Type Spçrg = Prodèhvad: Text, ja, nej: Vidè. ting èfor sça mça der jo ændes et spçrgsmçal, hvor man har svaret bçade ja

Størrelse: px
Starte visningen fra side:

Download "Type Spçrg = Prodèhvad: Text, ja, nej: Vidè. ting èfor sça mça der jo ændes et spçrgsmçal, hvor man har svaret bçade ja"

Transkript

1 Opgave 1 è15èè Et videnstrç er èjfr. Dat1 nr. 2 opgave U61è af Trine typen Type Vid = Sumèting: Text, spçrgsmçal: Spçrgè Type Spçrg = Prèhvad: Text, ja, nej: Vidè Videnstrçet er inkonsistent hvis to forskellige blade indeholder samme ting èfor sça mça der jo ændes et spçrgsmçal, hvor man har svaret bçade ja og nej for den samme tingè. Det antages i det fçlgende, at nedenstçaende box er til rçadighed. Box T Type Set = çmçngde af teksterç Proc Singleèt: Textè! èsetè return çftgç end Single Proc Intersectès 1,s 2 : Setè! èsetè return çs 1 ë s 2 ç end Intersect Proc Unionès 1,s 2 : Setè! èsetè return çs 1 ë s 2 ç end Union end T Skriv en Trine vçrdiprocedure Proc InkëV: Vidë! èt'setè der beregner mçngden af ting, der forekommer to eller æere gange i videnstrçet V. Der lçgges vçgt pça, at besvarelsen er letlçselig, detaljeret og korrekt.

2 Opgave 2 è20èè En bitstreng B = har en tilhçrende skiftençgle S =è9;è1; 3; 6; 7; 8èè der bestçar af B's lçngde, samt de positioner ènummereret fra 0 til jbj,1è for hvilke B skifter fra 0 til 1 eller omvendt. Det vil sige, hvis vi betegner B's skiftençgle med skiftèbè, sça gçlder det, at skiftèbè = èjbj;fij0 éiéjbj:b:èi, 1è 6= B:èiègè Lad S vçre af typen Prèl: Int, s: Vectorè og betragt fçlgende algoritmeskitse. Algoritme: Beregn Skiftençgle Stimulans: B: Vektor, èjbj é 0è ^ 8i2 0::jBj : B:èiè 2f0;1gè Respons: S = skiftèbè Mete: çinitialiser i og Sç do fs = skiftèbè0::ièè ^ è0 éiçjbjèg i6=jbj!çopdater i og Sç aè Gçr algoritmen fçrdig og bevis, at den er korrekt. bè Det er klart, at skiftèbè erentydigt bestemt af B. Gçlder det ogsça,at B er entydigt bestemt af skiftèbè? Begrund dit svar.

3 Opgave 3 è15èè Der skal konstrueres en box SparseList med fçlgende udseende Box SparseList Type L = çuendelig liste af heltalç Proc Initëx: Lë Proc Lookupëx: Lëèi: Intè! èintè Proc Updateëx: Lëèi, k: Intè Proc Maxëx: Lë! èintè Proc Addëx: Lë! èintè end SparseList som realiserer en datastruktur, hvis vçrdier er uendelige lister af heltal. Proceduren Init giver den uendelige liste med nuller pça alle pladser. Proceduren Lookup returnerer vçrdien med index i. Proceduren Update çndrer vçrdien med index i til at vçre k. Proceduren Max giver det stçrste index, hvis vçrdi ikke ernul. Proceduren Add giver summen af listens elementer. I det fçlgende angiver jjxjj antallet af elementer i x, der har vçrdi forskellig fra nul. aè Giv en formel speciækation af proceduren Max. bè Beskriv en realisation af typen L, sça Init fçar tidskompleksitet Oè1è, Lookup og Update fçar tidskompleksitet Oèlog jjxjjè, og Max og Add fçar tidskompleksitet Oè1è.

4 Opgave 4 è15èè Betragt fçlgende Trine program. è+ Type A=ListèBè Type B=Sumèx: C, y: Dè Type C=C Type D=E Type E=ListèSumèx: Unit, y: Aèè +è Var a: A Var b: B Var c: C Var d: D Var e: E Var i: Int Var r: Real a:= e b:= Sumè2: Listèèè c:=?-c r:= i Vil det blive accepteret af Trine oversçtteren? Begrund dit svar.

5 Opgave 5 è20èè Fçlgende algoritme fra ëgrafalgoritmerë side 39 beregner en topologisk sortering af en orienteret acyklisk graf. Algoritme: Topologisk Sortering Stimulans : G = èv; Eè orienteret acyklisk graf Respons : TopSort: Vector, indeholder topologisk sortering af G Mete : Indegree:= Vectorè0jnè for èv, wè in E do Indegree.èwè:= Indegree.èwè+1 NS'InitëRëènè for v in V do if Indegree.èvè =0! NS'InsertëRëèvè æ TopSort, N:= Vectorè0jnè, 1 do : NS'EmptyëRë! NS'DeleteSomeëR, vë TopSort.èvè, N:=N, N+1 for èv, wè in E do Indegree.èwè:= Indegree.èwè-1 if Indegree.èwè =0! NS'InsertëRëèwè æ Miæcçer meten, sça den i stedet realiserer fçlgende algoritme. Algoritme: Cyklisten Stimulans : G = èv; Eè, orienteret graf Respons : AC: Boolean, AC, G er acyklisk Mete :

6 Opgave 6 è15èè Fçlgende to algoritmiske problemer har oplagte lçsninger med udfçrelsestid i Oènè. P1 Lad Aè0::nè vçre en liste for hvilken A:è0è ç A:è1è og A:èn, 2è ç A:èn, 1è. Find et lokalt minimum i A, det vil sige, et indeks x for hvilket A:èx, 1è ç A:èxè og A:èxè ç A:èx + 1è. P2 Lad f : N 0! Z vçre en monotont aftagende funktion. Find det mindste n for hvilket fènè ç 0. Begge problemer kan imidlertid lçses mere eæektivt. Beskriv sçadanne eæektive algoritmer for P1 og P2 og angiv deres udfçrelsestider.

Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives. Type Expr = Sumèplus, minus, times, div: Args, const: Int, name: Textè

Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives. Type Expr = Sumèplus, minus, times, div: Args, const: Int, name: Textè Opgave 1 è20èè Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives af fçlgende rekursive Trine-type: Type Expr = Sumèplus, minus, times, div: rgs, const: Int, name: Textè Type

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter side 1 af 9 sider Skriftlig eksamen i Datalogi Modul 1 Vinter 1999/2000 Opgavesættet består af 6 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 5% Opgave 2

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så Introduktion 1) Hvad er Taleteori? Læren om de hele tal Primtal 2) Formalistisk struktur Definition Lemma Divisorer Definition (Divisor) Lad d og n være hele tal Hvis der findes et helt tal q så d q =

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n Eksamen. kvarter 00 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) Ja Nej n er O(n )? n er O(n )? n er O(n + 0 n)? n + n er O(n )? n log n er Ω(n )? Opgave (%) Opskriv følgende funktioner

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

1:8. Metropolen. Fantasifulde ord om Ørestad Nord

1:8. Metropolen. Fantasifulde ord om Ørestad Nord F Ø N M 1:8 Sc L N J H C'? Cc H? B C H H H c H H c H H c H H x c H H cc- c H H H O C c C c C c C c C c c F C c C C cc c - F Ø N KU 2:8 Sc L T T H F L K B B E H c H E E H M é O G M L H U K S E E V B G B!

Læs mere

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36 Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er

Læs mere

19 Hashtabeller. Noter. PS1 -- Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse.

19 Hashtabeller. Noter. PS1 -- Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse. 19 Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse. Sammenligning af hashtabeller og søgetræer. 281 Hashing-problemet (1). Vi ønsker at afbilde n objekter på en tabel

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign 28 Algoritmedesign. Algoritmeskabelon for Del og Hersk. Eksempler på Del og Hersk algoritmer. Binær søgning i et ordnet array. Sortering ved fletning og Quicksort. Maksimal delsums problem. Tætteste par

Læs mere

Differentialligninger

Differentialligninger Differentialligninger for A-niveau i st, udgave SkÄrmbillede fra TI-Nspire 015 Karsten Juul Differentialligninger for A-niveau i st, udgave 1 Hvad er en differentialligning? 1a OplÄg til differentialligninger1

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

18 Multivejstræer og B-træer.

18 Multivejstræer og B-træer. 18 Multivejstræer og B-træer. Multivejs søgetræer. Søgning i multivejssøgetræer. Pragmatisk lagring af data i multivejstræer. B-træer. Indsættelse i B-træer. Eksempel på indsættelse i B-træ. Facts om B-træer.

Læs mere

Grafer og grafalgoritmer

Grafer og grafalgoritmer Algoritmer og Datastrukturer/Datalogi C Forelæsning 15/10-2002 Henning Christiansen Grafer og grafalgoritmer Hvad mener vi med en graf? NEJ! Graf: En matematisk abstraktion over ting som er logisk forbundet

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Kort om. Andengradspolynomier. 2011 (2012) Karsten Juul

Kort om. Andengradspolynomier. 2011 (2012) Karsten Juul Kort om Anengraspolynomier 11 (1) Karsten Juul Dette häfte ineholer pensum i anengraspolynomier for gymnasiet og hf Inhol 1. Definition Anengraspolynomium... 1. Eksempel Hvilke tal er a, b og c lig?...

Læs mere

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er en unik simpel vej mellem ethvert par af punkter i

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

" " " " " " " " " Januar 2007

         Januar 2007 #$%&#''#()#*+*#,-(.,/*0(+&0+#-#.120.3425 #$%&'$()('()&*+%&',)('()&-$./012+/,1/'3*43'$+*+%'0'%(/0'3 1/%1-/,,/*&/0+0/5 Januar 2007 (432'67.)3$'30+%4#06#*7 89:;3.#0%4#06#*

Læs mere

6 7 A A B B C D D C A B A 7 5 B C D C 1 2 D 6

6 7 A A B B C D D C A B A 7 5 B C D C 1 2 D 6 Flyt kasserne - sum 0 Navn: Klasse: Flyt rundt på kasserne, så alle par af tilstødende tal giver summen 0. A B A B C D C D A B A B C D C D Materiale ID: BOX... Flyt kasserne - sum 0 Lærer: Dato: Klasse:

Læs mere

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen torsdag den 3. juni 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen lukket kreds af kanter

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træ

Læs mere

Bevisteknikker (relevant både ved design og verifikation)

Bevisteknikker (relevant både ved design og verifikation) Bevisteknikker 1 Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Spil Master Mind. Indledning.

Spil Master Mind. Indledning. side 1 af 16 Indledning. Spillet som denne rapport beskriver, indgår i et større program, der er lavet som projekt i valgfaget programmering C på HTX i perioden 9/11-98 til 12/1-99. Spillet skal give de

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, F side af sider anmarks Tekniske Universitet Skriftlig prøve, den 9. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

DesignMat Kvadratiske matricer, invers matrix, determinant

DesignMat Kvadratiske matricer, invers matrix, determinant DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix

Læs mere

DMG Bachelor Maj/Juni 2002

DMG Bachelor Maj/Juni 2002 Indholdsfortegnelse 1 INDLEDNING... 2 1.1 PROBLEMFORMULERING... 2 1.2 FORMÅL... 2 1.3 MÅL... 2 2 PROBLEMANALYSE... 3 2.1 INDLEDNING... 3 2.2 TRANSPARENTE BROER I COMPUTERNETVÆRK... 3 2.3 ROUTERE I COMPUTERNETVÆRK...

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer

Læs mere

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal Philip Bille Algoritmer og datastrukturer Algoritmisk problem. Præcist defineret relation mellem input og output. Algoritme. Metode til at løse et algoritmisk problem. Beskrevet i diskrete og entydige

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM58) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 7 Januar 010, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger,

Læs mere

Førsteårsprojekt F2008. Nogle algoritmer på grafer

Førsteårsprojekt F2008. Nogle algoritmer på grafer Førsteårsprojekt F2008 Nogle algoritmer på grafer Peter Sestoft 2008-02-19 Oversigt for i dag Definition: graf og orienteret graf Repræsentation ved kantlister Bredde-først gennemløb Dybde-først gennemløb

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 12 (tolv) Eksamensdag: Fredag den 1. april 200, kl..00-11.00

Læs mere

Deskriptiv statistik. for C-niveau i hf. 2015 Karsten Juul

Deskriptiv statistik. for C-niveau i hf. 2015 Karsten Juul Deskriptiv statistik for C-niveau i hf 75 50 25 2015 Karsten Juul DESKRIPTIV STATISTIK 1.1 Hvad er deskriptiv statistik?...1 1.2 Hvad er grupperede og ugrupperede data?...1 1.21 Eksempel pä ugrupperede

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4 Eksamen. kvarter 00 Side 1 af sider Opgave 1 ( %) Ja Nej n log n er O(n / )? n 1/ er O(log n)? n + n er O(n )? n( n + log n) er O(n / )? n er Ω(n )? Opgave ( %) Opskriv følgende funktioner efter stigende

Læs mere

Eksamensopgaver datalogi, dlc 2011 side 1/5. 1. Lodtrækningssystem

Eksamensopgaver datalogi, dlc 2011 side 1/5. 1. Lodtrækningssystem Eksamensopgaver datalogi, dlc 2011 side 1/5 1. Lodtrækningssystem Der skal fremstilles et program, som kan foretage en lodtrækning. Programmet skal kunne udtrække en eller flere personer (eller andet)

Læs mere

DM02 opgaver ugeseddel 2

DM02 opgaver ugeseddel 2 DM0 opgaver ugeseddel af Fiona Nielsen 16. september 003 Øvelsesopgaver 9/9, 10/9 og 11/9 1. Vis, at 1 3 + 3 3 + 5 3 +... + (n 1) 3 = n 4 n. Omskriver til summationsformel: (i 1) 3 = n 4 n Bevis ved induktion

Læs mere

Hashing og hashtabeller

Hashing og hashtabeller Datastrukturer & Algoritmer, Datalogi C Forelæsning 16/11-2004 Hashing og hashtabeller Teknik til at repræsentere mængder Konstant tid for finde og indsætte men ingen sortering af elementerne Specielt

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille er. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key og satellitdata x.data. operationer. PREDECESSOR(k): returner element x med største nøgle k. SUCCESSOR(k):

Læs mere

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X). Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR ATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Algoritmer og atastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. august 0,

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

DATALOGI MASKINARKITEKTUR Blok 2 samt Reeksamination i DATALOGI MASKINARKITEKTUR Blok 1 og arkitekturdelen af DATALOGI 1E

DATALOGI MASKINARKITEKTUR Blok 2 samt Reeksamination i DATALOGI MASKINARKITEKTUR Blok 1 og arkitekturdelen af DATALOGI 1E Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI MASKINARKITEKTUR Blok 2 samt Reeksamination i DATALOGI MASKINARKITEKTUR Blok 1 og arkitekturdelen af DATALOGI 1E Vejledende løsninger til

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Figur: Terminologi: n = V, m = E (eller V og E (mis)bruges som V og E ).

Læs mere

MM4. Algoritmiske grundprincipper. Lister, stakke og køer. Hash-tabeller og Træer. Sortering. Søgning.

MM4. Algoritmiske grundprincipper. Lister, stakke og køer. Hash-tabeller og Træer. Sortering. Søgning. MM Algoritmiske grundprincipper. Lister, stakke og køer. Hash-tabeller og Træer. Sortering. Søgning. MM MM MM MM MM Sortering Sorteringsalgoritmer : Virkemåde og anvendelser Kompleksitet Algoritmen Sorteringsalgoritmer

Læs mere

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel:

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen skridt for skridt ved hele tiden af vælge lige

Læs mere

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0. Konkrete funktioner Potenser Som udgangspunkt er brugen af potenser blot en forkortelse for at gange et tal med sig selv et antal gange. Hvis a Rskriver vi a 2 for a a a 3 for a a a a 4 for a a a a (1).

Læs mere

Grafer / Otto Knudsen 20-11-06

Grafer / Otto Knudsen 20-11-06 Grafer / Otto Knudsen -- Grafer Definition En graf er pr. definition et par G = (V, E). Grafen består af en mængde knuder V (eng: vertices) og en mængde kanter E (eng: edges), som forbinder knuderne. A

Læs mere

Åben uddannelse, Efterår 1996, Oversættere og køretidsomgivelser

Åben uddannelse, Efterår 1996, Oversættere og køretidsomgivelser 3/10/96 Seminaret den 26/10 vil omhandle den sidste fase af analysen og de første skridt i kodegenereringen. Det drejer sig om at finde betydningen af programmet, nu hvor leksikalsk og syntaktisk analyse

Læs mere

Videregående Algoritmik. Version med vejledende løsninger indsat!

Videregående Algoritmik. Version med vejledende løsninger indsat! Videregående Algoritmik DIKU, timers skriftlig eksamen, 1. april 009 Nils Andersen og Pawel Winter Alle hjælpemidler må benyttes, dog ikke lommeregner, computer eller mobiltelefon. Opgavesættet består

Læs mere

Approximations-algoritmer. Løsningsmetoder for NP -hårde opt.problemer

Approximations-algoritmer. Løsningsmetoder for NP -hårde opt.problemer Motivation Definitioner Approximations-algoritme for nudeoverdæning Approximations-algoritme for TSP med treantsulighed Negativt resultat om generel TSP Approximations-algoritme for SET-OVERING Fuldt polynomiel-tids

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Synkronisering af datastrukturer i et opgavestyrings system

Synkronisering af datastrukturer i et opgavestyrings system Synkronisering af datastrukturer i et opgavestyrings system I samarbejde med Terma A/S af Kasper Friis Kjærhus, s971400 Danmarks Tekniske Universitet Institut for Informatik og Matematisk Modelering Eksamensprojekt

Læs mere

Lineære ligningssystemer

Lineære ligningssystemer enote 2 1 enote 2 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.

Læs mere

Databasesystemer. IT Universitetet i København 7. juni 2005

Databasesystemer. IT Universitetet i København 7. juni 2005 Databasesystemer IT Universitetet i København 7. juni 2005 Eksamenssættet består af 5 opgaver med 13 spørgsmål, fordelt på 6 sider (inklusiv denne side). Vægten af hver opgave er angivet. Du har 4 timer

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Kursusbeskrivelsen Kursusbeskrivelsen: Algoritmer og datastrukturer 1 Formål Deltagerne vil efter kurset have indsigt i algoritmer som model for sekventielle

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

DATALOGI 0GB. Skriftlig eksamen tirsdag den 6. januar 2004

DATALOGI 0GB. Skriftlig eksamen tirsdag den 6. januar 2004 Københavns Universitet bacheloruddannelsen i datalogi side 1 af 6 DATALOGI 0GB Skriftlig eksamen tirsdag den 6. januar 2004 Dette opgavesæt består af 6 nummererede sider. Eksamensdeltagerne bør straks

Læs mere

Om at udregne enkeltstående hexadecimaler i tallet pi

Om at udregne enkeltstående hexadecimaler i tallet pi Om at udregne enkeltstående hexadecimaler i tallet pi I 996 var det en sensation, da det kom frem, at det var lykkedes D. Bailey, P. Borwein og S. Plouffe at finde en formel for tallet π, med hvilken man

Læs mere

Skriftlig Eksamen Algoritmer og sandsynlighed (DM538)

Skriftlig Eksamen Algoritmer og sandsynlighed (DM538) Skriftlig Eksamen Algoritmer og sandsynlighed (DM538) Institut for Matematik & Datalogi Syddansk Universitet Fredag den 9 Januar 2015, kl. 10 14 Alle sædvanlige hjælpemidler(lærebøger, notater etc.) samt

Læs mere

Kvadratiske matricer. enote Kvadratiske matricer

Kvadratiske matricer. enote Kvadratiske matricer enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,

Læs mere

T o m m e l i s e. D. 17. juni 2008. Skur 12 m². Ret til mindre ændringer i projekteringsfasen forbeholdes. Garderobe. Værelse. Garage.

T o m m e l i s e. D. 17. juni 2008. Skur 12 m². Ret til mindre ændringer i projekteringsfasen forbeholdes. Garderobe. Værelse. Garage. Skur gårdhavehus Type A Bruttoareal incl. skur og garage 153 m² Skur 12 m² 18 m² Spiseplads Skur Walk-in gårdhavehus Type b Bruttoareal incl. skur og garage 157 m² Skur 12 m² 20 m² Walk-in Opbevaring gårdhavehus

Læs mere

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur 6. december Talteoretiske algoritmer, RSA kryptosystemet, Primtalstest Motivation Definitioner Euclids algoritme Udvidet Euclid RSA kryptosystemet Randominserede algoritmer Rabin-Miller primtalstest Svært

Læs mere

Facade 4. 02 Soveværelse 02 Soveværelse. 4 Værelse 10 m². 04 Værelse 3397 3325. 16 Trapperum 19 m². 14 Bad. 1700 11 Entré. 11 Entré 6 m². Stue.

Facade 4. 02 Soveværelse 02 Soveværelse. 4 Værelse 10 m². 04 Værelse 3397 3325. 16 Trapperum 19 m². 14 Bad. 1700 11 Entré. 11 Entré 6 m². Stue. A(A)-1- Type 3-3,2 m² Type 4-98,2 m² Type 1-76, Type 6-3, A1 A2 A3 A4 A5 A6 A7 A8 12588 7452 9768 8280 3050 4 4 3397 3325 3050 4520 4 44 4259 m² AA AB Facade 3 Forsyningsskabe Gang 3682 8152 21 m² 2080

Læs mere

Søgning og Sortering. Philip Bille

Søgning og Sortering. Philip Bille Søgning og Sortering Philip Bille Plan Søgning Linæer søgning Binær søgning Sortering Indsættelsesortering Flettesortering Søgning Søgning 1 4 7 12 16 18 25 28 31 33 36 42 45 47 50 1 2 3 4 5 6 7 8 9 10

Læs mere

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er Ugens emner FA minimering [.-.] MyHill-Nerode-sætningen en algoritme til minimering af FA er En karakteristik af de regulære sprog Et sprog L er regulært hvis og kun hvis L beskrives af et regulært udtryk

Læs mere

Hashing og hashtabeller

Hashing og hashtabeller Datastrukturer & Algoritmer, Datalogi C Forelæsning 12/11-2002 Hashing og hashtabeller Teknik til at repræsentere mængder Konstant tid for finde og indsætte men ingen sortering af elementerne Specielt

Læs mere

BRP 6.9.2006 Kursusintroduktion og Java-oversigt

BRP 6.9.2006 Kursusintroduktion og Java-oversigt BRP 6.9.2006 Kursusintroduktion og Java-oversigt 1. Kursusintroduktion 2. Java-oversigt (A): Opgave P4.4 3. Java-oversigt (B): Ny omvendings -opgave 4. Introduktion til næste kursusgang Kursusintroduktion:

Læs mere

Ugeseddel 12(10.12 14.12)

Ugeseddel 12(10.12 14.12) Ugeseddel (..) Matematisk Programmering Niels Lauritzen..7 FORELÆSNINGER I ugen. 7. gennemgik vi algoritmer til løsning af heltalsprogrammer ved hjælp af simplex algoritmen. Dette er heltalsprogrammeringsugesedlen

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet 11.2.2013 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem

Læs mere

Eksamensopgaver datalogi, dl/vf 2010 side 1/5. 1. Lodtrækningssystem

Eksamensopgaver datalogi, dl/vf 2010 side 1/5. 1. Lodtrækningssystem Eksamensopgaver datalogi, dl/vf 2010 side 1/5 1. Lodtrækningssystem Der skal fremstilles et program, som kan foretage en lodtrækning. Programmet skal kunne udtrække en eller flere personer (eller andet)

Læs mere

Stx matematik B december 2007. Delprøven med hjælpemidler

Stx matematik B december 2007. Delprøven med hjælpemidler Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem

Læs mere

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard Mandags Chancen En optimal spilstrategi Erik Vestergaard Spilleregler denne note skal vi studere en optimal spilstrategi i det spil, som i fjernsynet går under navnet Mandags Chancen. Spillets regler er

Læs mere

Vejledende besvarelse

Vejledende besvarelse Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer

Læs mere

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 2

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 2 DM502 Forelæsning 2 Repetition Kompilere og køre Java program javac HelloWorld.java java HeloWorld.java Debugge Java program javac -g HelloWorld.java jswat Det basale Java program public class HelloWorld

Læs mere

sammenhänge 2008 Karsten Juul

sammenhänge 2008 Karsten Juul LineÄre sammenhänge y x 3 3 008 Karsten Juul Dette häfte er en fortsättelse af häftet "VariabelsammenhÄnge, 008". Indhold 8. Hvad er en lineär sammenhäng?... 3 9. Hvordan ser grafen ud for en lineär sammenhäng?...

Læs mere

Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version

Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version Note til Programmeringsteknologi Akademiuddannelsen i Informationsteknologi Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version Finn Nordbjerg 1/9 Indledning I det følgende introduceres et par abstrakte

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Sproget Rascal (v. 2)

Sproget Rascal (v. 2) Sproget Rascal (v. 2) Til brug i K1 på kurset Oversættere Opdateret 29/11 2004 Abstract Rascal er et simpelt Pascal-lignende imperativt sprog. Dette dokument beskriver uformelt Rascals syntaks og semantik

Læs mere

Algorithms & Architectures I 2. lektion

Algorithms & Architectures I 2. lektion Algorithms & Architectures I 2. lektion Design-teknikker: Divide-and-conquer Rekursive algoritmer (Recurrences) Dynamisk programmering Greedy algorithms Backtracking Dagens lektion Case eksempel: Triple

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 29. april, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

17 Søgning og Søgetræer.

17 Søgning og Søgetræer. 17 Søgning og Søgetræer. Lineær og inær søgning i lister. inære søgetræer. Søgning efter knude i træ. Indsættelse af knude i træ. Søgning i og sortering af inært søgetræ. Sletning af knude i inært søgetræ.

Læs mere

Robusthed i geometriske algoritmer

Robusthed i geometriske algoritmer 18. december 2008 Flydende tal Oversigt Teori: Reel RAM reelle tal og uendelig præcision. Data i generel position. O(1) tid pr. basal regneoperation. Praksis: Endelig præcision. Flydende tal afrundingsfejl.

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 15. juni, 2015. Kl. 9-13. Nærværende eksamenssæt består af 12 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere