! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion"

Transkript

1 Dagens program Økonometri 1 Dummy variable 4. marts 003 Emnet for denne forelæsning er kvalitative variable i den multiple regressionsmodel (Wooldridge kap )! Husk at udfylde spørgeskema 3! Hvad hvis den afhængige variabel er en kvalitative variable (med to kategorier)!!! Mere om evaluering og selvselektion! Introduktion til heteroskedasticitet Økonometri 1: Dummy variable 1 Økonometri 1: Dummy variable Hvad hvis den afhængige variabel er en kvalitative variabel (med to kateg.)! Indtil nu har vi betragtet den afhængige variabel som en kvantitativ variabel (løn, priser, forbrug, indkomst)! Afhængige variabel: " Diskret variabel med to værdier! Eksempler: " Deltagelse på arbejdsmarkedet eller ej " Bestået et kursus eller ej " Om man har bil eller ej " Videregående udd. eller ej " Har investeret i aktier eller ej " Firma gået konkurs eller ej! Når den afhængige variabel er en kvalitativ variabel med to kategorier, kan man lave en dummy variabel y=0 eller y=1! Regressionsmodellen y = β0 + β1x1+ βx + + βkxk + u! Denne model kaldes den lineær sandsynlighedsmodel (på engelsk Linear probability model LPM)! Fortolkningen af estimaterne i denne model er anderledes end i den alm. lineære regressionsmodel " Parameteren β j kan ikke fortolkes som ændringen i y givet en enhedsændring i x j Økonometri 1: Dummy variable 3 Økonometri 1: Dummy variable 4 1

2 Lineære sandsynlighedsmodel Lineære sandsynlighedsmodel! Hvis antagelsen MLR 3 er opfyldt: Eu ( x ) = 0! Er den betingede middelværdi af y E( y x) = β0 + β1x1+ βx + + βkxk! For binære variable gælder det E( y x) = 0*P( y = 0 x) + 1*P( y= 1 x) = P( y= 1 x)! Altså P( y = 1 x) = β0 + β1x1+ βx + + βkxk! Hvor P( y = 1 x) er respons sandsynligheden! Fortolkning af parameteren i en LPM:! Parametrene angiver ændringen i sandsynligheden for at y=1 som følge af, at de forklarende variable ændres med en enhed P( Y = 1 x) = β j xj! Sandsynligheden for y=0 (betinget på x) kan også udregnes som P( y = 0 x) = 1 P( y = 1 x)! LPM kan estimeres med OLS yˆ = ˆ β0 + ˆ β1x1+ ˆ βx ˆ + + βkxk! Hvor ŷ skal fortolkes som den predikterede sandsynlighed (for y=1) Økonometri 1: Dummy variable 5 Økonometri 1: Dummy variable 6! Ulemper ved LPM:! Prediktionerne er ikke 0 eller 1 som den afhængige variabel! Predikterede sandsynligheder kan være negative eller overstige 1! Normalt er den predikterede sandsynlighed mellem 0 og 1 omkring gennemsnittet af de forklarende variable! Gauss Markov antagelserne! LPM opfylder ikke antagelsen MLR 5 (Homoskedasticitet) V( y x) = σ! Variansen af y betinget på x kan udregnes til V( y x) = P( y = 1 x)*(1 P( y = 1 x))! Variansen afhænger altså af x Økonometri 1: Dummy variable 7 Økonometri 1: Dummy variable 8

3 ! Egenskaber ved OLS estimatoren i LPM " OLS estimaterne er middelrette " Standardfejlene af estimaterne er ikke middelrette " F og t test ikke pålidelige! Hvordan kan problemerne med LPM løses?! Problemet med heteroskedasticitet kan løses ved at korrigere standardfejlene (dette ser vi på i kap. 8)! Det viser sig, at problemerne med heteroskedasticitet sjældent er alvorlige! Problemet med negative ssh og ssh over 1 kan kun løses ved at benytte en anden model end LPM. De nye modeller introduceres i kap. 17 Økonometri 1: Dummy variable 9 Økonometri 1: Dummy variable 10! Hvem er selvstændige i Danmark?! En model for hvem som vælger at være selvstændige i stedet for lønmodtagere! Data: register data (politdata) " Dataudvælgelse: " Data fra 1994 " Individer mellem 0-69 år " Kun lønmodtagere eller selvstændige " I alt 170 individer! Model: Lineære sandsynlighedsmodel " Afhængig variabel: dummy for selvstændige " Forklarende variable! Alder! Alder i anden! Uddannelse! Erhvervserfaring i 1993 (antal år som lønmodtager)! Kvinde! Dummyer for bopæl (Kbh, byer og land)! Arbejdsløshedsgraden (0-1000) Økonometri 1: Dummy variable 11 Økonometri 1: Dummy variable 1 3

4 ! Regressionsmodel y = β + β alder + β alder + β udd + β erfar β kvinde + β dgeo+ β dgeo3+ β arbledg + u ! Graf for predikteret sandsynlighed for et individ med flg karakteristika: " Udd=1, erfaring=10, mand, Kbh, arbledgr=0 " Alder=40, Udd=1, mand, Kbh, arbledgr=0! Parametrene estimeres ved OLS! Parametrene kan fortolkes som ændringer i sandsynlighed givet en ændring i en af de forklarende variable Økonometri 1: Dummy variable 13 Økonometri 1: Dummy variable 14 (mean) selvst (mean) ssh_hat_a (mean) selvst (mean) ssh_hat_e alder ultimo året predikteret sandsynlighed for selvstændig erfaring_i predikteret sandsynlighed for selvstændig Økonometri 1: Dummy variable 15 Økonometri 1: Dummy variable 16 4

5 Evaluering af programmer Evaluering af programmer! Evaluering y = β0 + β1d + βx+ u! Hvor d er en dummy variabel (y=1 hvis deltagelse)! Hvorfor er det så problematisk at evaluere programmer?! Det er meget tit at deltagelse (d) er endogen (pga. den måde økonomiske data fremkommer)! Data er ikke fremkommet ved et kontrolleret eksperiment! Selv-selektion " Det er ikke tilfældigt, hvem som melder sig " Det kan være, at dem som får mest ud af kurset, også er dem som melder sig " Deltagelse kan være systematisk relateret til uobserverbare faktorer! Det betyder samlet, at antagelse MLR 3 ikke er opfyldt Eu ( xd, = 1) Eu ( xd, = 0)! Det betyder, at OLS estimatoren er ikke middelret Økonometri 1: Dummy variable 17 Økonometri 1: Dummy variable 18 Evaluering af programmer Heteroskedasticitet! Hvordan kan man så evaluere effekten af et program? " Der findes alternative estimationsmetoder, der under visse antagelser kan give middelrette estimatorer (dette vender vi tilbage til i kap. 15) " I nogle tilfælde kan problemet også løses, hvis man har information før og efter programmet introduceres for både treatmentgruppen og kontrolgruppen. Dette tilfælde kaldes panel data (det kommer der mere om i økonometri )! Definition af heteroskedasticitet! Konsekvenser af heteroskedasticitet (kap. 8.1)! Forsætter på torsdag med heteroskedasticitet Økonometri 1: Dummy variable 19 Økonometri 1: Dummy variable 0 5

6 Heteroskedasticitet (fortsat) Heteroskedasticitet (fortsat)! I kapitel 3 er antagelsen om homoskedasticitet introduceret:! Denne antagelse kan være meget restriktiv og derfor introduceres nu heteroskedasticitet! Definition:! Lineære multipel regressionsmodel y = β0 + β1x1+ βx + + βkxk + u! Under antagelserne MLR 1- MLR 4 er OLS middelret! Den 5. antagelse i Gauss Markov antagelserne er antagelsen om homoskedasticitet Vu ( x,, x) = σ 1 k! Hvis antagelsen MLR 5 ikke er opfyldt, kaldes fejlledene for heteroskedastiske! Konsekvenser af heteroskedasticitet " OLS stadig middelret " OLS stadig konsistent " R ikke påvirket af heteroskedasticitet Økonometri 1: Dummy variable 1 Økonometri 1: Dummy variable Heteroskedasticitet (fortsat)! Konsekvenser af heteroskedasticitet (fortsat) " Variansen af OLS estimaterne er ikke middelret " Konfidensinterval er ikke længere rigtigt konstrueret " T og F-test er ikke nødvendigvis t og F-fordelt (og derfor er disse test ikke pålidelige) " LM test er ikke nødvendigvis CHI-fordelt " OLS er ikke længere den bedste lineære middelrette estimator (BLUE) " Der findes en anden lineær middelret estimator med mindre varians " OLS er ikke længere asymptotisk efficient Økonometri 1: Dummy variable 3 6

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1 Økonometri 1 Dummyvariabler 13. oktober 2006 Økonometri 1: F10 1 Dagens program Dummyvariabler i den multiple regressionsmodel (Wooldridge kap. 7.3-7.6) Dummy variabler for kvalitative egenskaber med flere

Læs mere

Økonometri 1. Interne evalueringer af forelæsninger. Kvalitative variabler. Dagens program. Dummyvariabler 21. oktober 2004

Økonometri 1. Interne evalueringer af forelæsninger. Kvalitative variabler. Dagens program. Dummyvariabler 21. oktober 2004 Dagens program Økonometri 1 Dummyvariabler 21. oktober 2004 Emnet for denne forelæsning er kvalitative egenskaber i den multiple regressionsmodel (Wooldridge kap. 7.1-7.6) Kvalitative variabler generelt

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen

Læs mere

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst

Læs mere

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006 Dagens program Økonometri Den simple regressionsmodel 5. september 006 Den simple lineære regressionsmodel (Wooldridge kap.4-.6) Eksemplet fortsat: Løn og uddannelse på danske data Funktionel form Statistiske

Læs mere

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1 Økonometri 1 Prediktion. Dummyvariabler 9. oktober 2006 Økonometri 1: F9 1 Program frem til efterårsferien Om goodness-of-fit, prediktion og residualer (kap. 6.3-4) Kvalitative egenskaber i den multiple

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 2. maj 2007 KM2: F22 1 Program Specifikation og dataproblemer, fortsat (Wooldridge kap. 9): Betydning af målefejl Dataudvælgelse: Manglende observationer

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvalitative egenskaber og dummyvariabler Kvantitative metoder 2 Dummyvariabler 28. marts 2007 Vi har (hovedsagligt) set på kvantitative variabler (løn, priser, forbrug, indkomst, )... Men hvad med kvalitative

Læs mere

Økonometri 1. Kvalitative variabler. Kvalitative variabler. Dagens program. Kvalitative variable 8. marts 2006

Økonometri 1. Kvalitative variabler. Kvalitative variabler. Dagens program. Kvalitative variable 8. marts 2006 Dagens program Økonometri 1 Kvalitative variable 8. marts 2006 Kvalitative variabler som forklarende variabler i en lineær regressionsmodel (Wooldridge kap. 7.1-7.4) Kvalitative variabler generelt Dummy

Læs mere

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)?

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)? Dagens program Økonometr Heteroskedastctet 6. oktober 004 Hovedemnet for denne forelæsnng er heteroskedastctet (kap. 8.-8.3) Lneære sandsynlghedsmodel (kap 7.5) Konsekvenser af heteroskedastctet Hvordan

Læs mere

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data)

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data) Dagens program Økonometri 1 Specifikation, og dataproblemer 10. april 003 Emnet for denne forelæsning er specifikation (Wooldridge kap. 9.-9.4)! Proxy variable! Målefejl! Manglende observationer! Dataudvælgelse!

Læs mere

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2 Økonometri 1 Afslutningsforelæsning 19. maj 2003 Økonometri 1: Afslutningsforelæsning 1 Evalueringer Kun 23 har udfyldt evalueringsskemaerne ud af ca. 120 tilmeldte til eksamen Resultatet kan ses på hjemmesiden

Læs mere

Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program

Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program Dagens program Økonometri 1 FunktioneI form i den lineære regressionsmodel 19. oktober 004 Mere om funktionel form (kap 6.) Log transformation Kvadratisk form Interaktionseffekter Goodness of fit (kap.

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 30. april 2007 KM2: F21 1 Program for de to næste forelæsninger Emnet er specifikation og dataproblemer (Wooldridge kap. 9) Fejlleddet kan være korreleret

Læs mere

Økonometri 1. Dagens program: Afslutningsforelæsning 23. maj 2007

Økonometri 1. Dagens program: Afslutningsforelæsning 23. maj 2007 Dagens program: Økonometri 1 Afslutningsforelæsning 23. maj 2007 6-trins procedure til IV estimation. Afrunding af IV: Rygning og fødselsvægt. Afrunding og perspektivering af Kvant 2. Opfølgning af introduktionsforelæsningen.

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Estimation: Kapitel 9.1-9.3 Estimation Estimationsfejlen Bias Eksempler Bestemmelse af stikprøvens størrelse Konsistens De nitioner påkonsistens Eksempler på konsistente og middelrette estimatorer

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006 Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2 Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition

Læs mere

Simpel Lineær Regression: Model

Simpel Lineær Regression: Model Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x]

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I Oversigt Økonometri 1 Mere om dataproblemer Gentagne tværsnit og panel data I Info om prøveeksamen Mere om proxyvariabler og målefejl fra sidste gang. Selektion og dataproblemer Intro til nyt emne: Observationer

Læs mere

W.2 Simpel lineær regression: Egenskaber ved OLS: Forudsagte værdier og residualer: Et residual:

W.2 Simpel lineær regression: Egenskaber ved OLS: Forudsagte værdier og residualer: Et residual: W.2 Simpel lineær regression: Forudsagte værdier og residualer: Et residual: For residualerne (baseret på en OLS estimation med konstantled) gælder følgende sammenhænge mekanisk: Egenskaber ved OLS: Den

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

SAS-øvelse: Vi starter ud med model et hvor x=(kvotient, eksald, halvaar, kvinde, MatB,, Gif).

SAS-øvelse: Vi starter ud med model et hvor x=(kvotient, eksald, halvaar, kvinde, MatB,, Gif). Vi vil formulere en model for et kvalitativ variabel y i med to udfald, at bestå og ikke at bestå første årsprøve. Derefter modeller vi respons-sandsynligheden: Specifikation af sandsynligheden for at

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 34 Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Antag vi har model: Vi ønsker at teste hypotesen y = β 0 + β 1 x

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/33

Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 +β 1 x +u, hvor fejlledet u,

Læs mere

Økonomisk Kandidateksamen 2003II Økonometri 1. Værdisætning af skov

Økonomisk Kandidateksamen 2003II Økonometri 1. Værdisætning af skov Økonomisk Kandidateksamen 2003II Økonometri 1 Værdisætning af skov Praktiske anvisninger til individuel tag-hjem eksamen i Økonometri 1: Start med at sikre dig at du kan få adgang til data, opgavetekst

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Opgave fra sidst (Gauss-Markov teoremet) Kvantitative metoder Inferens i den lineære regressionsmodel 7. marts 007 Opgave: Vis at hvis M = I X X X X ( ' ) ' er M idempoten dvs der gælder gælder M = M '

Læs mere

1. Intoduktion. Undervisningsnoter til Øvelse i Paneldata

1. Intoduktion. Undervisningsnoter til Øvelse i Paneldata 1 Intoduktion Før man springer ud i en øvelse om paneldata og panelmodeller, kan det selvfølgelig være rart at have en fornemmelse af, hvorfor de er så vigtige i moderne mikro-økonometri, og hvorfor de

Læs mere

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A)

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A) Økonometri 1 Forår 2003 Ugeseddel 13 Program for øvelserne: Gruppearbejde Opsamling af gruppearbejdet og introduktion af SAS SAS-øvelser i computerkælderen Øvelsesopgave 6: Hvem består første årsprøve

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Note om Monte Carlo eksperimenter

Note om Monte Carlo eksperimenter Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 9. september 003 Denne note er skrevet til kurset Økonometri på. årsprøve af polit-studiet.

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Inferens i den lineære regressionsmodel 7. marts 2007 regressionsmodel 1 Opgave fra sidst (Gauss-Markov teoremet) Opgave: Vis at hvis M = I X X X X 1 ( ' ) ' er M idempoten dvs der

Læs mere

Uge 13 referat hold 4

Uge 13 referat hold 4 Uge 13 referat hold 4 Gruppearbejde 1a: Er variablen kvotient inkluderet på en hensigtsmæssig måde? Der er to problemer med kvotient: 1) Den er trunkeret ved 6.9 og 10.0, løsningen er at indføre dummyer

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Estimation: Kapitel 9.7-9.10 Estimationsmetoder kap 9.10 Momentestimation Maximum likelihood estimation Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

, i ' 1,...,N ; t ' 1,...,T, - i.i.d.(0,f 2, ), ) ' 0, E(, it. x kjs. œ i,t,s,j,k.

, i ' 1,...,N ; t ' 1,...,T, - i.i.d.(0,f 2, ), ) ' 0, E(, it. x kjs. œ i,t,s,j,k. 3 Den model, som vi gennemgående skal arbejde med i øvelsen, er»one-way Error Component«Modellen (1EC) Modellen specificeres på følgende måde: y it ' x it $ % µ i %, it, i ' 1,,N ; t ' 1,,T, hvor y it

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Gentagne tværsnit og paneldata Kvantitative metoder 2 Gentagne tværsnit og panel data II 9. maj 2007 I dag: To-periode panel data: Følger de samme individer over to perioder (13.3-4) Unobserved effects

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2004I, Økonometri 1

Rettevejledning til Økonomisk Kandidateksamen 2004I, Økonometri 1 Rettevejledning til Økonomisk Kandidateksamen 004I, Økonometri Vurderingsgrundlaget er selve opgavebesvarelsen og bilaget. Programmer og data som er afleveret på diskette/cd bedømmes som sådan ikke, men

Læs mere

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................

Læs mere

BILAG 3: DETALJERET REDEGØ- RELSE FOR REGISTER- ANALYSER

BILAG 3: DETALJERET REDEGØ- RELSE FOR REGISTER- ANALYSER Til Undervisningsministeriet (Kvalitets- og Tilsynsstyrelsen) Dokumenttype Bilag til Evaluering af de nationale test i folkeskolen Dato September 2013 BILAG 3: DETALJERET REDEGØ- RELSE FOR REGISTER- ANALYSER

Læs mere

Økonomisk Kandidateksamen 2004II Økonometri 1. Læsefærdigheder hos skoleelever i Danmark

Økonomisk Kandidateksamen 2004II Økonometri 1. Læsefærdigheder hos skoleelever i Danmark Økonomisk Kandidateksamen 2004II Økonometri 1 Læsefærdigheder hos skoleelever i Danmark Praktiske anvisninger til individuel tag-hjem eksamen i Økonometri 1: Start med at sikre dig at du kan få adgang

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 5. undervisningsuge, onsdag

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2007II. Kvantitative Metoder 2: Tag-hjem eksamen

Rettevejledning til Økonomisk Kandidateksamen 2007II. Kvantitative Metoder 2: Tag-hjem eksamen Rettevejledning til Økonomisk Kandidateksamen 2007II Kvantitative Metoder 2: Tag-hjem eksamen Der skal for hver studerende foretages en samlet bedømmelse af tag-hjem gruppeopgaven og den individuelle 2-timers

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger Oversigt: De næste forelæsninger Økonometri Inferens i den lineære regressionsmodel 5. september 006 Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan drage konklusioner på

Læs mere

Fokus på Forsyning. Datagrundlag og metode

Fokus på Forsyning. Datagrundlag og metode Fokus på Forsyning I notatet gennemgås datagrundlaget for brancheanalysen af forsyningssektoren sammen med variable, regressionsmodellen og tilhørende tests. Slutteligt sammenfattes analysens resultater

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Note om Monte Carlo eksperimenter

Note om Monte Carlo eksperimenter Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 22. februar 2005 Denne note er skrevet til kurset Økonometri 1 på 2. årsprøve af polit-studiet.

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe

Læs mere

Økonometri 1. Gentagne tværsnit (W ): Opsamling. Gentagne tværsnit og paneldata. Gentagne Tværsnit og Paneldata II.

Økonometri 1. Gentagne tværsnit (W ): Opsamling. Gentagne tværsnit og paneldata. Gentagne Tværsnit og Paneldata II. Gentagne tværsnit (W 13.1-): Opsamling. Økonometri 1 Gentagne Tværsnit og Paneldata II Kombinerer tværsnit indsamlet på forskellige tidspunkter. Partial pooling: Tillader koefficienterne til nogle af variablerne

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Fagplan for statistik, efteråret 2015

Fagplan for statistik, efteråret 2015 Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Økonomisk Kandidateksamen 2006II Økonometri 1. Afkastet af uddannelse for britiske tvillingepar

Økonomisk Kandidateksamen 2006II Økonometri 1. Afkastet af uddannelse for britiske tvillingepar Økonomisk Kandidateksamen 2006II Økonometri 1 Afkastet af uddannelse for britiske tvillingepar Praktiske anvisninger til individuel tag-hjem eksamen i Økonometri 1: Start med at sikre dig, at du kan få

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

De variable, som er inkluderet i de forskellige modeller, er følgende:

De variable, som er inkluderet i de forskellige modeller, er følgende: DUL II. Undersøgelse af hvilke faktorer, der er væsentlige for at understøtte, at der er klare og veltilrettelagte mål tilstede i arbejdet med elevernes læring Følgende er en statistisk analyse af ovenstående

Læs mere

Rettevejledning til Kvantitative metoder 1, 2. årsprøve 18. juni timers prøve med hjælpemidler

Rettevejledning til Kvantitative metoder 1, 2. årsprøve 18. juni timers prøve med hjælpemidler Rettevejledning til Kvantitative metoder 1, 2. årsprøve 18. juni 2007 4 timers prøve med hjælpemidler Opgaven består af re delopgaver, som alle skal besvares. De re opgaver indgår med samme vægt. Opgaverne

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 11

Økonometri 1 Efterår 2006 Ugeseddel 11 Økonometri 1 Efterår 2006 Ugeseddel 11 Program for øvelserne: Gruppearbejde og plenumdiskussion Introduktion til SAS øvelser SAS øvelser Øvelsesopgave: Paneldata estimation Sammenhængen mellem alder og

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Rygtespredning: Et logistisk eksperiment

Rygtespredning: Et logistisk eksperiment Rygtespredning: Et logistisk eksperiment For at det nu ikke skal ende i en omgang teoretisk tørsvømning er det vist på tide vi kigger på et konkret logistisk eksperiment. Der er selvfølgelig flere muligheder,

Læs mere

Bilag A. Dexia-obligationen (2002/2007 Basis)

Bilag A. Dexia-obligationen (2002/2007 Basis) Bilag A Dexia-obligationen (2002/2007 Basis) Også kaldet A.P. Møller aktieindekseret obligation (A/S 1912 B). Dette værdipapir som i teorien handles på Københavns Fondsbørs (omend med meget lille omsætning)

Læs mere

Brug af testdata i børneforløbsundersøgelsen (BFU).

Brug af testdata i børneforløbsundersøgelsen (BFU). Juni/2. oktober 2009 Brug af testdata i børneforløbsundersøgelsen (BFU). Martin D. Munk og Peter Skov Olsen SFI - Det Nationale Forskningscenter for Velfærd Centre for Mobility Research 1 Resumé Rapporten

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere