Anvendt Lineær Algebra

Størrelse: px
Starte visningen fra side:

Download "Anvendt Lineær Algebra"

Transkript

1 Anvendt Lineær Algebra Kursusgang 4 Anita Abildgaard Sillasen Institut for Matematiske Fag AAS (I17) Anvendt Lineær Algebra 1 / 32

2 Vægtet mindste kvadraters metode For et lineært ligningssystem (af m ligninger med n ubekendte) Ax = b er en mindste kvadraters løsning ˆx en løsning til normalligningen (A T A)x = A T b. AAS (I17) Anvendt Lineær Algebra 2 / 32

3 Hvis 1 A =. og b = 1 b 1. b m så er A T A = m og A T b = b b m og derfor er ˆx = b b m, m altså (ikke-vægtet) gennemsnit af b 1,..., b m. Det vægtede gennemsnit af b 1,..., b m med vægte hhv. c 1,..., c m (hvor c 1,..., c m er positive tal) er c 1 b c m b m c c m. AAS (I17) Anvendt Lineær Algebra 3 / 32

4 Betragt nu et ligningssystem af m ligninger med n ubekendte Ax = b. De m ligninger (observationer) tildeles vægte c 1,..., c m som skrives i en matrix c c C = c m Som vægte kan vi bruge c i = 1 σi 2 eventuelt c i = konst. 1. σi 2 hvor σ 2 i er variansen af den i te observation, eller Skrives også (i Lay) som wi 2 = c i hvor w i = 1 σ i og w w W = w m Så er W T W = WW = C. AAS (I17) Anvendt Lineær Algebra 4 / 32

5 Hvis vægtene c 1,..., c m er hele tal (positive) så svarer det vægtede ligningssystem til at betragte (ikke-vægtet) ligningssystem Ãx = b, hvor ligning nr. i fra ligningssystemet Ax = b skrives c i gange. En mindste kvadraters løsning til det nye ligningssystem er en løsning til normalligningen à T Ãx = ÃT b. AAS (I17) Anvendt Lineær Algebra 5 / 32

6 Eksempel: A = a b c d e f, b = r s t, C = Så kan vi betragte à = a b a b c d e f e f e f, b = r r s t t t. AAS (I17) Anvendt Lineær Algebra 6 / 32

7 Normalligningen for ligningssystemet Ãx = b er à T Ãx = ÃT b. Da ÃT à = A T CA og ÃT b = A T Cb er denne ligning ækvivalent med A T CAx = A T Cb. AAS (I17) Anvendt Lineær Algebra 7 / 32

8 Det vægtede ligningssytem Ax = b med generelle vægte har normalligning A T CAx = A T Cb. En vægtet mindste kvadraters løsning til Ax = b er en løsning til normalligningen. AAS (I17) Anvendt Lineær Algebra 8 / 32

9 I observationsligningen Aˆx = b + ˆr indgår residual vektoren ˆr = 1 ˆr.. ˆr m Vi udregner c ˆr T 0 c Cˆr = [ˆr 1... ˆr m ] ˆr.... = ˆr c m m c 1ˆr 1 [ˆr 1... ˆr m ]. = c 1ˆr c mˆr m. 2 c mˆr m Dette er kvadratet på den vægtede længde af vektoren ˆr. Altså kvadratet på den vægtede afstand mellem Aˆx og b. En vægtet mindste kvadraters løsning er en vektor x som minimerer ˆr T Cˆr = (Ax b) T C(Ax b). AAS (I17) Anvendt Lineær Algebra 9 / 32

10 Eksempel. Hvis 1 A =., b = 1 b 1. b m og C = c c c m så er A T CA = c c m og A T Cb = c 1 b c m b m og den vægtede mindste kvadraters løsning er derfor det vægtede gennemsnit ˆx = c 1b c m b m c c m. AAS (I17) Anvendt Lineær Algebra 10 / 32

11 Eksempel. Find linie y = αx + β der passer bedst til punkterne med vægte hhv. 1, 5, 1, 5, 1. (1, 3), (2, 5), (3, 9), (4, 12), (5, 14) Vi betragter ligningssystemet [ ] 1 3 β 5 = 1 4 α AAS (I17) Anvendt Lineær Algebra 11 / 32

12 Normalligningen: [ (A T β CA) = A α] T Cb. Den vægtede mindste kvadraters løsning er [ ] β = (A T CA) 1 A T Cb = α [ ] Den vægtede mindste kvadraters linie har ligning y = 3.17x Denne linie er grøn på næste side. Den ikke-vægtede mindste kvadraters linie er rød på næste side. AAS (I17) Anvendt Lineær Algebra 12 / 32

13 x AAS (I17) Anvendt Lineær Algebra 13 / 32

14 Den generelle fejlforplantningslov X 1,..., X n er stokastiske variable med middelværdier E(X i ) og varianser Kovarianserne er V (X i ) = E((X i E(X i )) 2 ) = E(X 2 i ) E(X i ) 2. Cov(X i, X j ) = E((X i E(X i ))(X j E(X j ))). Hvis X i og X j er uafhængige så er Cov(X i, X j ) = 0. Cov(X i, X i ) = V (X i ). AAS (I17) Anvendt Lineær Algebra 14 / 32

15 Kovariansmatricen for er X = hvor σi 2 = V (X i ) og σ ij = Cov(X i, X j ) = Cov(X j, X i ) = σ ji. Σ X er en symmetrisk matrix. X 1. X n σ1 2 σ 12 σ σ 1n σ 21 σ2 2 σ σ 2n Σ X = σ 31 σ 32 σ σ 3n,.... σ n1 σ n2 σ n3... σn 2 AAS (I17) Anvendt Lineær Algebra 15 / 32

16 Hvis en anden vektor af stokastiske variable afhænger lineært af X: Y = Y 1. Y m Y = AX hvor A er en m n matrix, så giver fejlforplantningsloven en sammenhæng mellem kovariansmatricerne: Σ Y = AΣ X A T. AAS (I17) Anvendt Lineær Algebra 16 / 32

17 En vægtet mindste kvadraters løsning til ligningssystemet Ax = b med vægtmatrix C = diag(c 1,..., c m ) afhænger lineært af observationsvektoren b: ˆx = (A T CA) 1 A T Cb. Vi har valgt C så c i = konst. 1. Dermed er σi 2 c σ C 1 0 c =... = 1 0 σ konst.... = 1 konst. Σ b cm σm 2 Hvor den sidste lighed skyldes at observationerne antages at være uafhængige. Dermed Cov(b i, b j ) = 0, når i j. Vi skriver C = σ0 2Σ 1 b, hvor σ2 0 kaldes variansfaktoren. Variansfaktoren estimeres som ˆσ 2 0 = ˆrT Cˆr m n. AAS (I17) Anvendt Lineær Algebra 17 / 32

18 Kovariansmatricen Σˆx kan bestemmes fra fejlforplantningsloven Σˆx = ((A T CA) 1 A T C)Σ b ((A T CA) 1 A T C) T = σ 2 0(A T CA) 1. Vi bruger estimatet for σ 2 0 : Σˆx = ˆσ 2 0(A T CA) 1. AAS (I17) Anvendt Lineær Algebra 18 / 32

19 Fortsættelse af eksempel fra kursusgang 2: Mellem fem punkter A, B, C, D, E er der målt følgende højdeforskelle: E er et fikspunkt med højde 10. Fra punkt Til punkt Højdeforskel Afstand B A 8 12 B C 2 20 B E 5 8 C A 7 14 C D 1 16 D A 6 13 D E 4 20 E A 3 8 AAS (I17) Anvendt Lineær Algebra 19 / 32

20 AAS (I17) Anvendt Lineær Algebra 20 / 32

21 Sæt A = ˆr 1 2 ˆr 2 5 ˆr 3, b = 7 1, og ˆr = ˆr 4 ˆr 5. 6 ˆr 6 6 ˆr 7 13 ˆr 8 Så er observationsligningen: Ax = b + ˆr. Som vægtmatrix bruges C = diag ( 1 12, 1 20, 1 8, 1 14, 1 16, 1 13, 1 20, 1 ). 8 AAS (I17) Anvendt Lineær Algebra 21 / 32

22 En vægtet mindste kvadraters løsning: 12.9 ˆx = (A T CA) 1 A T Cb = Vi får følgende residualvektor ˆr = Aˆx b = AAS (I17) Anvendt Lineær Algebra 22 / 32

23 Variansfaktor ˆσ 2 0 = ˆrT Cˆr 8 4 = Kovariansmatrix Σˆx = ˆσ 0(A 2 T CA) 1 = AAS (I17) Anvendt Lineær Algebra 23 / 32

24 Introduktion til Cholesky dekomposition. Først: repetition af diagonalisering. En m n matrix A er kvadratisk hvis m = n. En kvadratisk matrix A er symmetrisk hvis A T = A. Idet (BC) T = C T B T er enhver matrix på formen A T A symmetrisk: (A T A) T = A T (A T ) T = A T A. En vektor x R n, x 0 er egenvektor for en n n matrix A hvis der findes et tal (en egenværdi) λ så Ax = λx. AAS (I17) Anvendt Lineær Algebra 24 / 32

25 En matrix A er diagonaliserbar hvis der findes en basis {x 1,..., x n } for R n, hvor hver vektor er en egenvektor Ax i = λ i x i. Dette er ækvivalent med at der findes en matrix P og en diagonalmatrix D så P 1 AP = D. Enhver symmetrisk matrix er diagonaliserbar. Enhver matrix på formen A T A er altså diagonaliserbar. AAS (I17) Anvendt Lineær Algebra 25 / 32

26 Hvis λ er en egenværdi for A T A med en tilhørende egenvektor x, A T Ax = λx, så er λ x 2 = λx x = (A T Ax) x = (A T Ax) T x = Altså λ 0. x T A T Ax = (Ax) T Ax = Ax 2 0. Hvis søjlerne i A er lineært uafhængige så gælder der faktisk λ > 0. En symmetrisk matrix hvis egenværdier alle er > 0 siges at være positiv definit. AAS (I17) Anvendt Lineær Algebra 26 / 32

27 En kvadratisk matrix U siges at være en øvre (upper) triangulær matrix hvis der står 0 på alle pladser under diagonalen. u 11 u 12 u 13 u 1n 0 u 22 u 23 u 2n U = 0 0 u 33 u 3n u nn AAS (I17) Anvendt Lineær Algebra 27 / 32

28 En kvadratisk matrix L siges at være en nedre (lower) triangulær matrix hvis der står 0 på alle pladser over diagonalen. l l 21 l L = l 31 l 32 l l n1 l n2 l n3 l nn U er en øvre triangulær matrix hvis og kun hvis U T er nedre triangulær matrix. En matrix D er en diagonalmatrix hvis og kun hvis den er både øvre triangulær og nedre triangulær. AAS (I17) Anvendt Lineær Algebra 28 / 32

29 Cholesky dekomposition Vi ønsker nu at skrive en n n matrix A som et produkt A = U T U, hvor U er en øvre triangulær matrix. Dette kaldes Cholesky dekompositionen af A. I litteraturen skriver man ofte Cholesky dekompositionen som A = LL T, hvor L = U T er en nedre triangulær matrix. MATLAB: chol(a) beregner Cholesky dekomposition U Maple: LUDecomposition(A,method=Cholesky) beregner L = U T AAS (I17) Anvendt Lineær Algebra 29 / 32

30 Enhver matrix på formen U T U er symmetrisk og hvis tallene på diagonalen i U er 0 så er søjlerne lineært uafhængige og dermed er U T U positiv definit. Vi vil derfor antage at A er symmetrisk, positiv definit matrix. AAS (I17) Anvendt Lineær Algebra 30 / 32

31 Cholesky dekomposition og mindste kvadraters metode Vi ønsker nu at finde en mindste kvadraters løsning til det (inkonsistente) ligningssystem Ax = b. Vi betragter derfor normalligningen A T Ax = A T b. Matricen A T A er symmetrisk og da søjlerne i A sædvanligvis er lineært uafhængige er A T A også positiv definit. AAS (I17) Anvendt Lineær Algebra 31 / 32

32 Vi kan derfor finde en Cholesky dekomposition A T A = U T U, hvor U er en øvre triangulær matrix og dermed skrive normalligningen som hvor y = A T b. U T Ux = y, Vi kan løse denne ligning ved at sætte z = Ux og løse først U T z = y og derefter Ux = z. Disse ligninger kan let løses uden brug af rækkeoperationer, da U er triangulær. AAS (I17) Anvendt Lineær Algebra 32 / 32

Lineær algebra Kursusgang 6

Lineær algebra Kursusgang 6 Lineær algebra Kursusgang 6 Mindste kvadraters metode og Cholesky dekomposition Vi ønsker at finde en mindste kvadraters løsning til det (inkonsistente) ligningssystem hvor A er en m n matrix. Ax = b,

Læs mere

Anvendt Lineær Algebra

Anvendt Lineær Algebra Anvendt Lineær Algebra Kursusgang 3 Anita Abildgaard Sillasen Institut for Matematiske Fag AAS (I17) Anvendt Lineær Algebra 1 / 38 Vi betragter et lineært ligningssystem (af m ligninger med n ubekendte)

Læs mere

LiA 5 Side 0. Lineær algebra Kursusgang 5

LiA 5 Side 0. Lineær algebra Kursusgang 5 LiA 5 Side 0 Lineær algebra Kursusgang 5 LiA 5 Side 1 Ved bestemmelse af mindste kvadraters løsning til (store) ligningssystemer vil man gerne anvende en metode der opfylder to krav: antallet af regneoperationer

Læs mere

LiA 2 Side 0. Lineær algebra 3. kursusgang

LiA 2 Side 0. Lineær algebra 3. kursusgang LiA 2 Side 0 Lineær algebra 3. kursusgang LiA 2 Side 1 Højdeforskelle. D C 0.7 0.7 0.8 E LiA 2 Side 2 Vi har tre punkter C, D og E. Højderne er h C, h D, h E. (I det følgende benævnes disse også x, y,

Læs mere

Lineær algebra 4. kursusgang

Lineær algebra 4. kursusgang Lineær algebra 4. kursusgang Vi betragter et lineært ligningssystem (af m ligninger med n ubekendte) Ax = b. Ligningssystemet antages at være inkonsistent (ingen løsninger) fordi tallene er fremkommet

Læs mere

Antag X 1, X 2,..., X n er n uafhængige stokastiske variable, hvor Var(X 1 )=σ 2 1,..., Var(X n )=σ 2 n.

Antag X 1, X 2,..., X n er n uafhængige stokastiske variable, hvor Var(X 1 )=σ 2 1,..., Var(X n )=σ 2 n. Simple fejlforplantningslov Landmålingens fejlteori Lektion 6 Den generelle fejlforplantningslov Antag X, X,, X n er n uafhængige stokastiske variable, hvor Var(X )σ,, Var(X n )σ n Lad Y g(x, X,, X n ),

Læs mere

Udjævning. Peter Cederholm

Udjævning. Peter Cederholm Udjævning Peter Cederholm Udjævning Peter Cederholm Udjævning. 2. udgave, 1. revision, 2000. Forord Disse noter er skrevet i forbindelse med afholdelse af udjævningskurser for landinspektørstuderende på

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

Diagonalisering. Definition (diagonaliserbar)

Diagonalisering. Definition (diagonaliserbar) 1 Diagonalisering 2 Definition (diagonaliserbar) Lad A være en n n-matrix. A siges at være diagonaliserbar hvis A er similær med en diagonal matrix, dvs. A = PDP 1, hvor D er en n n diagonal matrix og

Læs mere

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning Fejlforplantning Landmålingens fejlteori Lektion 5 Fejlforplantning - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Landmåling involverer ofte bestemmelse af størrelser som ikke kan

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer 1 Egenværdier og egenvektorer 2 Definition Lad A være en n n matrix. En vektor v R n, v 0, kaldes en egenvektor for A, hvis der findes en skalar λ således Av = λv Skalaren λ kaldes en tilhørende egenværdi.

Læs mere

DesignMat Uge 4 Systemer af lineære differentialligninger I

DesignMat Uge 4 Systemer af lineære differentialligninger I DesignMat Uge Systemer af lineære differentialligninger I Preben Alsholm Efterår 008 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden I Lineært differentialligningssystem

Læs mere

Lineær algebra: Egenværdier, egenvektorer, diagonalisering

Lineær algebra: Egenværdier, egenvektorer, diagonalisering Lineær algebra: Egenværdier, egenvektorer, diagonalisering Institut for Matematiske Fag Aalborg Universitet 2011 Egenvektorer og egenværdier Mål: Forståelse af afbildningen x Ax fra R n R n for en n n-matrix

Læs mere

Symmetriske og ortogonale matricer Uge 7

Symmetriske og ortogonale matricer Uge 7 Symmetriske og ortogonale matricer Uge 7 Preben Alsholm Efterår 2009 1 Symmetriske og ortogonale matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = [ a ij kaldes symmetrisk, hvis aij = a ji

Læs mere

Ekstremum for funktion af flere variable

Ekstremum for funktion af flere variable Ekstremum for funktion af flere variable Preben Alsholm 28. april 2008 1 Ekstremum for funktion af flere variable 1.1 Hessematricen I Hessematricen I Et stationært punkt for en funktion af flere variable

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Landmålingens fejlteori - Lektion 5 - Fejlforplantning

Landmålingens fejlteori - Lektion 5 - Fejlforplantning Landmålingens fejlteori Lektion 5 Fejlforplantning - kkb@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/30 Fejlforplantning Landmåling involverer ofte bestemmelse af størrelser som ikke

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Ligningssystemer - nogle konklusioner efter miniprojektet

Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemet Ax = 0 har mere end en løsning (uendelig mange) hvis og kun hvis nullity(a) 0 Løsningerne til et konsistent ligningssystem Ax

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum)

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum) Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Forelæsningsnote 8 NB: Noten er ikke en del af pensum Eksempel på brug af egenværdier og egenvektorer Måske er det stadig

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Landmålingens fejlteori - Repetition - Fordeling af slutfejl - Lektion 8

Landmålingens fejlteori - Repetition - Fordeling af slutfejl - Lektion 8 Landmålingens fejlteori Repetition - Fordeling af slutfejl Lektion 8 - tvede@math.aau.dk http://www.math.aau.dk/ tvede/teaching/l4 Institut for Matematiske Fag Aalborg Universitet 15. maj 2008 1/13 Fordeling

Læs mere

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com Matrix Algebra med Excel Forelæsningsnoter til FR86 Jesper Lund mail@jesperlund.com http://www.jesperlund.com 28. august 2002 1 Indledning Matrix algebra er et uundværligt redskab til økonometri, herunder

Læs mere

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen Vægte motiverende eksempel Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - kkb@mathaaudk Institut for Matematiske Fag Aalborg Universitet Højdeforskellen mellem punkterne P

Læs mere

Aflevering 4: Mindste kvadraters metode

Aflevering 4: Mindste kvadraters metode Aflevering 4: Mindste kvadraters metode Daniel Østergaard Andreasen December 2, 2011 Abstract Da meget få havde løst afleveringsopgave 4, giver jeg har en mulig (men meget udførlig) løsning af opgaven.

Læs mere

Kursusgang 3 Matrixalgebra fortsat

Kursusgang 3 Matrixalgebra fortsat Kursusgang 3 fortsat - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12. september 2008 1/31 Nødvendige betingelser En nødvendig betingelse

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Institut for Matematiske Fag Aalborg Universitet 1/1 Vægtet

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Symmetriske og ortogonale matricer Uge 6

Symmetriske og ortogonale matricer Uge 6 Symmetriske og ortogonale matricer Uge 6 Preben Alsholm Efterår 2010 1 Symmetriske og ortogonale matricer 1.1 Skalarprodukt og Cauchy-Schwarz ulighed Skalarprodukt og Cauchy-Schwarz ulighed Det sædvanlige

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Motivation. Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser

Motivation. Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser Motivation Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser Rasmus Waagepetersen October 26, 2018 Eksempel: En landmåler får til opgave at måle længden λ fra A til B. Entreprenøren

Læs mere

Reeksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet

Reeksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet Reeksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske

Læs mere

Eksempel på 2-timersprøve 2 Løsninger

Eksempel på 2-timersprøve 2 Løsninger Eksempel på -timersprøve Løsninger Preben lsholm Februar 4 Opgave Maplekommandoerne expand( (z-*exp(i*pi/))*(z-*exp(-i*pi/))*(z-exp(i*pi/))*(z-exp(-i*pi/))): sort(%); resulterer i polynomiet z 4 z + z

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017 Besvarelser til Lineær Algebra Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version

Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Opgaven består af et antal delopgaver Disse er af varierende omfang Der er også en

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

Oversigt [LA] 10, 11; [S] 9.3

Oversigt [LA] 10, 11; [S] 9.3 Oversigt [LA] 1, 11; [S] 9.3 Nøgleord og begreber Repetition: enhedsvektor og identitetsmatrix Diagonalmatricer Diagonalisering og egenvektorer Matrixpotens August 22, opgave 2 Skalarprodukt Længde Calculus

Læs mere

Symmetriske matricer

Symmetriske matricer Symmetriske matricer Preben Alsholm 17. november 008 1 Symmetriske matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = a ij kaldes symmetrisk, hvis aij = a ji for alle i og j. Altså hvis A

Læs mere

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable E6 efterår 999 Notat 8 Jørgen Larsen 22. november 999 Lineære normale modeller ) udkast Ved hjælp af lineær algebra kan man formulere og analysere de såkaldte lineære normale modeller meget overskueligt

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

LinAlgDat 2014/2015 Google s page rank

LinAlgDat 2014/2015 Google s page rank LinAlgDat 4/5 Google s page rank Resumé Vi viser hvordan lineære ligninger naturligt optræder i forbindelse med en simpel udgave af Google s algoritme for at vise de mest interessante links først i en

Læs mere

Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet

Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet Eksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 4. januar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider

Læs mere

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske tekst på bagsiden, hvis du følger den danske version af prøven. Eksamen i Lineær Algebra Første

Læs mere

Biologisk model: Epidemi

Biologisk model: Epidemi C1.2 C.7 Se forklaring i Appendiks A 1, si. 9 Biologisk model: Epidemi af John V. Petersen 1. Biologisk model: Epidemi... si. 1 A. Appendiks A 1. Ligninger si. 1, forklaring... si. 9 A 2. Egenvektorer

Læs mere

Lineær Algebra Dispositioner

Lineær Algebra Dispositioner Lineær Algebra Dispositioner Michael Lind Mortensen, 20071202, DAT4 12. august 2008 Indhold 1 Løsning og mindste kvadraters løsninger af lineære ligningssystemer 4 1.1 Disposition............................

Læs mere

Sandsynlighed og Statistik

Sandsynlighed og Statistik 36 Sandsynlighed og Statistik 6.1 Indledning Denne note beskriver de statistiske begreber og formler som man med rimelig sandsynlighed kan komme ud for i eksperimentelle øvelser. Alt er yderst korfattet,

Læs mere

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske tekst på bagsiden, hvis du følger den danske version af prøven. Eksamen i Lineær Algebra Første

Læs mere

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016 Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 206 Mikkel Findinge http://findinge.com/ Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan.

Læs mere

Lineær algebra: Matrixmultiplikation. Regulære og singulære

Lineær algebra: Matrixmultiplikation. Regulære og singulære Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =

Læs mere

Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0

Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0 Middelværdi og varians Middelværdien af en diskret skalarfunktion f(x), for x = 0, N er: µ = N f(x) N x=0 For vektorfuktioner er middelværdivektoren tilsvarende: µ = N f(x) N x=0 Middelværdien er en af

Læs mere

Module 3: Statistiske modeller

Module 3: Statistiske modeller Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med

Læs mere

Eksempel på 2-timersprøve 1 Løsninger

Eksempel på 2-timersprøve 1 Løsninger Eksempel på -timersprøve Løsninger Preben lsholm Marts 4 Opgave Vi skal løse ligningen () z (8 + i) e i 6 = Løsningen ønskes angivet på rektangulær form, dvs. på formen x + iy, hvor x; y R. Vi nder umiddelbart

Læs mere

hvor a og b er konstanter. Ved middelværdidannelse fås videre

hvor a og b er konstanter. Ved middelværdidannelse fås videre Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra

Læs mere

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder Sætning 9 Sylvesters kriterium Nej, ikke mit kriterium Rasmus Sylvester Bryder Inspireret af en statistikers manglende råd om hvornår en kvadratisk matrix er positivt definit uden at skulle ud i at bestemme

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Maj 016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 10 nummererede sider med ialt

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Juni 28 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Matematik og FormLineære ligningssystemer

Matematik og FormLineære ligningssystemer Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Sandt/falsk-opgave: Diskuter opgave 23 side 12 i gruppen, men husk at begrunde jeres svar, som teksten før opgave 23 kræver!

Sandt/falsk-opgave: Diskuter opgave 23 side 12 i gruppen, men husk at begrunde jeres svar, som teksten før opgave 23 kræver! LINEÆR ALGEBRA 28. januar 2005 Oversigt nr. 1 I kurset i skal vi bruge D. C. Lay: Linear algebra and its applications, 3. udgave Addison Wesley 2003; i store træk bliver det kapitel 1 3 og 5.1 5.3. Som

Læs mere

Ølopgaver i lineær algebra

Ølopgaver i lineær algebra Ølopgaver i lineær algebra 30. maj, 2010 En stor del af de fænomener, vi observerer, er af lineær natur. De naturlige matematiske objekter i beskrivelsen heraf bliver vektorrum rum hvor man kan lægge elementer

Læs mere

Den todimensionale normalfordeling

Den todimensionale normalfordeling Den todimensionale normalfordeling Definition En todimensional stokastisk variabel X Y siges at være todimensional normalfordelt med parametrene µ µ og når den simultane tæthedsfunktion for X Y kan skrives

Læs mere

Reeksamen i Lineær Algebra

Reeksamen i Lineær Algebra Reeksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 8 Dette eksamenssæt består af 9 nummererede sider med afkrydsningsopgaver.

Læs mere

Matematik og Form: Matrixmultiplikation. Regulære og singu

Matematik og Form: Matrixmultiplikation. Regulære og singu Matematik og Form: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2012 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt bestaår af 9 nummererede sider med ialt 15 opgaver.

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

LinAlg 2013 Q3. Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013

LinAlg 2013 Q3. Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013 LinAlg 2013 Q3 Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013 1 Lineær algebra Dispositioner - Dispo 0 2013 Contents 1 Løsninger, og MKL, af lineære ligningssystemer 3 2 Vektorrum

Læs mere

Noter til Lineær Algebra

Noter til Lineær Algebra Noter til Lineær Algebra Eksamensnoter til LinAlg Martin Sparre, www.logx.dk, August 2007, Version π8 9450. INDHOLD 2 Indhold 0. Om disse noter.......................... 3 Abstrakte vektorrum 4. Definition

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den. januar,. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

Besvarelser til Lineær Algebra Reeksamen August 2016

Besvarelser til Lineær Algebra Reeksamen August 2016 Besvarelser til Lineær Algebra Reeksamen - 9. August 26 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Lineær algebra: Spænd. Lineær (u)afhængighed

Lineær algebra: Spænd. Lineær (u)afhængighed Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 4 januar, 2 Kl 9-3 Nærværende eksamenssæt består af 8 nummererede

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling Forelæsningsnoter til Lineær Algebra Niels Vigand Pedersen Udgivet af Asmus L Schmidt Københavns Universitet Matematisk Afdeling August Revideret 9 ii udgave, oktober 9 Forord Gennem en særlig aftale varetages

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.

Læs mere

Investerings- og finansieringsteori, F04, ugeseddel 14

Investerings- og finansieringsteori, F04, ugeseddel 14 5. maj 2004 Rolf Poulsen AMS Investerings- og finansieringsteori, F04, ugeseddel 14 Resten af semesteret Uge 20 (dvs. 10., 12. og 14. maj) er der er almindelige forelæsninger og øvelser, hvor man til sidstnævnte

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere