DATV: Introduktion til optimering og operationsanalyse, Bin Packing Problemet

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet"

Transkript

1 DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse. Opgave stilles fredag 9. marts 2007 og skal afleveres seest tirsdag 20. marts 2007 kl i DIKU s studieadmiistratio. For at blive godkedt skal der være gjort et reelt forsøg på at løse samtlige spørgsmål. Besvarelse skal udarbejdes i grupper på to til tre deltagere. Grupper med é deltager kræver skriftlig accept fra istruktore midst e uge før opgave skal afleveres. Læs veligst hele opgaveformulerige igeem ide du går i gag. Hits til opgavere ka fås ved øvelsere, hvor der er afsat tid til at arbejde med projektopgave. Idledig Bi packig problemet er et vigtigt optimerigsproblem idefor produktiosplalægig, pakig m.m. Bi packig problemet er NP-hårdt at løse [1]. Formelt ka bi packig problemet defieres på følgede vis: Lad der være givet gestade som hver har e tilkyttet vægt w j. Lad der edvidere være givet et uedeligt atal beholdere (bis) der hver ka rumme vægte c (kapacitete). Opgave er u at fordele gestadee i beholdere, så ige beholderes kapacitet overskrides, og således at der beyttes færrest mulige beholdere. Hvis vi bruger biære variable x i j til at agive om e gestad j abriges i beholder i, og v i til at agive om beholder i beyttes, får vi følgede matematiske formulerig af problemet: miimize subject to i=1 v i (1) w j x i j cv i, i = 1,..., (2) x i j 1, j = 1,..., (3) i=1 x i j {0,1}, i, j = 1,..., (4) v i {0,1}, i = 1,..., (5) Vi vil betege formulerige (1) (5) for e simple formulerig. Objektfuktioe (1) agiver at vi skal bruge færrest mulige beholdere, mes begræsig (2) agiver at hvis v i = 0 så ka der ikke pakkes oget i beholdere og hvis v i = 1 så ka der pakkes kapacitete c. Begræsig (3) sikrer at hver gestad j bliver pakket, og begræsigere (4) og (5) sikrer at alle beslutigsvariable er boolske. Det atages ormalt at alle koefficieter w j og c er positive heltal. Det atages edvidere at w j c for alle j da ma ellers ikke ka fide e lovlig løsig. 1

2 Eksempel 1 I det følgede eksempel er c = 9 og der er givet = 7 gestade med følgede vægte: j w j Opgave 1 Løs istase fra eksempel 1 til optimalitet ved brug af CPLEX. Rapporter de fude løsig samt atal brach-ad-boud kuder som CPLEX brugte (agiv Nodes og Iteratios). E god heuristik til at løse bi packig problemet er first fit decreasig. Her sorters gestadee efter aftagede vægt, og alle beholdere er til at begyde med tomme. Nu betragtes gestadee i de sorterede rækkefølge. Hver gestad j abriges i de første beholder (dvs. de beholder med lavest ummer) hvor der er plads. Opgave 2 Aved first fit decreasig heuristikke på eksempel 1 og vis at ma herved fider følgede løsig bi gestade vægt , , Giv tilstrækkeligt med detaljer til at ma ka følge algoritme. Hvis ma keder e øvre græse m for atal beholdere, der skal beyttes i e optimal løsig, ka dette udyttes til at begræse atal beslutigsvariable v j således at ma ku har disse variable for j = 1,..., m. Dette ka reducere størrelse af modelle (1) (5) betragteligt. Græseværdier Hvis vi LP-relaxerer bi packig problemet (1) (5) får vi følgede problem miimize subject to i=1 v i (6) w j x i j cv i, i = 1,..., (7) x i j 1, j = 1,..., (8) i=1 0 x i j 1, i, j = 1,..., (9) 0 v i 1, i = 1,..., (10) Løsigsværdie til LP-relaxerige beteges z LP. Opgave 3 Fid z LP for istase fra eksempel 1. 2

3 Det er oplagt at z LP giver e edre græseværdi for bi packig problemet. Me desværre er kvalitete af dee relativt dårlig. Ma ka opå e strammere græseværdi ved at omskrive problemet som følger: Opgave 4 Opskriv for istase i eksempel 1 samtlige måder e beholder ka pakkes på. (Dvs. agiv i tabel-form de valgte gestade, og deres vægt-sum). Atag at der fides to lovlige pakiger P 1 og P 2 hvor samtlige gestade i pakig P 1 også idgår i pakig P 2, me pakig P 2 yderligere ideholder e eller flere gestade. Så ka vi slette pakig P 1 idet vi ikke er dårligere stillet ved at avede pakig P 2 i stedet. (Vi ka altid smide ekstra gestade væk i e løsig). Opgave 5 Brug dee observatio til at fjere ogle pakiger fra forrige opgave og opskriv de tilbageværede pakiger. Lad R betege mægde af pakiger af e ekelt beholder. Lad edvidere a i j agive om gestad j idgår i pakig i. Vi ka beytte dette til at opskrive e alterativ formulerig af bi packig problemet, som vi beteger koloe formulerige. Lad x i agive om pakig i R beyttes. Dermed bliver modelle: mi s.t x i (11) i R a i j x i 1 j = 1,..., (12) i R x i {0,1} i R (13) Her sikrer (12) at hver gestad j bliver pakket, mes (13) sikrer at hver pakig bliver brugt ul eller e gag. Opgave 6 Opskriv koloe formulerige af eksempel 1 (gere reduceret i hehold til opgave 5) Opgave 7 Løs koloe formulerige af eksempel 1 til LP-optimalitet med CPLEX. Opgave 8 Løs koloe formulerige af eksempel 1 til IP-optimalitet med CPLEX. Rapporter atal brach-ad-boud kuder som CPLEX brugte (agiv Nodes og Iteratios). Opgave 9 Bevis at ma får strammere græseværdier ved at løse LP-relaxerige af koloe formulerige ed ved at løse LP-relaxerige af de simple formulerig. (Hit: Idet de to formuleriger har samme objektfuktio skal ma blot vise at løsigsrummet for det ee problem er skarpt ideholdt i det adet problem. Ma skal m.a.o. vise at ehver løsig til koloe formulerige også er e løsig til de simple formulerig. Edvidere skal ma vise at der fides midst e istas hvor koloe formulerige giver e strammere græseværdi ed de simple formulerig). Desværre ka der være ekspoetielt mage måder hvorpå e ekelt beholder ka pakkes, og dermed bliver koloe formulerige i praksis uløselig grudet det store atal beslutigsvariable. Hvis ma ku er iteresseret i at løse LP-relaxerige af koloe formulerige (11) (13), ka problemet løses ved at geerere koloere efterhåde som der bliver brug for dem. Ma ka da håbe på at problemet ka løses til LP-optimalitet ude at geerere mere ed e lille brøkdel af koloere. 3

4 For at illustrere pricippet, betragt ige de LP-relaxerede koloe formulerig af eksempel 1, hvor vi ku betragter pakigere fra first fit decreasig heuristikke. Dette fører til følgede LPmodel mi x 1 + x 2 + x 3 + x 4 + x 5 s.t. x 2 1 x 4 1 x 2 1 x (14) 4 1 x 1 1 x 5 1 x 3 1 Lad y j betege de duale variabel svarede til begræsig (12) for gestad j. De duale variable for oveståede eksempel er y 1 = y 2 = y 5 = y 6 = y 7 = 1 mes y 3 = y 4 = 0. Opgave 10 Giv e ituitiv fortolkig af de duale variable y j. Opgave 11 Idet de ituitive fortolkig af de duale variable udyttes, fid ved ispektio de mest lovede pakig i R, fra opgave 5 som skal tilføjes modelle. Ma behøver ikke at kede mægde R for at løse problemet fra opgave 11. Opgave 12 Vis at problemet med at fide de mest lovede pakig i R som skal tilføjes til modelle ka formuleres som et kapsack problem. Dette problem kaldes pricig problemet. Opgave 13 Agiv et kriterie for hvorår det ikke ka betale sig at medtage e y pakig af e beholder (Hit: betragt de reducerede omkostig af e pakig). Opgave 14 Udvid oveståede koloe formulerig (14) med de ye pakig som blev fudet i opgave 11. Løs det udvidede problem (14) med CPLEX og bestem de ye duale variable y 1,...,y 7. Opgave 15 Getag processe med at fide de mest lovede pakig ved brug af metode fra opgave 12, tilføj de til modelle (14) og bestem de ye duale variable. Stads processe år stop-kriteriet fra opgave 13 ås. Giv tilstrækkeligt med detaljer i hvert skridt. Opgave 16 Sammelig de to løsiger fra opgave 7 og 15 med hesy til LP-løsigsværdi og størrelse af de edelige model. Noter Til opgave beyttes CPLEX. Da der ku er ogle få CPLEX-liceser til rådighed på DIKU bedes ma logge ud fra CPLEX relativt hurtigt efter at have kørt si istas. CPLEX liceser er tilgægelige på og maskiere. CPLEX ka drille år ma vil fide de duale variable: Hvis ma bruger formulerige vil CPLEX have e usylig dual variabel kyttet til begræsige. Dette ka medføre at de reducerede omkostiger udreges forkert. Det emmeste er helt at udelade græser på variablee. Det er ikke ødvedigt at sikre x i 1 (da vi miimerer), og x i 0 er uderforstået for LP-problemer. 4

5 Litteratur [1] [2] L. A. Wolsey, Iteger Programmig, Wiley, Chichester, UK,

6 Skematisk løsig Svar 1 Problemet løses med CPLEX!" $!$$% $$ &'!$ %$$%!()*$+,$- $$$%$$ &'$%$$%()*&+,$- $$$%$$ &'$%$$%()*&+,$- $$$%$$&'$%$$%()*+,$- $$$%$$ &'$%$$%()*&+,$- $.,&!&.,&!&.,& & $ &&.,&!&.,&!%%%%%&.,&!(((((&.,&!'''''&.,& +,& $+,& $+,& +,& $+,& $+,&!&+,&!&+,& +,&!&+,&!%&+,&!(&+,& $+,& &+,& &+,& +,& &+,& %&+,& (&+,& $+,& &+,& &+,& +,& &+,& %&+,& (&+,& $+,& &+,& &+,& +,& &+,& %&+,& (&+,& $+,& &+,& &+,& +,& &+,& %&+,& (&+,& / 01 2$!$!!%$!( $ %$( $ %$( $%$( $ %$(! 3 Output: " 7 /8!"8 "! :9<;!! -- A "8! "! =, -?> --!?> 4 0/ "! &,&!*CB"3 $,$- D EFGH.3!"8/ 06) I / 0 /!8 B/ A "8! "! I /8 6

7 !!% (!' 88$" 0&/ 0 /!8 & & 0/! 5 6) / 0 0"?> Atal brach-ad-boud kuder (odes) er 0, mes atal iteratioer (iteratios) er 19. Svar 2 First fit decreasig. Sorterer gestade 8, 6, 6, 5, 4, 4, 2. bi gestade vægt , , Bemærk at vi bruger 5 beholdere, så vi har e øvre græse på løsigsværdie som er m = 5. Svar 3 LP-solutio /8 78 );!7 /8 9 ;! 6,?> '''''''''* -- A "8! "! =, -?> --!?> 4 0/ "! &,&!( D EFGH.3!"8/ 06) I / 0 /!8 B/ A "8! "! I /8 -?> -?> %%%%%(! -?> %%%%%(!( -?> ' -?> -?> % ( -?>!%%%%( -?> -----!' 88$" 0&/ 0 /!8 & & 0/! 5 6) / 0 0"?> Svar 4 samtlige pakiger er: pakig gestade vægte vægt sum , , , , , , , ,

8 Svar 5 Af disse er de udomierede: pakig gestade vægte vægt sum 1 1, , , , , , , , Svar 6 Idet vi begræser os til de udomierede pakiger får vi formulerige: $$&$%('$*!" $$&.,& %(.,&.,& % '.,& *.,& ($'.,&.,&! 3 Bemærk at begræsiger x j 1 ikke er ødvedige Svar 7 Hvis vi løser koloe problemet til LP-optimalitet får vi: D EFGH."!7! 53 > E 0 /8 78 ); 7 /8 9 ;!! =, -- A "8! "! =, -?> --!?> 4 0/ "! D EFGH.3!"8/ 06) I / 0 /!8 B/ A "8! "! I /8 % -?> ( -?> ' -?> * 88$" 0&/ 0 /!8 & & 0/! 5 6)!*/ 0 0"?> Svar 8 Løses problemet til IP-optimalitet får vi: D EFGH.$0 /3! 7 7 E 0" /3 > /3 &, - > --! > D EFGH."!7 0 3&/ 550 5/ "0?> 4 EE 0!"8! 8 J / 3$0" /! 3 "8 J> E /0" % "8! 2/! 3$* "! 0" > E 0!"8!, -?> --!?> 4 E 7 / J9 /8/! " 7 /8!1 /! 3 / 8 1 "" $0 8 / / "!!"8 "! 6 &, > B"3 D B"3 F ;! B"3 4 D /!7 - - > ?> ---- > ---!- > " 7 /8!"8 "! :9<;!! -- A "8! "! =, -?> --!?> 4 0/ "! &,CB"3 $,$- D EFGH.3!"8/ 06) 8

9 I / 0 /!8 B/ A "8! "! I /8 ( ' * 88$" 0&/ 0 /!8 & & 0/! 5 6)!*/ 0 0"?> Atal brach-ad-boud kuder (Nodes) er 0, mes atal iteratioer (iteratios) er 4. Så problemet er blevet emmere at løse. Svar 9 Vi skal vise at ehver løsig til koloe-problemet også er e løsig til de simple formulerig. Atag at vi har LP-løsige x 1,...,x R til koloeproblemet (11) (13). Da problemet ikke ædrer sig ved at vi bytter rudt på koloere, ka vi atage at de første k koloer har løsigsværdi x i > 0. Vi sætter u v i = x i for i = 1,...,k og x i j := a i j x i for i = 1,...,k, j = 1,..., Alle adre variable sættes til ul. Dee løsig er også lovlig for de simple formulerig (1) (5). Der gælder emlig for ehver koloe i koloe problemet og dermed så vi har for de simple formulerig. Edvidere gælder der at x i 1 og a i j 1 så også og w j a i j c w j a i j x i cx i w j x i j cv i x i j = a i j x i 1 v i = x i 1 Da løsige til koloe-problemet er e lovlig løsig til de simple formulerig, vil løsigsværdie for de simple formulerig ikke være midre ed de tilsvarede for koloeproblemet. Istase fra eksempel 1 viser at der fides e istas hvor koloe-problemet har e skarpt større løsigsværdi ed de simple formulerig. Svar 10 hvis vi sætter p j = y j er de reducerede omkostig af e pakig givet ved 1 p j x j, hvor variable x j = 1 hvis elemet j idgår i pakige. Da pakige skal være lovlig er vi iteresseret i at miimere følgede optimerigs problem: miimize subject to 1 p j x j (15) w j x j c, (16) x j {0,1}, j = 1,...,. (17) 9

10 der ka briges på maksimerigsform maximize subject to hvilket gekedes som et kapack problem. p j x j (18) w j x j c, (19) x j {0,1}, j = 1,...,. (20) Svar 11 Koloegeererig iteratio 0! " $ % &" &' &, &- &. &/ 0 1 2" 3 54 &"!3 2"6 7"' 6/ "38 "9( Tilføjer pakig 1:! " $ % &" &: &; &- &. &/ 0 1 2" 3 54 &"!3 2"6 7"' 6/ "38 "9( Tilføjer pakig 8:! " $ % &" &, &: &- &. &/ 0 1 2" 3 54 &"!3 2"6 7"' 6/ "38 "9( Tilføjer pakig 7:! " $ % &" &, *9(+- * * * * * &: &; *9(+- * * * * * &- &. *9(+- * * * * * &/ 0 1 2" 3 54 &"!3 2"6 7"' 6/ "38 "9( Ikke flere pakiger med egativ reduceret omkostig 10

11 Koloegeererig ude det store skrivearbejde For små-problemer ka ma med fordel opskrive alle koloer (som illustreret i edeståede fil). For de koloer som p.t. ikke skal medtages i modelle, sættes de tilhørede x-variabel til 0. Dette sparer ikke alee e del skrivearbejde, me de duale variabel svarede til begræsige x = 0 vil etop agive de reducerede omkostig for de ye pakig. I edeståede formulerig er alle pakiger 1-9 medtaget, samt de to pakiger 10,11 (som er domierede me alligevel idgår i løsige fra first-fit-decreasig). Start formulerige fra (14) svarer da til koloere 2, 6, 9, 10, 11, mes beslutigsvariable for alle adre koloer sættes til ul. $$&$%('$*$!-!" $$&., %(.,., % '., *., ($'!-.,.,,- $ ' $,- $ *,- $!- $,- $ ($,- $! '$,- $!! 3 D EFGH."!7 0 3&/ 550 5/ "0?> FE$E 0 "8! 8 / 3!0" /! 3 "8!! J> 880" /! 3& "8 8 / 3?> E 0!"8!, -?> --!?> /8 78 );!7 /8 9 ;! 6,?> A "8! "! =, -?> --!?> 4 0/ "! D EFGH.3!"83 /) D "! 0/! 6B/ /8 E 0 % (! ) 88$" 03!/870! $ 0/! 5 6)!/ 0 0" > Det ses at costrait c12 (begræsige v7 = 0) har reduceret omkostig -1, så pakig 7 er de æste koloe der skal medtages. Bemærk at der er mage ækvivalete LP-løsiger, og derfor kue CPLEX også have valgt e ade koloe. 11

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem

Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem Itroduktio til optimerig og operatiosaalyse Asymmetric Travelig Salesma Problem David Pisiger, Efterår 2003 Dette er de ade obligatoriske projektopgave på kurset Itroduktio til optimerig og operatiosaalyse.

Læs mere

DATV: Introduktion til optimering og operationsanalyse, Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

DATV: Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem

DATV: Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem DATV: Itroduktio til optimerig og operatiosaalyse Asymmetric Travelig Salesma Problem David Pisiger, Efterår 2004 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Talfølger og -rækker

Talfølger og -rækker Da Beltoft og Klaus Thomse Aarhus Uiversitet 2009 Talfølger og -rækker Itroduktio til Matematisk Aalyse Zeos paradoks om Achilleus og skildpadde Achilleus løber om kap med e skildpadde. Achilleus løber

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til

Læs mere

Projekt 2.3 Det gyldne snit og Fibonaccitallene

Projekt 2.3 Det gyldne snit og Fibonaccitallene Projekter: Kapitel Projekt.3 Det glde sit og Fiboaccitallee Forslag til hvorda klasses arbejde med projektet ka tilrettelægges: Forløbet:. Præsetatio af emet med vægt på det glde sit.. Grppere arbejder

Læs mere

Analyse 1, Prøve maj 2009

Analyse 1, Prøve maj 2009 Aalyse, Prøve 5. maj 009 Alle hevisiger til TL er hevisiger til Kalkulus (006, Tom Lidstrøm). Direkte opgavehevisiger til Kalkulus er agivet med TLO, ellers er alle hevisiger til steder i de overordede

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

ESBILAC. - modermælkserstatning til hvalpe VEJLEDNING. www.kruuse.com

ESBILAC. - modermælkserstatning til hvalpe VEJLEDNING. www.kruuse.com ESBILAC - modermælkserstatig til hvalpe VEJLEDNING De bedste start på livet, e yfødt hvalp ka få, er aturligvis at stille si sult med si mors mælk. Modermælk ideholder alt, hvad de små har brug for af

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

Begreber og definitioner

Begreber og definitioner Begreber og defiitioer Daske husstades forbrug på de medierelaterede udgiftsposter stiger og udgør i 2012*) 11,3 % af husstadees samlede forbrug mod 5,5 % i 1994. For husstade med de laveste idkomster

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Information til dig, der er elev som tekstil- og beklædningsassistent. og/eller beklædningshåndværker. Hej elev!

Information til dig, der er elev som tekstil- og beklædningsassistent. og/eller beklædningshåndværker. Hej elev! Iformatio til dig, der er elev som tekstil- og beklædigsassistet og/eller beklædigshådværker Hej elev! Til dig som er elev som tekstil- og beklædigsassistet og/eller beklædigshådværker Idustri Hej elev!

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation.

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation. De reelle tal Morte Grud Rasmusse 5. ovember 2015 Ordede mægder Defiitio 3.1 (Ordet mægde). pm, ăq kaldes e ordet mægde såfremt: For alle x, y P M gælder etop ét af følgede: x ă y, x y, y ă x @x, y, z

Læs mere

TIMEGLASSETS FASER: Introen er et foto og nogle spørgsmål til hele kapitlet. Meningen med introen er, at du og

TIMEGLASSETS FASER: Introen er et foto og nogle spørgsmål til hele kapitlet. Meningen med introen er, at du og TIMEGLASSETS FASER: INTRO Itroe er et foto og ogle spørgsmål til hele kapitlet. Meige med itroe er, at du og di klasse skal få e ide om, hvad kapitlet hadler om, og hvad I skal lære. Prøv at svare på spørgsmålee

Læs mere

Psyken på overarbejde hva ka du gøre?

Psyken på overarbejde hva ka du gøre? Psyke på overarbejde hva ka du gøre? Idhold Hvorår kommer ma uder psykisk pres? 3 Hvad ka øge det psykiske pres på dit arbejde? 4 Typiske reaktioer 6 Hvorda forløber e krise? 7 Hvad ka du selv gøre? 9

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Hvordan hjælper trøster vi hinanden, når livet er svært?

Hvordan hjælper trøster vi hinanden, når livet er svært? Hvorda hjælper trøster vi hiade, år livet er svært? - at være magtesløs med de magtesløse Dask Myelomatoseforeig Temadag, Hotel Scadic, Aalborg Lørdag de 2. april 2016 kl. 14.00-15.30 Ole Raakjær, præst

Læs mere

Cykelfysik. Om udveksling og kraftoverførsel

Cykelfysik. Om udveksling og kraftoverførsel Cykelfysik 1/7 Cykelfysik Om udvekslig og kaftoveføsel Idhold 2. Kaftoveføsel og abejde...2 3. Abejde ved cykelkøsel...4 4. Regeeksemple fo e acecykel...5 5. Det e hådt at køe op ad bakke...6 6. Simple

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet)

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet) Oversigt (idholdsfortegelse) Bilag 1 Bilag 2 Bilag 3 De fulde tekst Bekedtgørelse om takstædriger i offetlig servicetrafik i trafikselskaber og hos jerbaevirksomheder m.v. (takststigigsloftet) I medfør

Læs mere

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968)

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968) Algoritmedesig med iteretavedelser ved Keld Helsgau Aalyse af algoritmer Iput Algoritme Output E algoritme er e trivis metode til løsig af et problem i edelig tid 1 2 Algoritmebegrebet D. E. Kuth (1968)

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

Branch-and-bound. Indhold. David Pisinger. Videregående algoritmik, DIKU ( )

Branch-and-bound. Indhold. David Pisinger. Videregående algoritmik, DIKU ( ) Brach-ad-boud David Pisiger Videregåede algoritmik, DIK (005-06) 6 Kvalitet af græseværdifuktioe 3 6. Eksempler på domias....................... 3 7 Kritiske og Semikritiske delproblemer 34 8 Kuste at

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Scorer FCK "for mange" mål i det sidste kvarter?

Scorer FCK for mange mål i det sidste kvarter? Uge 7 I Teoretsk Statstk, 9. aprl 2004. Hvor er v? Hvor var v: opstllg af statstske modeller Hvor skal v he: tro om estmato og test 2. Eksempel: FCK Estmato (tutvt) Test Maksmum lkelhood estmato Scorer

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Dårligt arbejdsmiljø koster dyrt

Dårligt arbejdsmiljø koster dyrt Dårligt arbejdsmiljø F O A f a g o g a r b e j d e koster dyrt Hvad koster et dårligt arbejdsmiljø, og hvad ka vi gøre for at bedre forholdee for de asatte idefor Kost- og Servicesektore? Læs her om de

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

ORDEN OG UDVALG: KUNSTEN AT TÆLLE KOMBINATORIK N H

ORDEN OG UDVALG: KUNSTEN AT TÆLLE KOMBINATORIK N H ORDEN OG UDVALG: UNSTEN AT TÆLLE OMBINATORI Edeligt symmetrisk sadsylighedsfelt I et edeligt symmetrisk sadsylighedsfelt ( P ) U, ka sadsylighede for e give hædelse H, hvor altså H U, som bekedt bereges

Læs mere

Facilitering ITU 15. maj 2012

Facilitering ITU 15. maj 2012 Faciliterig ITU 15. maj 2012 Facilitatio is like movig with the elemets ad sailig the sea Vejvisere Velkomst de gode idflyvig Hvad er faciliterig? Kedeteg ved rolle som facilitator Facilitatores drejebog

Læs mere

Prisfastsættelse af digitale goder - Microsoft

Prisfastsættelse af digitale goder - Microsoft Iteretøkoomi: risfastsættelse af digitale goder Afleveret d. 9 maj 003 Af Julie ech og Malee Aja org risfastsættelse af digitale goder - Microsoft Af Julie ech og Malee Aja org.0.0 DIGITALE GODER....0.0

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

A14 4 Optiske egenskaber

A14 4 Optiske egenskaber A4 4 Optiske egeskaber Brydigsideks Når lys træffer e græseflade mellem to materialer, kastes oget af lyset tilbage (refleksio), mes oget går igeem græseflade med foradret retig (brydig eller refraktio).

Læs mere

Konfidens intervaller

Konfidens intervaller Kofides itervaller Kofides itervaller for: Kofides iterval for middelværdi, varias kedt Kofides iterval for middelværdi, varias ukedt Kofides iterval for adel Kofides iterval for varias Bestemmelse af

Læs mere

Blisterpakninger i det daglige arbejde

Blisterpakninger i det daglige arbejde Bettia Carlse Marts 2013 Blisterpakiger i det daglige arbejde I paeludersøgelse 35 1 har 1.708 beskæftigede sygeplejersker besvaret e række spørgsmål om (hådterige af) blisterpakiger i det daglige arbejde.

Læs mere

Nanomaterialer Anvendelser og arbejdsmiljøforhold

Nanomaterialer Anvendelser og arbejdsmiljøforhold F O A F A G O G A R B E J D E Naomaterialer Avedelser og arbejdsmiljøforhold Dee Kort & Godt pjece heveder sig til dig, som er medlem af FOA. Pjece giver iformatio om: Hvad er et aomateriale? Eksempler

Læs mere

n n ' 8 DK. 2012 Ansøgning om byggetilladelse/ Anmeldelse af byggearbejde D D D D 3 3 3 3 3 3 E 3

n n ' 8 DK. 2012 Ansøgning om byggetilladelse/ Anmeldelse af byggearbejde D D D D 3 3 3 3 3 3 E 3 WS101651W omska 18 12 2012 10 17 SEPBARCOE 0U121 Syddjurs Kommue Hovedgade 77 8410 Røde Telefo 87 5 50 00 Kommues av og adresse Syddjurs Kommue Borgerservice Hovedgade 77 8410 Røde ' 8 K. 2012 Udfyldes

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

Estimation og test i normalfordelingen

Estimation og test i normalfordelingen af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:

Læs mere

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable Idholdsfortegelse Geerelt:...3 Stokastisk variabel:...3 Tæthedsfuktio/sadsylighedsfuktio for stokastisk variabel:...3 Fordeligsfuktio/sumfuktio for stokastisk variabel:...3 Middelværdi:...4 Geemsit:...4

Læs mere

Estimation ved momentmetoden. Estimation af middelværdiparameter

Estimation ved momentmetoden. Estimation af middelværdiparameter Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: susae@math.ku.dk http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller

Læs mere

DK / -- MAG SYSTEM. Gulvrengøring

DK / -- MAG SYSTEM. Gulvrengøring DK / -- MAG SYSTEM Gulvregørig Mag System Kocept 2 www.vermop.com Di fordel Mag System Iovativt og ekeltståede Mag System fra VERMOP står for e helt y måde at fiskere vaskbetræk på fremførere (eller skaftet)

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18 ermodyamik. Første og ade hovedsætig /8 ermodyamik Idhold. Isoterme og adiabatiske tilstadsædriger for gasser...3 3. ermodyamikkes. hovedsætig....5 4. Reversibilitet...6 5. Reversibel maskie og maksimalt

Læs mere

Viden Om Vind oftere, stop i tide

Viden Om Vind oftere, stop i tide Vide Om Vid oftere, stop i tide Spørgsmål og svar Idhold Risici og relevas 2 Steffe Aderse Sadsyligheder 5 Per Hedegård Spørgsmål til eksperte 7 Thomas Aderse Til 8 Rasmus Østergaard Pederse E sikker strategi

Læs mere

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

info FRA SÆBY ANTENNEFORENING Lynhurtigt bredbånd til lavpris på vej til hele Sæby! Priser kan ses på bagsiden.

info FRA SÆBY ANTENNEFORENING Lynhurtigt bredbånd til lavpris på vej til hele Sæby! Priser kan ses på bagsiden. ifo FRA SÆBY ANTENNEFORENING Lyhurtigt bredbåd til lavpris på vej til hele Sæby! Priser ka ses på bagside. Velkomme til SAFet - avet på vores eget lokale Bredbåd! Sæby Ateeforeig har med virkig fra 15.

Læs mere

Sandsynlighedsteori 1.2 og 2 Uge 5.

Sandsynlighedsteori 1.2 og 2 Uge 5. Istitut for Matematiske Fag Aarhus Uiversitet De 27. jauar 25. Sadsylighedsteori.2 og 2 Uge 5. Forelæsiger: Geemgage af emere karakteristiske fuktioer og Mometproblemet afsluttes, og vi starter på afsittet

Læs mere

cos(t), v(t) = , w(t) = e t, z(t) = e t.

cos(t), v(t) = , w(t) = e t, z(t) = e t. Aalyse Øvelser Rasmus Sylvester Bryder. og. oktober 3 Bevis for Cotiuity lemma Theorem. Geemgås af Michael Staal-Olse. Bevis for Lemma.8 Dee har vi faktisk allerede vist; se Opgave 9.5 fra Uge. Det er

Læs mere

Den grådige metode 2

Den grådige metode 2 Algoritmedesig 1 De grådige metode De grådige metode Et problem løses ved at foretage e række beslutiger Beslutigere træffes e ad gage i e eller ade rækkefølge Hver beslutig er baseret på et grådighedskriterium

Læs mere

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasium Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 SANDSYNLIGHEDSFELT... 3 DE STORE TALS LOV... 4 Sadsyligheder og frekveser:... 4 STOKASTISK

Læs mere

Undersøgelse af numeriske modeller

Undersøgelse af numeriske modeller Udersøgelse af umeriske modeller Formål E del af målsætige med dette delprojekt er at give kedskab til de begræsiger, fejl og usikkerheder, som optræder ved modellerig. I de forbidelse er følgede udersøgelse

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Modul 14: Goodness-of-fit test og krydstabelanalyse

Modul 14: Goodness-of-fit test og krydstabelanalyse Forskigsehede for Statistik ST01: Elemetær Statistik Bet Jørgese Modul 14: Goodess-of-fit test og krydstabelaalyse 14.1 Idledig....................................... 1 14.2 χ 2 -test i e r c krydstabel.............................

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Nanomaterialer i virkeligheden F O A F A G O G A R B E J D E

Nanomaterialer i virkeligheden F O A F A G O G A R B E J D E F O A F A G O G A R B E J D E Naomaterialer i virkelighede Arbejdsmiljøkoferece i Kost- og Servicesektore 9. september 2013 Naomaterialer i virkelighede Idhold Gå ikke i paik eller baglås. I ka sagtes

Læs mere

Kompendie Komplekse tal

Kompendie Komplekse tal Kompedie Komplekse tal Prebe Holm 08-06-003 "!#!%$'&($)+*-,. cos(s + t) )0/ si(s + t) Trigoometri er måske ikke så relevat, år ma såda umiddelbart sakker om komplekse tal. Me faktisk avedes de trigoometriske

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grøld Mtemtisk formelsmlig til C-iveu, GUX Grøld Deprtemetet for uddelse 05 Redktio: Rsmus Aderse, Jes Thostrup MtemtiskformelsmligtilC-iveu GUX Grøld FORORD Dee formelsmlig

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

Længde [cm] Der er frit vandspejle i sandkassen. Herudover er sandkassen åben i højden cm i venstresiden og 0-20 cm i højresiden.

Længde [cm] Der er frit vandspejle i sandkassen. Herudover er sandkassen åben i højden cm i venstresiden og 0-20 cm i højresiden. Vadtrasportmodel Formål For beregig af vadtrasporte i sadkasse er der lavet e boksmodel. Formålet med boksmodelle er at beskrive vadtrasporte i sadkasse. Herover er formålet at bestemme de hydrauliske

Læs mere

NOTAT Det daglige arbejde med blisterpakninger

NOTAT Det daglige arbejde med blisterpakninger Sige Friis Christiase 7. maj 2015 NOTAT Det daglige arbejde med blisterpakiger I paeludersøgelse 55 i DSRs medlemspael blev deltagere stillet e række spørgsmål om deres arbejde med blisterpakiger. Afrapporterige

Læs mere

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste

Læs mere

STATISTIKNOTER Simple normalfordelingsmodeller

STATISTIKNOTER Simple normalfordelingsmodeller STATISTIKNOTER Simple ormalfordeligsmodeller Jørge Larse IMFUFA Roskilde Uiversitetsceter Februar 1999 IMFUFA, Roskilde Uiversitetsceter, Postboks 260, DK-4000 Roskilde. Jørge Larse: STATISTIKNOTER: Simple

Læs mere

Trygve Haave1mo. (Fore1æs ninger ved Aarhus Universitet, Efteraarssem.1938) Aarhus 1939. T E O R I INDLEDNING TIL STATISTIK.KENS

Trygve Haave1mo. (Fore1æs ninger ved Aarhus Universitet, Efteraarssem.1938) Aarhus 1939. T E O R I INDLEDNING TIL STATISTIK.KENS Trygve Haave1mo. INDLEDNING TIL STATISTIK.KENS T E O R I (Fore1æs iger ved Aarhus Uiversitet, Efteraarssem.1938) Aarhus 1939. le INDHOLD..._..._... Grudlaget for de teoretiske Statistik. Kollektiv og ~a:dsylighed.

Læs mere

HALLO no en hjemme? Tema. + s. 28 Forstå dit barns hjerne

HALLO no en hjemme? Tema. + s. 28 Forstå dit barns hjerne HALLO o e hjemme? Eksperte forklarer, hvorfor det er så svært for små ører at høre efter. Se, hvorda det går, år Elie Holm tester de gode råd på si datter Liva, og få idblik i, hvad der sker i de lille

Læs mere

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside :

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside : Statistiske test Efteråret 00 Jes Friis, AAU Hjemmeside : http://akaaudk/jfj Kotiuerte fordeliger Defiitio: Tæthedsfuktio E sadsylighedstæthedsfuktio på R er e itegrabel fuktio f : R [0; [ hvor f d = Defiitio:

Læs mere

TEKST NR 435 2004. TEKSTER fra IMFUFA

TEKST NR 435 2004. TEKSTER fra IMFUFA TEKST NR 435 2004 Basisstatisti 2. udgave Jørge Larse August 2006 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING

Læs mere

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - rw@math.aau.dk Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi

Læs mere

Baggrundsnote til sandsynlighedsregning

Baggrundsnote til sandsynlighedsregning Baggrudsote til sadsylighedsregig Kombiatorik. Multiplikatiospricippet E mægde beståede af forskellige elemeter kaldes her e -mægde. Elemetere i e m-mægde og elemetere i e -mægde ka parres på i alt m forskellige

Læs mere

Diskrete og kontinuerte stokastiske variable

Diskrete og kontinuerte stokastiske variable Diskrete og kotiuerte stokastiske variable Beroulli Biomial fordelig Negativ biomial fordelig Hypergeometrisk fordelig Poisso fordelig Kotiuerte stokastiske variable Uiform fordelig Ekspoetial fordelig

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne.

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne. 3y MA, Stee Toft Jørgese side /5 Helsigør Gymasium Vektorregig i 3D Formålet er at skabe overblik over emet. Boge Mat3A af Jes Carstese, kapitel 3 og 4, side 83-5. Defiitioer, formler, sætiger og idee

Læs mere