værktøjet? Hvilken løsningstype er at foretrække i en given situation? Hvordan dokumenterer man en løsning, der er fundet numerisk? (indsættelse, grafisk eftervisning etc.) Ved løsning af opgaver optræder der sommetider falske løsninger. Her er det relevant at undersøge: Hvordan afgøres hvilken løsning, der er korrekt? Hvilken dokumentation kræves? (figur, indsættelse af værdier.) Dette er væsentlige spørgsmål, som også er en del af elevens hjælpemiddelkompetence. Eleven har metodefrihed, herunder valg af hjælpemidler. Det er tilladt at bruge it-værktøjernes kommandoer til bestemmelse af for eksempel vektorlængder, arealer, ekstremumspunkter, vinkler m.m. Men eleverne skal være opmærksomme på, at når en række af beregninger erstattes med en enkelt indtastning kræver det ofte ledsagende kommentarer for at dokumentere, at man besidder fx tankegangs- og ræsonnementskompetencen. Disse kan være i form af matematiske argumenter, konkrete vurderinger eller verificering af resultaterne ved indsættelse eller tegning af en figur. Sættets opgave 3 var konstrueret sådan, at man naturligt blev ledt til at benytte forberedelsesmaterialet og løsningen til normalligningerne for at løse opgave c) og d). Kunne man imidlertid ikke det, var der stadig mulighed for at løse opgaven vha. matematikprogrammets regressionsværktøj. Som nævnt tidligere år er det IKKE korrekt at tage to målepunkter og løse de tilhørende 2 ligninger med 2 ubekendte, selvom mange elever vil føle, at de viser meget mere matematik på denne måde. Ønsker man at bestemme konstanterne a og b ved at løse et ligningssystem, skal det ske ud fra 2 punkter, der er aflæst på den bedste rette linje gennem de angivne måledata. I vejledningen findes et eksempel på en standardløsning til en sådan opgave. Der er efterhånden kommet mange matematikprogrammer på markedet. MathCad og Maple er de mest benyttede, men flere andre programmer bruges rundt omkring. Desværre er det ikke alle programmer, der er lige velegnet til at dokumentere løsningerne i. Her har man på den enkelte skole en forpligtelse til at gøre eleverne opmærksomme på, at det program, der benyttes til at finde den matematiske løsning på et problem måske ikke kan stå alene, og man derfor må over i f.eks. et tekstbehandlingsprogram for at dokumentere løsningen. Det kan være svært at forstå elevbesvarelserne pga. det program, de var skrevet i. Det skal derfor pointeres, at det er i orden at bruge programsprog i mellemregninger, men at det helt tydeligt skal fremgå i tekst og evt. opskrivning af ligninger, hvad det er for en matematik, der er i spil, og hvordan problemet løses (f.eks.: vha. lineær regression bestemmes den bedste rette linje gennem punkterne, 5

6 nu løses ligningssystemet, funktionsudtrykket differentieres og man finder nulpunkt for den afledede funktion osv.) Graftegning volder traditionelt problemer, for skønt man nemt kan indtegne en graf i et program eller på lommeregneren, har mange svært ved at vælge passende enheder på akserne og et fornuftigt vindue, så man kan få en fornemmelse af grafens forløb. Illustrationer og figurer er der desværre stadig meget langt imellem. I årets sæt var det særlig hjælpetegninger i opgave 1 d) og e), der manglede. Sådanne skitser, som understøtter tekst og beregninger og viser de benyttede navne, bør være en helt naturlig ting ved geometriske opgaver og trigonometriske ligninger. Dette skal der i høj grad fokuseres på i undervisningen. Det er fuldt lovligt - og ofte en rigtig god idé - at tilføje disse hjælpetegninger med blyant. Omsætningstabel Nedenstående omsætningstabel er lavet med udgangspunkt i karakterbeskrivelsen for skriftlig matematik på A-niveau. Denne beskrivelse findes på fagets side på EMU en. Censorerne blev bedt om ved hver delopgave at give point i forhold til graden af målopfyldelse, dvs. i hvor høj grad eleven viste at have erhvervet sig de matematiske kernekompetencer. Ved helhedsvurderingen skulle graden af tilstedeværelsen af samtlige kompetencer indgå. Karaktergivningen foregik i et samarbejde mellem de 2 censorer. Nedenstående vejledende omsætningstabel blev benyttet. Point Karakter Årets prøve i tal I alt 2825 elever gik op til den skriftlige prøve i matematik A. Karaktererne fordelte sig således karakter i alt Antal frekvens (%) 1,9 15,2 9,6 18,2 29,6 16,1 9,5 100 kum. frekv. (%) 1,9 17,1 26,7 44,9 74,5 90, Frekvens (%) af beståede ,6 21,9 35,7 19,4 11,

7 Grafisk ser resultaterne således ud: , ,2 9,6 18,2 16,1 9,5 5 1, Frekvensfordeling af alle elever Ser man på fordelingen for de beståede, bliver resultatet: , ,9 19, ,6 11, Frekvensfordeling af de beståede elever. Sammenfatning af den totale population: Gennemsnit 5,68 1. kvartil 2,65 Median 6,02 3. kvartil 8,59 Andelen af elever der fik under 02 var 17,1 % 7

8 Studieretningsfag og valgfag: I år var det muligt at opdele karaktererne for de elever, der har haft faget i en studieretning og de elever, der har haft det som et valgfag. Her tegner sig nogle forskelle i, hvordan eleverne har klaret prøven. For 2200 elever, der har haft faget i en studieretning er tallene: Gennemsnit: 5,83 1. kvartil 3,00 Median 6,15 3. kvartil 8,70 Andelen af elever, der fik under 02: 15,7 % Mens tallene for 611 elever, der har haft matematik som et valgfag er: Gennemsnit 5,07 1. kvartil 1,45 Median 5,42 3. kvartil 8,20 Andelen af elever, der fik under 02: 22,6 % Nogle skoler havde indberettet deres matematik A-hold som et obligatorisk fag. Det har ikke været muligt at finde ud af om dette betyder at faget har været et studieretningsfag eller et valgfag, hvorfor disse elever ikke medtages i ovenstående statistik. Konklusion: Gennemsnittet på 5,68 er et fald i forhold til sidste års resultat på 6,03. Desværre er antallet af elever, der ikke bestod prøven, også steget i forhold til Dette gør sig især gældende på valgholdene. Det lidt lavere resultat i år kan skyldes, at differentialligninger atter er kommet med i kernestoffet, og at der derfor kan have været en vis usikkerhed i forbindelse med emnet. For at afhjælpe det problem, at man ikke kan finde gamle eksamensopgaver om differentialligninger, som kan trænes med eleverne, på samme måde som man gør det med de øvrige emner, er der i vejledningen for Matematik A vist forskellige typer opgaver, der svarer til kernestoffets beskrivelse. Ser man på fordelingen af de beståede elever, er karaktererne pænt symmetrisk fordelt om karakteren 7, og knap 60 % af eleverne får en middelkarakter eller derover. 8

9 Vurdering af opgavesættet Censorerne blev bedt om at svare på nedenstående spørgsmål. 31 censorer ud af 41 har svaret. Tallene viser den samlede vurdering. Forberedelsesmaterialet Hvordan vurderer du det faglige niveau for højt 1 passende 30 for lavt 0 Hvordan vurderer du materialets omfang for stort 4 passende 27 for lille 0 Hvordan vurderer du forholdet mellem teori, eksempler og opgaver fin 8 ok 22 uhensigstmæssigt 1 Hvordan vurderer du læseligheden (formuleringer, billeder, grafer) Helhedsvurdering fin 12 ok 15 ringe 4 fin 7 ok 23 ringe 1 Kommentarer til forberedelsesmaterialet Der er igen i år overvejende tilfredshed med forberedelsesmaterialet. Mange fandt emnet godt og relevant. Dog var enkelte censorer lidt kritiske til at eleverne skulle forholde sig til to nye emner på en gang. Nedenfor ses nogle af de mange gode kommentarer. Der lægges ud med de mere kritiske og sluttes af med de positive: Det faglige niveau var måske lige i overkanten med to nye begreber (som arbejder godt sammen) Det kunne være lidt mere om bestemmelse af saddelpunkt eller et eksempel mere Det virkede nemmere på mig end de foregående år, men det syntes eleverne ikke Der er fine muligheder for at stille spørgsmål til den mundtlige eksamen også Jeg synes emnet var glimrende og passende til eleverne. 9

10 Flot materiale Dejligt at materialet er så fint anvendeligt til brug i undervisningen. Kommentarer til elevernes arbejde med forberedelsesmaterialet inden prøven Som det ses af de nedenstående udvalgte kommentarer, er der meget forskel på elevernes arbejde med forberedelsesmaterialet. Det vil altid være sådan, at nogle finder det nemmere end andre og derfor ikke behøver alle 10 timers vejledning. Nogle elever har meget svært ved at arbejde selvstændigt med materialet og ønsker bare formler, der kan sættes ind i. Her er det igen på sin plads at nævne, at vi igen og igen skal træne eleverne i at tilegne sig stof - også teori - på egen hånd bl.a. gennem læsning af tekster som lærebøger, artikler og forberedelsesmaterialer! Flere af de dygtigste elever var færdige eller næsten færdige efter 1. dag. Det synes jeg er fint - så er der også rigeligt med tid til dem der ikke er helt så stærke. Alle mine elever har arbejdet koncentreret med sættet begge dage. De svage elever når ikke igennem, for gennemsnitseleven og den stærke elev, var omfanget passende. Eleverne var ikke vedholdende nok til at gå hele vejen. Der er meget tekst og kun få opgaver i den første halvdel af sættet. Det betød at de svagere elever brugte lang tid før de rigtigt var i gang med materialet. De synes at det var abstrakt, kunne ikke helt se sammenhænge. Mine elever synes det var interessant og spurgt om det var sådan at computeren gjorde, når de trykkede på knappen. Da jeg svarede ja, så synes de det var endnu mere interessant. Jeg havde kun ½ deltagelse, hvilket jeg synes er overraskende lavt Ærgerligt, at den sidste opgave var så betydningsfuld. 5-timersprøven Hvordan vurderer du det faglige niveau for højt 2 passende 23 for lavt 6 Hvordan vurderer du opgavens omfang for stort 3 passende 26 for lille 2 Hvordan vurderer du læseligheden (formuleringer, billeder, grafer) fin 14 ok 16 ringe 0 10

11 Hvordan vurderer du alsidigheden (dele af kernestoffet, der berøres) fin 7 ok 16 ringe 7 Hvordan vurderer du sammenhængen mellem forberedelsesmaterialet og 5-timersprøven fin 19 ok 11 ringe 0 Angiv din helhedsvurdering af sættet fin 7 ok 18 ringe 4 Censorerne var stor set enige om, at det var et udmærket sæt, og især var der tilfredshed med sammenhængen mellem forberedelsesmaterialet og 5-timersprøven. Dog kan man på kommentarerne se, at en del censorer savner opgaver indenfor især integral- og differentialregning. I forbindelse med gymnasiereformen er de faglige mål, der skal bedømmes ved prøven, blevet beskrevet vha. 8 matematiske kernekompetencer. Censorerne blev bedt om at vurdere i hvor høj grad det gennem besvarelsen af årets prøve var muligt for eleverne at vise, at de havde opnået disse kompetencer. Fin OK Ringe Tankegang Ræsonnement l Problembehandling Modellering Repræsentation Symbol- og formalisme l Hjælpemiddel Kommunikation Opgavekommissionen har ved udfærdigelse af prøven været meget opmærksom på, at alle kompetencer er repræsenteret. Nogle kompetencer især tankegangs- og modelleringskompetencen kan være vanskelig at teste ved den skriftlige prøve. Det er da også disse kompetence, censorerne har sværest ved at finde i årets prøve. Til gengæld er der gode muligheder for at teste netop disse kompetencer ved den mundtlige prøve. Kommentarer til sættet Generelt var censorerne tilfredse med sættet. Mange censorer har dog manglet opgaver i integralregning og optimering. Det er desværre begrænset med antallet af opgaver, og da der skulle være plads til både forberedelsesmaterialet og differentialligninger, var der andre emner, som må vente til en anden gang. Det nye emne differentialligninger voldte eleverne store problemer. Her skal man være opmærksom på, at det IKKE er en del af kernestoffet, at eleverne skal kunne løse differentialligningerne, men de skal forstå, hvad en differentialligning er, og hvad den kan beskrive. Derudover skal elevere kunne eftervise en given løsning ved indsættelse, kunne forstå og tegne linjeelementer og løsningskurver samt opstille differentialligninger ud fra en sproglig beskrivelse. I vejledningen for matematik kan man finde nogle udvalgte opgaver, som viser hvilke typer af opgaver det forventes at eleverne skal kunne besvare. Her er bl.a. vist en opgave om linjeelementer, som svarer til den opgave, der var i eksamenssættet. 11

12 Det var et godt sæt. Dog med en bemærkning til opgave 4, hvor det første spørgsmål krævede at man havde en god forståelse for differentialligninger. Desuden havde opgaven den svaghed at kunne man ikke løse det første spørgsmål, kunne man ikke lave de 2 efterfølgende. Jeg mener de to opgaver i forberedelsesmaterialet fra i år var lidt for rutineprægede. Jeg er ikke så vild med opgave 1e, da jeg synes den er alt for omstændig og der er alt for mange muligheder for at begå små dumme fejl. 1e s kobling til opgave 5 er ganske genial. Jeg synes, at sættet kommer rundt om alle kompetencer. Dog får hjælpemiddelkompetencen nok en rimelig stor betydning. Overraskende, at der ikke var plads til ren differentialregning (optimering) og integralregning. Havde nok fortrukket en af delene frem for opgave 6. Det har overrasket mig, hvor svært eleverne havde ved opgave 3a, 3b og 4. Opgave 3 og 4 i sammenhæng synes jeg var særlig heldig. Differentialligningsopgaven kunne faktisk løses uden at kende den logistiske formel, men ved at løse opgaven og tænke sig om. Er der behov for at vægtningen af vektorer i rummet skal være så stor i forhold til emner som funktionsanalyse, differentialregning og integralregning. Forberedelsesmaterialet fylder måske lidt for meget. Som altid indeholdt sættet opgaver, som kan løses på mange måder. Jeg synes det er herligt. Specielt når en elev kreativt løser en opgave på en måde, man ikke selv havde overvejet. Også dejligt at en udlednings/ræsonnements opgave er ved at være fast del af sættet. Måske er linjeelementer for lille et hjørne af kernestoffet til at stille opgaver i. Censorerne blev bedt om at kommentere såvel positive sider som typiske fejl og mangler ved elevernes besvarelser. Mange kommentarer går igen: Om de positive sider: Der er mange gode besvarelser til opgave 5. I det hele taget er der mange flere elever end tidligere der skriver forklaringer og forbindende tekst til deres løsninger. Opgaverne, som var tilknyttet forberedelsesmaterialet, kunne de fleste elever løse korrekt eller med mindre fejl. Mange er gode til at redegøre for, hvad det er, de laver, så CAS-værktøjet ikke kommer til at stå for fortolkningen. Mange har en god sikkerhed i deres CAS-værktøj mht. løsninger (men IKKE mht. det grafiske) Antallet af håndskrevne afleveringer er faldet. 12

13 En del kommer, på trods af problemer med 3a og 3b, godt igennem opgave 3c og 3d. De fleste elever kom godt i gang, da de har godt styr på rumgeometri. I opgave 1d viser elever, at de behersker flere metoder. Mange formår at bruge opgivne værdier i opgave 3, selvom de har løst normalligningerne forkert eller ikke løst dem. Om typiske fejl eller mangler: Generelt: Problemer med at få CAS-værktøjet til at gøre som man vil have det til. Sjusk ved indtastning i CAS-værktøj. Alt for mange angiver ikke tydeligt deres facit. Der savnes skitser til løsninger - særligt i opgaverne 1 og 5. Vurdering af resultater, særligt når resultatet slet ikke stemmer overens med virkeligheden, her tænkes på 3d. Problemer med radianer/grader i forbindelse med CAS-værktøj Mangler korrekt matematisk notation særligt i forbindelse med vektorer og punkter. Mange forstår ikke at udnytte CAS-værktøjets muligheder for at gemme og genkalde funktioner, variable og konstanter. Det kan være svært at vurdere hvilke pakker eleverne har indlæst i Maple og hvad de pakker så kan. Der spildes meget tid med at skrive opgaven af. Det er ikke nødvendigt. Gennemgang af opgaverne Afslutningsvis kommer her en kort gennemgang af opgaverne med beskrivelse af de forventninger, man kan stille til en korrekt besvarelse. Bemærk at listen ikke er fuldstændig. Der sluttes af med typiske observationer fra elevbesvarelserne. Opgave 1: Generelt for vektoropgaver gælder, at løsning vha. indtegning i et geometriprogram ikke fungerer som tilstrækkelig dokumentation, men at det selvfølgelig giver point afhængig af den medfølgende forklaring. Spørgsmålene a) til c) er traditionelle opgaver om vektorer i rummet. Eleverne forventes at gøre rede for, hvordan de givne oplysninger benyttes. Spørgsmål d) kan løses på flere forskellige måder, fx ved anvendelse af længden af et krydsprodukt. Det er ikke et krav at formlen for fx krydsproduktet først opskrives og der derefter indsættes. Her er det i orden at benyttet programmets faciliteter til beregning af prik- og krydsprodukter samt vektorlængder etc. Alternativt kan man benytte alle tre kantlængder til at finde arealet. I e) vil man forvente, at eleverne deler modellen op i en pyramide og en pyramidestub, hvor grundfladearealet bestemmes, evt. ved brug af formlen fra opgave 5, og dernæst indsættes i de kendte formler for volumenberegning af disse figurer. a) Enkelte indsætter to punkter i parameterfremstillingen. Eleverne bestemmer ikke retningsvektoren. b) Enkelte elever opstiller parameterfremstillingen i stedet for ligningen. Nogle glemmer at sætte udtrykket lig 0, så man får en ligning. c) Ikke mange elever reflekterede over hvilken vinkel de fandt frem til. 13

14 d) Mange taber overblikket og får fundet et forkert areal. Der laves mange og komplicerede beregninger, der er næsten umulige at følge, fordi der ikke laves skitser til. En del elever overser at taget hælder. Kun få bruger krydsproduktet til at bestemme arealet. Mange springer spørgsmålet over e) Mange taber også overblikket her. Igen mangler der hjælpetegninger. Nogle får indsat 5 i stedet for 6 i formlen fra opgave 5. Der rigtig mange der springer opgaven helt over. Opgave 2 I a) er det vigtigt, at koordinatsystemet er valgt med en passende visning og gerne ens inddeling af x- og y-aksen. Det skal tydeligt fremgå hvilken inddeling, der er på akserne. Spørgsmålene b), c) og d) er typiske vektorfunktionsopgaver. I b) indsættes t = 0. I c) er dokumentationen for, hvornår origo passeres første gang meget vigtig. Valget af matematikprogram giver forskellige typer løsninger når ligningssystemet x(t) = 0 og y(t) = 0 løses, og det kan være nødvendigt at argumentere (fx grafisk) for, hvilke af de fremkomne løsninger, der er den ønskede. Man kan også argumentere vha. symmetri for at de hver af de fire ens strækninger (en i hvert kvadrant) gennemløbes med samme fart, og tiden derfor må være 0,005/4. I d) differentieres udtrykket for at finde hastighedsvektoren, hvis længde derefter bestemmes, eller man indsætter i formlen for farten. a) Særligt MathCad-brugere havde svært ved at få tegnet funktionen. b) Enkelte Maplebrugere skriver (-0,3) c) Næsten alle glemmer at vise/argumentere for, at det er første gang i perioden. d) Eleverne glemmer at beregne længden af hastighedsvektoren. De glemmer enhed eller bruger m/s (uden at regne om) Opgave 3 Spørgsmålene a) og b) og til dels c) er stort set identiske med opgave 4.5 fra forberedelsesmaterialet. Her kan man enten bestemmer koefficienterne til normalligningerne vha. formlerne fra materialet, og dernæst indsætte dem i de to normalligninger. Alternativt kan Q opstilles og differentieres med hensyn til henholdsvis A 1 og A 2. Dette giver den samme form af normalligningerne som ovenfor ved division med 2 og isolering af de variable på venstre side af lighedstegnet. Spørgsmål b) løses ved at benytte sætning 3 i forberedelsesmaterialet, hvor normalligningerne løses og den fremkomne løsning vil da være et minimum. I en fuldstændig løsning bør der henvises til denne sætning, for man har dokumenteret at Q har minimum i den bestemte løsning. I c) vil man forvente at eleven benytter A 1 og A 2 til at finde a og b, men her vil benyttelse af regression i et CAS-værktøj være en lige så god løsning. I spørgsmål d) forventes eleven at opskrive modellen y = b a x, og dernæst indsætte x = 10. a) Man glemmer at tage den naturlige logaritme til y-værdien. b) Mange elever er i tvivl om, hvad der spørges om. Næsten ingen henviser til den relevante sætning fra forberedelsesmaterialet. Det er ikke noget vi plejer at forvente, men da emnet er helt nyt, bør eleverne fortælle, hvorfor en løsning af normalligningerne automatisk fører til et minimum. c) Får bestemt a og b ud fra forkerte værdier fra b). d) Hvis a og b er bestemt forkert her får man ofte meget mærkelige værdier ud, som eleverne ikke forholder sig til. Opgave 4 I a) kan finde hældningen i de givne punkter ved indsættelse i differentialligningen. Det forventes IKKE at eleven løser differentialligningen, men hvis man gør det, og derefter indsætter de givne x- værdier er det også en fin løsning. I b), skal eleven indtegne punkterne med tilhørende linjeelementer, og her kan det være svært at se forskel på hældningen i x = 10 og i x = 191. Det væsentlige er, at man 14

15 vurderer elevens hensigt og ikke kun præcisionen. I c) skal eleven skitsere løsningskurven, og her forventes det at grafen går gennem de tre punkter og har den rette hældningen jf. linjeelementerne. Har eleven løst differentialligningen og indtegner den korrekte funktion skal dette vurderes som lige så godt. a) Alt for mange er åbenbart ikke klar over at dy/dx giver tangenthældningen. Det skyldes måske at emnet stadig er helt nyt. b) Da a) ikke er løst, bliver det for mange umuligt at indtegne stykker af tangenten til de 3 punkter. De fleste elever har dog indtegnet punkterne korrekt. c) Utrolig mange elever tegner blot en ret linje gennem de 3 punkter. Opgave 5 I denne forklaringsopgave er der fem trin, der skal forklares. Det er vigtigt, at man som censor tager de enkelte trin og vurderer om de giver en passende forklaring til beregningen. Dette kan gøres med ord eller ved en kombination af ord og formler samt henvisning til tegningen. Dårligt og upræcist sprog. Mange skriver, at tan(v ) = cos(v ) sin(v ) Opgave 6 En opgave i relation til forberedelsesmaterialet om funktioner af to variable. I opgave a) skal eleven finde de partielle afledede. Dette kan gøres enten i hånden eller ved hjælp af CAS. I opgave b) skal eleven løse ligningssystemet, hvor begge de partielle af afledede sættes lig 0. Har eleven haft problemer med at skrive det krøllede d, skal det ikke trække ned. a) Mange glemmer gangetegnet mellem x og y og reflekterer ikke over, at de differentierede udtryk ikke indeholder begge variable. b) De fleste elever får lavet denne opgave, men nogle kan ikke løse to ligninger med to ubekendte. Giv kommentarer til årets opgavesæt Som nævnt i forordet er evalueringen baseret på censorernes gode og konstruktive kommentarer til opgavesættene. Opgavekommissionen er imidlertid også interesseret i tilbagemeldinger fra de øvrige matematiklærere og modtager derfor gerne kommentarer til eksamenssættet Kommentarer sendes til fagkonsulenten, der videregiver dem til opgavekommissionen. 15

Evaluering Matematik A på htx

Evaluering Matematik A på htx Evaluering af Matematik A på htx Sommeren 2011 1 Indholdsfortegnelse Forord... 3 Generelle bemærkninger... 4 Omsætningstabel... 6 Årets prøve i tal... 6 Vurdering af opgavesættet... 8 Forberedelsesmaterialet...

Læs mere

Vedlagt følger en beskrivelse af proceduren ved skriftlig censur samt en vejledning i bedømmelse af besvarelserne.

Vedlagt følger en beskrivelse af proceduren ved skriftlig censur samt en vejledning i bedømmelse af besvarelserne. o Til censor Fagkonsulent Matematik, htx Vedr.: Skriftlig censur i matematik på htx Velkommen som skriftlig censor i matematik på htx. Marit Hvalsøe Schou Oehlenschlægersvej 55 5230 Odense M Tlf: 2565

Læs mere

Evaluering Matematik på htx

Evaluering Matematik på htx Evaluering af Matematik på htx Sommeren 2010 1 Indholdsfortegnelse Forord... 3 Generelle bemærkninger... 4 Omsætningstabel... 6 Årets prøve i tal... 6 Vurdering af opgavesættet... 9 Forberedelsesmaterialet...

Læs mere

Evaluering Matematik på htx

Evaluering Matematik på htx Evaluering af Matematik på htx Sommeren 2006 1 Indholdsfortegnelse Forord... 3 Eksamensresultaterne i tal... 4 Matematik B... 4 Matematik A (ordinær prøve)... 5 Matematik A (forsøgsprøve)... 6 Vurdering

Læs mere

Evaluering. Matematik A på htx. Undervisningsministeriet Kvalitets- og Tilsynsstyrelsen Center for Prøver, Eksamen og Test September 2014

Evaluering. Matematik A på htx. Undervisningsministeriet Kvalitets- og Tilsynsstyrelsen Center for Prøver, Eksamen og Test September 2014 Evaluering af Matematik A på htx Undervisningsministeriet Kvalitets- og Tilsynsstyrelsen Center for Prøver, Eksamen og Test September 2014 Indhold Censorernes vurdering af opgavesættene... 3 Forberedelsesmaterialet...

Læs mere

Evaluering. Matematik A på htx

Evaluering. Matematik A på htx Evaluering af Matematik A på htx Ministeriet for Børn, Undervisning og Ligestilling Styrelsen for Undervisning og Kvalitet Kontor for Prøver, Eksamen og Test August 201 Indhold Censorernes vurdering af

Læs mere

Kommentarer til matematik B-projektet 2015

Kommentarer til matematik B-projektet 2015 Kommentarer til matematik B-projektet 2015 Mandag d. 13/4 udleveres årets eksamensprojekt i matematik B. Dette brev er tænkt som en hjælp til vejledningsprocessen for de lærere, der har elever, som laver

Læs mere

Kemi 2015. Evaluering af skriftlig eksamen kemi A, stx Maj juni 2015

Kemi 2015. Evaluering af skriftlig eksamen kemi A, stx Maj juni 2015 Kemi 2015 Evaluering af skriftlig eksamen kemi A, stx Maj juni 2015 Ministeriet for Børn, Undervisning og Ligestilling Styrelsen for Undervisning og Kvalitet August 2015 Hermed udsendes evalueringsrapporten

Læs mere

Evaluering. Matematik på htx. Sommeren 2009

Evaluering. Matematik på htx. Sommeren 2009 Evaluering af Matematik på htx Sommeren 2009 1 Indholdsfortegnelse Forord... 3 Generelle bemærkninger... 4 Omsætningstabel... 5 Årets prøve i tal... 6 Vurdering af opgavesættet... 8 Forberedelsesmaterialet...

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

Vejledning til bedømmelse af eksamensopgaver i matematik

Vejledning til bedømmelse af eksamensopgaver i matematik Vejledning til bedømmelse af eksamensopgaver i matematik I Læreplanen for Matematik stx A og Matematik stx B er der i afsnit 4.3 angivet en række bedømmelseskriterier, som alle lægges til grund for vurderingen

Læs mere

Vedr.: Skriftlig censur i matematik på htx Dato: 25/5 2011

Vedr.: Skriftlig censur i matematik på htx Dato: 25/5 2011 Til censor Fagkonsulent Matematik, htx Marit Hvalsøe Schou Oehlenschlægersvej 55 5230 Odense M Tlf: 2565 9207 E-mail: Marit.Schou@udst.dk Vedr.: Skriftlig censur i matematik på htx Dato: 25/5 2011 Velkommen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2013 HTX Vibenhus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj 2013 HTX Vibenhus

Læs mere

Eksaminanderne på hf tilvalg forventes ikke at kunne udnytte grafregnerens muligheder for regression.

Eksaminanderne på hf tilvalg forventes ikke at kunne udnytte grafregnerens muligheder for regression. Bilag 3: Uddrag af Matematik 1999. Skriftlig eksamen og større skriftlig opgave ved studentereksamen og hf. Kommentarer på baggrund af censorernes tilbagemeldinger HF-tilvalgsfag (opgavesæt HF 99-8-1)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2016 Institution Uddannelse Fag og niveau Lærer(e) Hold Hansenberg Gymnasium htx Matematik A Thomas Voergaard.

Læs mere

Evaluering Matematik på htx

Evaluering Matematik på htx Evaluering af Matematik på htx Sommeren 2007 1 Indholdsfortegnelse Forord...3 Generelle bemærkninger...4 Matematik A (ordinær prøve)...5 Matematik A (IT-forsøgsprøve)...6 Vurdering af opgavesættene...7

Læs mere

Informationer den skriftlige prøve i Matematik A på htx

Informationer den skriftlige prøve i Matematik A på htx Informationer om den skriftlige prøve i Matematik A på htx Maj 2014 1 Indhold Forord... 2 Generelle bemærkninger... 3 Omsætningstabel... 5 Årets prøve i tal... 5 Vurdering af opgavesættene... 7 Forberedelsesmaterialet...

Læs mere

24. maj 2013. Kære censor i skriftlig fysik

24. maj 2013. Kære censor i skriftlig fysik 24. maj 2013 Kære censor i skriftlig fysik I år afvikles den første skriftlig prøve i fysik den 27. maj, mens den anden prøve først er placeret den 3. juni. Som censor vil du normalt kun få besvarelser

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin aug 2014 - jun 2015 Institution Vid Gymnasier Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik A Klavs

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau B. Delprøven uden hjælpemidler

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau B. Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 008 HHX08-MAB Matematik Niveau B Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

Kemi 2015. Evaluering af skriftlig eksamen kemi A, htx Maj juni 2015

Kemi 2015. Evaluering af skriftlig eksamen kemi A, htx Maj juni 2015 Kemi 2015 Evaluering af skriftlig eksamen kemi A, htx Maj juni 2015 Ministeriet for Børn, Undervisning og Ligestilling Styrelsen for Undervisning og Kvalitet August 2015 Hermed udsendes evalueringsrapporten

Læs mere

Maple på C-niveau. Indsættelse i formler

Maple på C-niveau. Indsættelse i formler Maple på C-niveau Umiddelbart kan Maple på C-niveauet virke som en stor mundfuld, men nøjes man med at benytte Maple som et skriveværktøj kombineret med nogle ganske få menukommandoer, vil eleverne kunne

Læs mere

Nyt i faget Matematik

Nyt i faget Matematik Almen voksenuddannelse Nyt i faget Matematik Juli 2012 Indhold Bekendtgørelsesændringer Ændringer af undervisningsvejledningen Den nye opgavetype ved den skriftlige prøve efter D Ændringer af rettevejledningen

Læs mere

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas UVB Skoleår: 2013-2014 Institution: Fag og niveau: Lærer(e): Hold: Teknisk Gymnasium Skive Matematik A Claus Vestergaard og Franka Gallas 3. A Titel 1: Rep af 1. og 2. år + Gocart Titel 2: Vektorer i rummet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2015 Institution Kolding HF og VUC, Kolding Åpark 16, 6000 Kolding Uddannelse Flexhold Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2013-2016 Institution Uddannelse Fag og niveau Rybners HTX Esbjerg HTX Matematik A Lærer(e) Helle Kruchov

Læs mere

Der anvendes ikke blandet tal, men uægte brøker. Ikke så vigtigt (bortset fra beløb). Alle decimaler skal med i mellemregninger.

Der anvendes ikke blandet tal, men uægte brøker. Ikke så vigtigt (bortset fra beløb). Alle decimaler skal med i mellemregninger. Faglige Områder Tal og brøker Der anvendes blandet tal. Der anvendes ikke blandet tal, men uægte brøker. Anvender brøker Anvender både blandet tal og brøker. Antal cifre Der skal afrundes til et passende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2014-2017 Institution Uddannelse Fag og niveau Lærer(e) Rybners HTX Esbjerg HTX Matematik A Henrik Lambæk

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2010 HTX Vibenhus

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

Resultaterne af de skriftlige eksamener i matematik sommer 2008 De nye niveauer på stx og hf

Resultaterne af de skriftlige eksamener i matematik sommer 2008 De nye niveauer på stx og hf Resultaterne af de skriftlige eksamener i matematik sommer 8 De nye niveauer på stx og hf Midt på efteråret vil der som altid foreligge en evalueringsrapport over sommerens skriftlige eksamener i matematik.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Termin hvori undervisningen afsluttes: maj juni 10 HTX Sukkertoppen,

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Evaluering. Matematik på htx. Sommeren 2008

Evaluering. Matematik på htx. Sommeren 2008 Evaluering af Matematik på htx Sommeren 2008 1 Indholdsfortegnelse Forord... 3 Generelle bemærkninger... 4 Omsætningstabel... 4 Årets prøve i tal... 5 Vurdering af opgavesættet... 7 Forberedelsesmaterialet...

Læs mere

Grafregnerkravet på hf matematik tilvalg

Grafregnerkravet på hf matematik tilvalg Grafregnerkravet på hf matematik tilvalg Dette dokument er en sammenskrivning af uddrag af følgende skrifter: Undervisningsvejledning nr. 21 for matematik i HF (september 1995); findes på adressen: http://us.uvm.dk/gymnasie/almen/vejledninger/undervishf/hfvej21.htm;

Læs mere

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA STUDENTEREKSAMEN GUX MAJ 007 014 MATEMATIK A-NIVEAU Prøveform b 014 Kl. 9.00 14.00 GUX-MAA Matematik A Prøvens varighed er 5 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Some like it HOT: Højere Ordens Tænkning med CAS

Some like it HOT: Højere Ordens Tænkning med CAS Some like it HOT: Højere Ordens Tænkning med CAS Bjørn Felsager, Haslev Gymnasium & HF, 2001 I år er det første år, hvor CAS-forsøget er et standardforsøg og alle studentereksamensopgaverne derfor foreligger

Læs mere

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig

Læs mere

Eksamensopgaver i matematik

Eksamensopgaver i matematik Eksamensopgaver i matematik med TI-Nspire CAS ver. 2.0 Udarbejdet af: Brian M.V. Olesen Marts 2010 Indholdsfortegnelse Indledning...1 Bedømmelse af besvarelse...2 Eksempel 1 Lineære sammenhænge...3 Eksempel

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede

Læs mere

Matematik B - hf-enkeltfag, april 2011

Matematik B - hf-enkeltfag, april 2011 Matematik B - hf-enkeltfag, april 2011 1. Identitet og formål 1.1. Identitet Matematik bygger på abstraktion og logisk tænkning og omfatter en lang række metoder til modellering og problembehandling. Matematik

Læs mere

Fysik 2015 Råd og vink til den skriftlige prøve Fysik stx Maj juni 2015

Fysik 2015 Råd og vink til den skriftlige prøve Fysik stx Maj juni 2015 Fysik 2015 Råd og vink til den skriftlige prøve Fysik stx Maj juni 2015 Ministeriet for Børn, Undervisning og Ligestilling Styrelsen for Undervisning og Kvalitet Indhold 1. Indledende bemærkninger side

Læs mere

Informationer den skriftlige prøve i Matematik A på htx

Informationer den skriftlige prøve i Matematik A på htx Informationer om den skriftlige prøve i Matematik A på htx Maj 2015 1 Indhold Forord... 2 Generelle bemærkninger... 3 Omsætningstabel... 5 Årets prøve i tal... 5 Censorernes vurdering af opgavesættene...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Termin hvori undervisningen afsluttes: Juni 2017 HANSENBERG

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!

Matematik A STX december 2016 vejl. løsning  Gratis anvendelse - læs betingelser! Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da

Læs mere

Undervisningsplan for faget matematik. Ørestad Friskole

Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2

Læs mere

Undervisningsbeskrivelse for Matematik A 2. E 2011/2012

Undervisningsbeskrivelse for Matematik A 2. E 2011/2012 Undervisningsbeskrivelse for Matematik A 2. E 2011/2012 Termin Undervisningen afsluttes den 16. maj 2012 Skoleåret hvor undervisningen har foregået: 2011-2012 Institution Skive Teknisk Gymnasium Uddannelse

Læs mere

MATEMATIK A. Indhold. 92 videoer.

MATEMATIK A. Indhold. 92 videoer. MATEMATIK A Indhold Differentialligninger... 2 Differentialregning... 3 Eksamen... 3 Hvorfor Matematik?... 3 Integralregning... 3 Regression... 4 Statistik... 5 Trigonometriske funktioner... 5 Vektorer

Læs mere

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14:

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Udgangspunktet bliver en blød screening, der skal synliggøre summen af elevernes standpunkt. Det betyder i realiteten, at der uddeles 4 klasses

Læs mere

Evaluering. Matematik på hhx 1/16

Evaluering. Matematik på hhx 1/16 Evaluering af Matematik på hhx Sommeren 2008 1/16 Indholdsfortegnelse Forord... 3 Generelle bemærkninger... 4 Omsætningstabeller... 4 A-niveau... 4 B-niveau... 4 Årets prøve i tal... 5 Matematik A... 5

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx123-mat/a-07122012 Fredag den 7. december 2012 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2016/17 Institution Viden Djurs - VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold HTX Valghold Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Termin hvori undervisningen afsluttes: maj juni 10 HTX Sukkertoppen,

Læs mere

Lærervejledning Modellering (3): Funktioner (1):

Lærervejledning Modellering (3): Funktioner (1): Lærervejledning Formål Gennem undersøgelsesbaseret undervisning anvendes lineære sammenhænge, som middel til at eleverne arbejder med repræsentationsskift og aktiverer algebraiske teknikker. Hvilke overgangsproblemer

Læs mere

Undervisningsbeskrivelse Valghold 2011 2012 Matematik A

Undervisningsbeskrivelse Valghold 2011 2012 Matematik A Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2011-2012 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik A Valghold Henrik Pedersen HtxmatA311

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Ringsted Lilleskole, Uffe Skak Årsplan for 5. klasse, matematik Som det fremgår af nedenstående uddrag af undervisningsministeriets publikation om fælles trinmål til matematik efter 6. klasse, bliver faget

Læs mere

MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX

MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX Anders Jørgensen & Mark Kddafi 2016 matematikhfsvar.page.tl 8. august 2016 15. august 2016 Anders Jørgensen & Mark Kddafi MATEMATIK

Læs mere

Progression frem mod skriftlig eksamen

Progression frem mod skriftlig eksamen Progression frem mod skriftlig eksamen Ikke alle skal have 12 Eksamensopgavernes funktion i det daglige og til eksamen Progression i sættet progression i den enkelte opgave Hvornår inddrages eksamensopgaver

Læs mere

Matematik A. Studentereksamen. Torsdag den 22. maj 2014 kl. 09.00-14.00. Digital eksamensopgave med adgang til internettet. 1stx141-MATn/A-22052014

Matematik A. Studentereksamen. Torsdag den 22. maj 2014 kl. 09.00-14.00. Digital eksamensopgave med adgang til internettet. 1stx141-MATn/A-22052014 Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx141-MATn/A-22052014 Torsdag den 22. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005)

Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005) Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (005) Indholdsfortegnelse Indholdsfortegnelse... Stamfunktion og integralregning...3 Numerisk integration...3 Areal under

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 13 Uddannelsescenter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2014-2016 Institution Uddannelse Fag og niveau Lærer(e) Hold Rybners HTX Esbjerg HTX Matematik B Shihua Wang

Læs mere

Årsplan for Matematik 8. klasse 2011/2012

Årsplan for Matematik 8. klasse 2011/2012 Årsplan for Matematik 8. klasse 2011/2012 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj, 2015 Institution Vid Gymnasier, Rønde Handelsgymnasium Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Årsplan 2013/2014 6. ÅRGANG: MATEMATIK FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Formålet med undervisningen i matematik er, at eleverne udvikler matematiske r og opnår viden og kunnen således, at

Læs mere

Undervisningsbeskrivelse for VF MAT A, 5. 6. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Undervisningsbeskrivelse for VF MAT A, 5. 6. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse for VF MAT A, 5. 6. semester 2013-2014 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 2014 Institution Teknisk Gymnasium - Skive Tekniske Skole

Læs mere

Opgavesættets tema er KRAM (Kost, Rygning, Alkohol og Motion).

Opgavesættets tema er KRAM (Kost, Rygning, Alkohol og Motion). Sammendrag af censorrapporter for matematik D maj 2013 Opgavesættets tema er KRAM (Kost, Rygning, Alkohol og Motion). Opgave 1: Kost Opgaven inddrager de 4 regningsarter, brug af regneark, fremstilling

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Vejledning om besvarelse af skriftlige opgaver i matematik på htx. - med særlig henblik på anvendelse af IT.

Vejledning om besvarelse af skriftlige opgaver i matematik på htx. - med særlig henblik på anvendelse af IT. Vejledning om besvarelse af skriftlige opgaver i matematik på ht. - med særlig henblik på anvendelse af IT. Baggrund Ved anvendelse af diverse matematikprogrammer i forbindelse med de skriftlige prøver

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

MATEMATIK A-NIVEAU-Net

MATEMATIK A-NIVEAU-Net STUDENTEREKSAMEN STUDENTEREKSAMEN PRØVESÆT MAJ 22007 2010/2011 MATEMATIK A-NIVEAU-Net Prøvesæt 2 2010/2011 Kl. 09.00 14.00 Prøvesæt 2 2010/2011 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret

Læs mere

Kemi Evaluering af skriftlig eksamen kemi A, htx Maj juni 2016

Kemi Evaluering af skriftlig eksamen kemi A, htx Maj juni 2016 Kemi 2016 Evaluering af skriftlig eksamen kemi A, htx Maj juni 2016 Ministeriet for Børn, Undervisning og Ligestilling Styrelsen for Undervisning og Kvalitet Juli 2016 Hermed udsendes evalueringsrapporten

Læs mere

Råd og vink 2013 om den skriftlige prøve i Samfundsfag A

Råd og vink 2013 om den skriftlige prøve i Samfundsfag A Råd og vink 2013 om den skriftlige prøve i Samfundsfag A Ministeriet for Børn og Undervisning Center for Kvalitetsudvikling, Prøver og Eksamen August 2013 1. Karakterfordeling Karakterfordelingen til den

Læs mere

Colofon. Udgivet af Inerisaavik 2009 Udarbejdet af fagkonsulent Erik Christiansen Redigeret af specialkonsulent Louise Richter Elektronisk udgave

Colofon. Udgivet af Inerisaavik 2009 Udarbejdet af fagkonsulent Erik Christiansen Redigeret af specialkonsulent Louise Richter Elektronisk udgave Colofon Udgivet af Inerisaavik 2009 Udarbejdet af fagkonsulent Erik Christiansen Redigeret af specialkonsulent Louise Richter Elektronisk udgave Indhold Evaluering af matematik 2008 2 Tekstopgivelser 2

Læs mere

STUDENTEREKSAMEN DECEMBER 2008 MATEMATIK A-NIVEAU. Fredag den 12. december 2008. Kl. 09.00 14.00 STX083-MAA

STUDENTEREKSAMEN DECEMBER 2008 MATEMATIK A-NIVEAU. Fredag den 12. december 2008. Kl. 09.00 14.00 STX083-MAA STUDENTEREKSAMEN DECEMBER 2008 MATEMATIK A-NIVEAU Fredag den 12. december 2008 Kl. 09.00 14.00 STX083-MAA Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål.

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2017 HANSENBERG

Læs mere

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over. Opsamling Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.. Brøkregning, parentesregneregler, kvadratsætningerne, potensregneregler og reduktion Udregn nedenstående

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin 2011-2012 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold stx Matematik B Bente Madsen 1e mab Oversigt over gennemførte undervisningsforløb Titel 1 Titel

Læs mere

Bioteknologi Evaluering af skriftlig eksamen bioteknologi A htx og stx. Maj juni 2016

Bioteknologi Evaluering af skriftlig eksamen bioteknologi A htx og stx. Maj juni 2016 Bioteknologi 216 Evaluering af skriftlig eksamen bioteknologi A htx og stx Maj juni 216 Ministeriet for Børn, Undervisning og Ligestilling Styrelsen for Undervisning og Kvalitet Juli 216 Hermed udsendes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Termin hvori undervisningen afsluttes: Juni 2017 HANSENBERG

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 14. Denne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2011 Htx Sukkertoppen,

Læs mere

Matematik A. Studentereksamen. Fredag den 5. december 2014 kl. 9.00-14.00. stx143-mat/a-05122014

Matematik A. Studentereksamen. Fredag den 5. december 2014 kl. 9.00-14.00. stx143-mat/a-05122014 Matematik A Studentereksamen stx143-mat/a-05122014 Fredag den 5. december 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 3. semester efterår 2010 Titel 5 til og med Titel 10 Institution Grenaa Tekniske Gymnasium Uddannelse Fag

Læs mere

Kemi Evaluering af skriftlig eksamen kemi A, stx Maj juni 2016

Kemi Evaluering af skriftlig eksamen kemi A, stx Maj juni 2016 Kemi 2016 Evaluering af skriftlig eksamen kemi A, stx Maj juni 2016 Ministeriet for Børn, Undervisning og Ligestilling Styrelsen for Undervisning og Kvalitet Juli 2016 Hermed udsendes evalueringsrapporten

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Periode Mål Eleverne skal: 32/33 Få kendskab til opgavetypen og få rutine.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 14/15 Hf

Læs mere

STUDENTEREKSAMEN AUGUST 2009 MATEMATIK A-NIVEAU. Onsdag den 12. august 2009. Kl. 09.00 14.00 STX092-MAA. Undervisningsministeriet

STUDENTEREKSAMEN AUGUST 2009 MATEMATIK A-NIVEAU. Onsdag den 12. august 2009. Kl. 09.00 14.00 STX092-MAA. Undervisningsministeriet STUDENTEREKSAMEN AUGUST 009 MATEMATIK A-NIVEAU Onsdag den 1. august 009 Kl. 09.00 14.00 STX09-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb. Termin Aug 10- jun 11

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb. Termin Aug 10- jun 11 Studieplan Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Aug 10- jun 11 Institution Uddannelse Fag og niveau Lærer(e) Hold Grenaa Tekniske Gymnasium HTX Matematik B1 Klavs Skjold

Læs mere