Teknologi Projekt. Trafik - Optimal Vej

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Teknologi Projekt. Trafik - Optimal Vej"

Transkript

1 Roskilde Tekniske Gymnasium Teknologi Projekt Trafik - Optimal Vej Af Nikolaj Seistrup, Henrik Breddam, Rasmus Vad og Dennis Glindhart Roskilde Tekniske Gynasium Klasse december 2006

2 Indhold 1 Forord 2 2 Abstract 3 3 Indledning Problemformulering Problemer vi er stødt på Teori Livredderens hurtigste vej Lysets brydningsindeks Praktisk Ultralyds-sensoren Prologger Gnuplot Planchen Konklusion 12 1

3 Kapitel 1 Forord Gruppe 4 som under hovedemnet: Trafik, har fået dig tildelt underemnet den optimale vej. Vi har diskuteret meget om hvilken form for optimal vej der er den mest gennensnitlige at bruge for at få et resultat som flest mennesker ville kunne bruge i deres dagligdag. Når vi siger at der findes forskellige måder at finde frem til den optimale vej mener vi med det, at det ikke altid er den korteste vej, det kan også være den hurtigste eller den mest energisparene vej, den mindst trafikerede vej eller den hyggeligste vej, den romantiske vej gennem skoven kan være en fordel at køre hvis man er ude i sin nye bil og er ved at få imponeret en pige hvis man nu er af hankøn, i stedet for turen forbi rensningsanlægget, men disse ting har vi nu ikke lagt så megen vægt på igen. 2

4 Kapitel 2 Abstract Vi har arbejdet med lysets brydning med vand. Denne opgave er blevet givet til på første år af HTX. Vi har før vi fandt på denne opgave, været meget rundt i opgaven, optimal vej, desværre havde vi ikke mulighed for at visualisere hvad vi kom frem til pga. et fysisk produkt. Under lyses brydning, kommer der brydningsindeks. Denne kan afgøre hvilken masse og materiale som lyset bliver sendt igennem. På den måde kan man bruge lyset til at bestemme en mænge af noget, sukkerindholdet i vand og besvarer spørgsmålet om hvorfor himlen er blå. Resultatet bliver så, at lys bryder anderledes afhængig af hvad der er i vandet, hvis det er vand vi tager prøverne ud fra. 3

5 Kapitel 3 Indledning 3.1 Problemformulering Når man skal fra punkt A til punkt B så hurtigt som muligt, kan man vælge mellem den korteste vej og den hurtigste vej. Den korteste vil som udgangspunkt altid være fugleflugtslinjen mens den hurtigste vej ofte afviger en del fra fugleflugtslinjen på grund af hastighedsforskelle. Vi vil prøve at finde en måde hvordan man kan regne ud hvilken vej der var den hurtigste, altså den mest optimale, og finde en måde at illustrere dette på. Desuden vil vi prøve at finde ud af om der er andre ting i vores hverdag, f.eks naturen, der benytter den mest optimale vej istedet for den korteste. 3.2 Problemer vi er stødt på Vi har i gruppen haft mange problemer. De fleste dog problemrelateret. Vi startede med at have det perfekte projekt, men på grund af reglen med at et fysisk produkt skal være noget du kan stå med i hånden, kunne vi ikke lave det program vi gerne ville. Derefter var vi meget i tvivl omkring hvilket projekt vi kunne producere. Vi kom med en masse idéer, men de blev alle skudt i sænk af det fysiske produkt. Til sidst kom vi på at lave en betalingsvej, hvor det fysiske produkt så ville være en betalingsbås. Men det ville være for svært at lave og vi var lidt under tidspres. Så vi kom på at lave en trafikhastighedsmåler. Altså en opstilling og et program der vil være i stand til at måle hastigheder. Her fik vi så udleveret en CBR (Ultralyds sensor) som kan måle afstande ved hjælp af ultralyd. Men vi kom så på en masse meget avanceret programmering, men heldigvis har vi Dennis der selv programmere derhjemme. Han var i stand at programmere de programmer som vi skulle bruge, og videre udvikle dem som vi havde. Derudover er der en masse komplicerede ligninger og grafer vi skulle regne ud. 4

6 Kapitel 4 Teori 4.1 Livredderens hurtigste vej Vi har opstillet et eksempel der kan illustrere dette. Herunder ses livredderen på stranden og personen der skal reddes ude i vandet, i et koordinat-system. I dette tilfælde er den korteste vej ikke den hurtigste. Dette skyldes at livredderen kan løbe hurtigere på land, end han kan svømme i vandet. Derfor kan det være hurtigere at løbe en længere strækning på stranden og få minimeret strækningen man skal svømme, selvom man i det hele bevæger længere. For at finde tiden det tager for livredderen at nå ud til personen i vandet, skal vi først finde distancen. Ved hjælp af koordinatsystemet vi har indsat illustrationen i, kan vi via koordinaterne udregne distancen. Lad os 5

7 gå ud fra at livredderens placering kan angives med koordinatet (0, Ay) Koordinaterne på personen i vandet angiver vi med (Bx, By) Da positionen på x-aksen (vandkanten) er variabel, ændrer ruten retning, så vi deler distancen over i 2: (0, Ay) > (x, 0) og (x, 0) > (Bx, By) For at finde hver af afstandene kan vi bruge Pythagoras formel a 2 + b 2 med vores koordinatsæt. Ay 2 + x 2 og (Bx x) 2 + By 2 For at finde tiden det tager for livredderen at nå personen i vandet, dividerer vi distancen med hastigheden, som er 2 konstanter, hhv. V1 som beskriver hastigheden på land og V2 som beskriver hastigheden i vandet. Derefter kan vi så lægge tiderne sammen og få det totale tidsforbrug. x 2 +Ay 2 (Bx x) V By 2 S V 2 Så har vi så en funktion som udregner tidsforbruget udfra det variable x. Her er så opstillet et eksempel på en graf der benytter overstående konstanter med vores funktion, hvorpå man kan aflæse hvor tidsforbruget er mindst. Ay = 10, Bx = 20, By = 30, V1 = 25, V2 = 7 6

8 4.2 Lysets brydningsindeks Her er opstillet et forsøg til at vise hvordan lyset benytter den mest optimale vej til at nå frem til dets destination. Vi har opstillet et akvarium fyldt med vand og sat en laser-pointer til at lyse ned i vandet med en vinkel. Ved at tilføre lidt mælk til vandet optræder laser-strålet mere tydeligt. Terioen i dette forsøg er at vandet vil bøje lysstrålen p.g.a. at vand har en anden densitet end luften omkring os. Det er derfor at hvis vi tager en pind og stikker den i vand vil den se bøjet ud nede under vandet. Det er på grund af den måde hvorved lyset bevæger sig at pinden ser ud som om den bøjer. Her ses vores forsøg opstillet med laseren pegende ned mod vandet. 7

9 Vi kan illustrere dette med et eksempel. Når man prøver at stange fisk med en spids pind, ændrer vandet retningen på lyset, og fisken ser derfor ud til at være et andet sted end den egentlig er når man ser den ned gennem vandet. Herunder er en graf, visende den korteste vej for lyset. Y aksen er hvor lang tid lyset er om at komme gennem vandet. X aksen viser det punkt hvor lyset bryder med vandet i meter.der hvor grafen er mindst er der hvor lyset bevæger sig hurtigst og derved der hvor han bør prøve at se fisken. Lyset vil altid bevæge sig den optimale vej, men det nødvendigvis ikke den korteste. 8

10 9

11 Kapitel 5 Praktisk 5.1 Ultralyds-sensoren Ultralydssensoren (CBR eller Calculator Based Ranger) bygger på at enheden udsender nogle meget, kortbølgede lyde som så vil blive returneret af objekter der er i vejen. Disse lyde der bliver lavet CBR, bliver så optaget igen i CBR enheden og afhængig af afstanden sendt tilbage i forskellige frekvenser og tider. På denne måde er det så muligt for enheden at bestemme en ca. afstand til objektet. Disse målinger som den udregner, bliver så sendt videre til en kontrolenhed som er i stand til at sende målingerne videre til forskellige andre enheder, bl.a. vores computere. Dette betyder at vi har nærmest ubegrænset adgang til muligheder for videre beregninger af tal vi for ud af det. Men altså ud fra disse målinger er det så muligt at beregne hastigheden som et objekt bevæger sig med i meter i sekundet. Det kan vi så via et program (som vi selv har lavet) omregne til km/t og så få programmet til at markerer den højeste og laveste hastighed... Hvis vi nu antager at der er kø på en motorvej hvis alle bilerne i en bestemt zone kører 50 km/t, vil vores apparat være i stand til at registrere det, og senere være i stand til at sende et signal, der vil tænde en lampe ved nedkørslerne til motorvejene. Dennis prøvede at få dataerne fra Ultralyds-censoren ind og behandle dem ved hjælp af noget programmering/scripting-sprog kaldet Python. Det lykkedes dog også at få det ind og klar til at behandle, og vi fik lavet nogle udregner på hastighed osv. Men der var vi ved at nå til et punkt hvor vi igen fandt ud af at dette ikke rigtig kunne lede til noget vi kunne bruge senere, da vi skulle lave et fysisk produkt. 5.2 Prologger 3 Prologger3 er et logger program. Betydende at den kan gemme og oversætte en masse data til forståelige tal og bogstaver i stedet for f.eks. binære koder. 10

12 Vi har brugt dette program til at logge biler og deres position, sammen med CBR enheden. Med andre ord hører CBR enheden og Prologger3 sammen. Prologger3 ligger de data den får fra CBR enheden ind i tilsvarende grafer. Disse grafer kan videre gemmes som en.gis fil som er et alternativ til den lidt rodede.txt fil. 5.3 Gnuplot Gnuplot er et grafprogram. Her i kan man indsætte formler og ligninger og dette vil resultere i at grafer vises på skærmen. Her fra kan vi aflæse de resultater på f.eks. den hurtigste eller korteste vej. Derved opnår vi vores mål: Den optimale vej. Dette program er et såkaldt plotnings program betydende at den ikke selv kan regne, men der er blevet lagt stor vægt på den visuelle side af programmet, og det går at når vi printer graferne ud er de virkelig flotte og overskuelige at se på. 5.4 Planchen Vi blev hurtigt enige om at ville lave en planche der forklarede lidt om teorien bag det vi havde arbejdet med i vores projekt. Det skulle være et supplement til at vi kunne stå og forklare, og samtidig henvise til illustrationer på planchen, samtidig med at det stadig skulle være muligt at forstå hvad det hele gik ud på ved kun at læse på planchen. Vi besluttede os for at prøve kræfter med LaTeX (Type setting), fordi vi havde fået en del positive anbefalinger af det. Vi havde lidt problemer med at få det hele til at fungere i starten, men efterhånden fik vi mere og mere styr på det og vi fik sneglet os igennem det tekniske, og synes vi har fået stort udbytte af LaTeX. Vi delte planchen op i 3 spalter. Den første lidt introduktion til hvad det hele handlede om og lidt af det grundlæggende matematik bag. Den anden spalte var lidt mere med grafer og lidt mere teknisk, og sidste spalte var om vores opsatte forsøg, der forklarede hvad det havde af relation til resten af det vi havde lavet. På den måde fik læseren først den nødvedige forståelse for hvad det hele handlede for at kunne forstå det matematiske i spalte 2, og til sidst forstå hvorfor opstillingen, forklaret i spalte 3, hang sammen med resten. Vi satte billeder og illustrationer godt fordelt rundt omkring, så det ikke var i en stor klump, for hele tiden at holde læseren beskæftiget, så det ikke blev ensformigt tekst hele vejen igennem. Men mest af alt forsøgte vi at holde et simpelt og professionelt layout. 11

13 Kapitel 6 Konklusion Vi har nu prøvet at arbejde med optimal fra flere forskellige perspektiver og har derved fået indsigt i hvordan optimal vej kan opfattes på flere måder. Vi fandt ud af at naturen i mange tilfælde benytter den optimale vej, fremfor den korteste vej. Vi fandt ud af at det er svært at lave et fysisk produkt til vores emne hvilket resulterede i at vi måtte ændre fremgangsmåde mange gange i løbet af forløbet. 12

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens.

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens. Rapport Bjælken Indledning Vi arbejdede med opgaverne i grupper. En gruppe lavede en tabel, som de undersøgte og fandt en regel. De andre grupper havde studeret tegninger af bjælker med forskellige længder,

Læs mere

Dokumentation af programmering i Python 2.75

Dokumentation af programmering i Python 2.75 Dokumentation af programmering i Python 2.75 Af: Alexander Bergendorff Jeg vil i dette dokument, dokumentere det arbejde jeg har lavet i løbet opstarts forløbet i Programmering C. Jeg vil forsøge, så vidt

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe131-mat/b-31052013 Fredag den 31. maj 2013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matlab script - placering af kran

Matlab script - placering af kran Matlab script - placering af kran 1 Til at beregne den ideelle placering af kranen hos MSK, er der gjort brug af et matlab script. Igennem dette kapitel vil opbygningen af dette script blive gennemgået.

Læs mere

Matematik B Klasse 1.4 Hjemmeopaver

Matematik B Klasse 1.4 Hjemmeopaver Matematik B Klasse 1.4 Hjemmeopaver 1) opgave 336, side 23 Opgaven går ud på at jeg skal finde ud af hvor gamle børnene højst kan være, når forældrene tilsammen er 65 år og de skal være 40 år ældre end

Læs mere

Computerspil som vindue til læring

Computerspil som vindue til læring Computerspil som vindue til læring Space Marines Stave Challenger Series Af Nikolaj Egholk Jakobsen og Suayb Köse Roskilde Tekniske Gymnasium Informationsteknologi B 9/1 2014 1 Indledning Analyse Danmark

Læs mere

Vejledende besvarelse

Vejledende besvarelse Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer

Læs mere

Brydningsindeks af vand

Brydningsindeks af vand Brydningsindeks af vand Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk 15. marts 2012 Indhold 1 Indledning 2 2 Formål

Læs mere

MATEMATIK A-NIVEAU. Terminsprøve 2010. Kl. 09.00 14.00. STX0310-MAA-net

MATEMATIK A-NIVEAU. Terminsprøve 2010. Kl. 09.00 14.00. STX0310-MAA-net NETADGANGSFORSØGET STUDENTEREKSAMEN I MATEMATIK TERMINSPRØVE MAJ 2007 2010 MATEMATIK A-NIVEAU Terminsprøve 2010 Kl. 09.00 14.00 STX0310-MAA-net Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Brydningsloven og bestemmelse af brydningsindeks Fysikrapport, 5/9-2008

Brydningsloven og bestemmelse af brydningsindeks Fysikrapport, 5/9-2008 ROSKILDE TEKNISKE GYMNASIUM Brydningsloven og bestemmelse af brydningsindeks Fysikrapport, 5/9-2008 Louise Regitze Skotte Andersen, Klasse 2.4 Lærer: Ashuak Jacob France 2 Indhold Indledning... 3 Materialeliste...

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx101-MAT/B-26052010 Onsdag den 26. maj 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2 GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

ysikrapport: Maila Walmod, 1.3 HTX, Rosklide I gruppe med Morten Hedetoft, Kasper Merrild og Theis Hansen Afleveringsdato: 28/2/08

ysikrapport: Maila Walmod, 1.3 HTX, Rosklide I gruppe med Morten Hedetoft, Kasper Merrild og Theis Hansen Afleveringsdato: 28/2/08 ysikrapport: Gay-Lussacs lov Maila Walmod, 1.3 HTX, Rosklide I gruppe med Morten Hedetoft, Kasper Merrild og Theis Hansen Afleveringsdato: 28/2/08 J eg har længe gået med den idé, at der godt kunne være

Læs mere

Matematikken bag Parallel- og centralprojektion

Matematikken bag Parallel- og centralprojektion Matematikken bag parallel- og centralojektion 1 Matematikken bag Parallel- og centralojektion Dette er et redigeret uddrag af lærebogen: Programmering med Delphi fra 2003 (570 sider). Delphi ophørte med

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx13-mat/b-1408013 Onsdag den 14. august 013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Relativitetsteori Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Koordinattransformation i den klassiske fysik Hvis en fodgænger, der står stille i et lyskryds,

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

P2-projektforslag Kombinatorik: grafteori og optimering.

P2-projektforslag Kombinatorik: grafteori og optimering. P2-projektforslag Kombinatorik: grafteori og optimering. Vejledere: Leif K. Jørgensen, Diego Ruano 1. februar 2013 1 Indledning Temaet for projekter på 2. semester af matematik-studiet og matematikøkonomi-studiet

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Vejledende årsplan for matematik 5.v 2009/10

Vejledende årsplan for matematik 5.v 2009/10 Vejledende årsplan for matematik 5.v 2009/10 Uge Emne Formål Opgaver samt arbejdsområder 33-36 Geometri 1 Indlæring af geometriske navne Figurer har bestemte egenskaber Lære at måle vinkler med vinkelmåler

Læs mere

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU Mandag den 11. maj 2009 Kl. 09.00 14.00 STX091-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx123-mat/a-07122012 Fredag den 7. december 2012 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

LINEÆR PROGRAMMERING I EXCEL

LINEÆR PROGRAMMERING I EXCEL LINEÆR PROGRAMMERING I EXCEL K A P P E N D I X I lærebogens kapitel 29 afsnit 3 er det med 2 eksempler blevet vist, hvordan kapacitetsstyringen kan optimeres, når der er 2 produktionsmuligheder og flere

Læs mere

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB GUX Matematik B-Niveau Fredag den 29. maj 2015 Kl. 9.00-13.00 Prøveform b GUX151 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Michael Jokil 11-05-2012

Michael Jokil 11-05-2012 HTX, RTG Det skrå kast Informationsteknologi B Michael Jokil 11-05-2012 Indholdsfortegnelse Indledning... 3 Teori... 3 Kravspecifikationer... 4 Design... 4 Funktionalitet... 4 Brugerflade... 4 Implementering...

Læs mere

Kasteparabler i din idræt øvelse 1

Kasteparabler i din idræt øvelse 1 Kasteparabler i din idræt øvelse 1 Vi vil i denne første øvelse arbejde med skrå kast i din idræt. Du skal lave en optagelse af et hop, kast, spark eller slag af en person eller genstand. Herefter skal

Læs mere

Matematik C. Højere forberedelseseksamen

Matematik C. Højere forberedelseseksamen Matematik C Højere forberedelseseksamen 2hf111-MAT/C-26052011 Torsdag den 26. maj 2011 kl. 9.00-12.00 Opgavesættet består af 7 opgaver med i alt 15 spørgsmål. De 15 spørgsmål indgår med lige vægt ved bedømmelsen.

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Nasser 9. april 20 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Lærervejledning Modellering (3): Funktioner (1):

Lærervejledning Modellering (3): Funktioner (1): Lærervejledning Formål Gennem undersøgelsesbaseret undervisning anvendes lineære sammenhænge, som middel til at eleverne arbejder med repræsentationsskift og aktiverer algebraiske teknikker. Hvilke overgangsproblemer

Læs mere

Informations Teknologi Indholdsfortegnelse

Informations Teknologi Indholdsfortegnelse Informations Teknologi Indholdsfortegnelse Arbejdsmetode:... 2 System udviklingen:... 2 Forløbs beskrivelse:... 2 Test:... 3 Arbejdsmetode: Vi startede med at finde ud af, hvad vi ville lave. Vi besluttede

Læs mere

6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning

6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning 49 6 Plasmadiagnostik Plasmadiagnostik er en fællesbetegnelse for de forskellige typer måleudstyr, der benyttes til måling af plasmaers parametre og egenskaber. I fusionseksperimenter er der behov for

Læs mere

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse. Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau B. Delprøven uden hjælpemidler

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau B. Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 008 HHX08-MAB Matematik Niveau B Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

Matematik C. Højere forberedelseseksamen

Matematik C. Højere forberedelseseksamen Matematik C Højere forberedelseseksamen 2hf102-MAT/C-31082010 Tirsdag den 31. august 2010 kl. 9.00-12.00 Opgavesættet består af 9 opgaver med i alt 15 spørgsmål. De 15 spørgsmål indgår med lige vægt ved

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Kort om Eksponentielle Sammenhænge

Kort om Eksponentielle Sammenhænge Øvelser til hæftet Kort om Eksponentielle Sammenhænge 2011 Karsten Juul Dette hæfte indeholder bl.a. mange småspørgsmål der gør det nemmere for elever at arbejde effektivt på at få kendskab til emnet.

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14:

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Udgangspunktet bliver en blød screening, der skal synliggøre summen af elevernes standpunkt. Det betyder i realiteten, at der uddeles 4 klasses

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen st10-mat/b-108010 Torsdag den 1. august 010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Jørgen Erichsen På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Hvad er en fraktal? Noget forenklet kan man sige, at en fraktal er en geometrisk figur, der udmærker sig ved

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

Matematik A. Studentereksamen. Torsdag den 22. maj 2014 kl. 09.00-14.00. Digital eksamensopgave med adgang til internettet. 1stx141-MATn/A-22052014

Matematik A. Studentereksamen. Torsdag den 22. maj 2014 kl. 09.00-14.00. Digital eksamensopgave med adgang til internettet. 1stx141-MATn/A-22052014 Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx141-MATn/A-22052014 Torsdag den 22. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

Mitch Studerer programmering og elsker at lave fede programmer. Han holder også meget af film og kunst. Mitch er i det hele taget en fin fyr.

Mitch Studerer programmering og elsker at lave fede programmer. Han holder også meget af film og kunst. Mitch er i det hele taget en fin fyr. Mitch Studerer programmering og elsker at lave fede programmer. Han holder også meget af film og kunst. Mitch er i det hele taget en fin fyr. De Kosmiske Vogtere: Gobo, Fabu og Pele De Kosmiske Vogtere

Læs mere

MATEMATIK A-NIVEAU-Net

MATEMATIK A-NIVEAU-Net STUDENTEREKSAMEN STUDENTEREKSAMEN PRØVESÆT MAJ 22007 2010/2011 MATEMATIK A-NIVEAU-Net Prøvesæt 2 2010/2011 Kl. 09.00 14.00 Prøvesæt 2 2010/2011 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret

Læs mere

STUDENTEREKSAMEN MAJ 2009 MATEMATIK B-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 13.00 STX091-MAB. Undervisningsministeriet

STUDENTEREKSAMEN MAJ 2009 MATEMATIK B-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 13.00 STX091-MAB. Undervisningsministeriet STUDENTEREKSAMEN MAJ 2009 MATEMATIK B-NIVEAU Mandag den 11. maj 2009 Kl. 09.00 13.00 STX091-MAB Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx121-MATn/A-25052012 Fredag den 25. maj 2012 kl. 09.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve

Læs mere

1 - Problemformulering

1 - Problemformulering 1 - Problemformulering I skal undersøge, hvordan fart påvirker risikoen for at blive involveret i en trafikulykke. I skal arbejde med hvilke veje, der opstår flest ulykker på, og hvor de mest alvorlige

Læs mere

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag.

VEKTOR I RUMMET PROJEKT 1. Jacob Weng & Jeppe Boese. Matematik A & Programmering C. Avedøre-værket. Roskilde Tekniske Gymnasium 3.4. Fag. VEKTOR I RUMMET PROJEKT 1 Fag Matematik A & Programmering C Tema Avedøre-værket Jacob Weng & Jeppe Boese Roskilde Tekniske Gymnasium 3.4 07-10-2010 1 Vektor i rummet INDLEDNING Projektet omhandler et af

Læs mere

Matematik projekt 4. Eksponentiel udvikling. Casper Wandrup Andresen 2.F 16-01-2009. Underskrift:

Matematik projekt 4. Eksponentiel udvikling. Casper Wandrup Andresen 2.F 16-01-2009. Underskrift: Matematik projekt 4 Eksponentiel udvikling Casper Wandrup Andresen 2.F 16-01-2009 Underskrift: Teorien bag eksponentiel udvikling er som sådan meget enkel. Den har forskriften: B er vores begndelsesværdi

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Dokumentation af Python

Dokumentation af Python Dokumentation af Python Lavet af Ali Murtada, klasse 2.3 IT - Dokumentation af Python - SNOWMAN Resume: Vi har fået til opgave, at programmere en robot/snowman i visual python. Robotten består af 13 dele,

Læs mere

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold.

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Formål Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Teori Et batteri opfører sig som en model bestående af en ideel spændingskilde og en indre

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?:

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: Angiv de variable: Check din forventning ved at hælde lige store mængder vand i to glas med henholdsvis store og små kugler. Hvor

Læs mere

sammenhänge for C-niveau i stx 2013 Karsten Juul

sammenhänge for C-niveau i stx 2013 Karsten Juul LineÄre sammenhänge for C-niveau i stx y 0,5x 2,5 203 Karsten Juul : OplÄg om lineäre sammenhänge 2 Ligning for lineär sammenhäng 2 3 Graf for lineär sammenhäng 2 4 Bestem y når vi kender x 3 5 Bestem

Læs mere

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA STUDENTEREKSAMEN GUX MAJ 007 014 MATEMATIK A-NIVEAU Prøveform b 014 Kl. 9.00 14.00 GUX-MAA Matematik A Prøvens varighed er 5 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

UNDERVISNING I PROBLEMLØSNING

UNDERVISNING I PROBLEMLØSNING UNDERVISNING I PROBLEMLØSNING Fra Pernille Pinds hjemmeside: www.pindogbjerre.dk Kapitel 1 af min bog "Gode grublere og sikre strategier" Bogen kan købes i min online-butik, i boghandlere og kan lånes

Læs mere

Rygtespredning: Et logistisk eksperiment

Rygtespredning: Et logistisk eksperiment Rygtespredning: Et logistisk eksperiment For at det nu ikke skal ende i en omgang teoretisk tørsvømning er det vist på tide vi kigger på et konkret logistisk eksperiment. Der er selvfølgelig flere muligheder,

Læs mere

Kom/IT rapport Grafisk design Anders H og Mikael

Kom/IT rapport Grafisk design Anders H og Mikael Kom/IT rapport Grafisk design Anders H og Mikael Denne rapport i grafisk design, vil tage udgangspunkt i den PowerPoint præsentation vi lavede i forbindelse med en opgave i samfundsfag. Rapporten er inddelt

Læs mere

Variabelsammenhænge og grafer

Variabelsammenhænge og grafer Variabelsammenhænge og grafer Indhold Variable... 1 Funktion... 1 Grafen for en funktion... 2 Proportionalitet... 4 Ligefrem proportional eller blot proportional... 4 Omvendt proportionalitet... 4 Intervaller...

Læs mere

Brugervejledning til videokamera uden sensor

Brugervejledning til videokamera uden sensor Brugervejledning til videokamera uden sensor Tilslutning af videokamera Videokameraet er et IP-videokamera. Det tilsluttes som udgangspunkt trådløst til routeren, men kan også tilsluttes med et netværkskabel.

Læs mere

Fysisk aktivitet i den boglige undervisning

Fysisk aktivitet i den boglige undervisning Fysisk aktivitet i den boglige undervisning 1 Battle Øve begreber, teorier og beregninger i de naturvidenskabelige fag Besvare redegørende eller analyserende spørgsmål af tekster i fx historie, samfundsfag

Læs mere

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Kristian Jerslev 22. marts 2009 Geotermisk anlæg Det geotermiske anlæg Nesjavellir leverer varme til forbrugerne med effekten 300MW og elektrisk energi

Læs mere

Substitutions- og indkomsteffekt ved prisændringer

Substitutions- og indkomsteffekt ved prisændringer Substitutions- og indkomsteffekt ved prisændringer Erik Bennike 14. november 2009 Denne note giver en beskrivelse af de relevante begreber omkring substitutions- og indkomsteffekter i mikroøkonomi. 1 Introduktion

Læs mere

Matematik B-niveau STX 7. december 2012 Delprøve 1

Matematik B-niveau STX 7. december 2012 Delprøve 1 Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme

Læs mere

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Projektopgave Matematik A Tema: Eksponentielle modeller Vejleder: Jørn Bendtsen Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Dato: 01-01-2008 Indholdsfortegnelse Indledning... 3 1.

Læs mere

Stephanie S. Gregersen Frederik M. Klausen Christoffer Paulsen. Ballonprojekt 2010. Matematik Fysik Kemi Teknologi. HTX Roskilde 1.

Stephanie S. Gregersen Frederik M. Klausen Christoffer Paulsen. Ballonprojekt 2010. Matematik Fysik Kemi Teknologi. HTX Roskilde 1. Ballonprojekt 2010 Matematik Fysik Kemi Teknologi 2 0 1 0 HTX Roskilde 1.5 1 Indholdsfortegnelse: Ballonprojekt 2010...1 Indholdsfortegnelse:...2 Ballonens historie...3 Indledning/formål...4 Brainstorm

Læs mere

Rumfang af væske i beholder

Rumfang af væske i beholder Matematikprojekt Rumfang af væske i beholder Maila Walmod, 1.3 HTX Roskilde Afleveringsdato: Fredag d. 7. december 2007 1 Fru Hansen skal have en væskebeholder, hvor rumfanget af væsken skal kunne aflæses

Læs mere

[interviewet begynder der, hvor tegningen i figur 1 dukker op på respondentens pc]

[interviewet begynder der, hvor tegningen i figur 1 dukker op på respondentens pc] Turbo-lampe Gruppen producerer en lampe ud fra forskellige genbrugs-dele, blandt andet er skærmen taget fra turboen i en bil, mens stangen er gamle kobberrør. Billedet nedenfor er tegnet i Sketch-up, som

Læs mere

Teorien. solkompasset

Teorien. solkompasset Teorien bag solkompasset Preben M. Henriksen 31. juli 2007 Indhold 1 Indledning 2 2 Koordinatsystemer 2 3 Solens deklination 4 4 Horisontalsystemet 5 5 Solkompasset 9 6 Appendiks 11 6.1 Diverse formler..............................

Læs mere

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted Mini SRP Afkøling Klasse 2.4 Navn: Jacob Pihlkjær Lærere: Jørn Christian Bendtsen og Karl G Bjarnason Roskilde Tekniske Gymnasium SO Matematik A og Informations teknologi B Dato 31/3/2014 Forord Under

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Mads Peter, Niels Erik, Kenni og Søren Bo 06-09-2013

Mads Peter, Niels Erik, Kenni og Søren Bo 06-09-2013 EUC SYD HTX 1.B Projekt kroppen Fysik Mads Peter, Niels Erik, Kenni og Søren Bo 06-09-2013 Indhold Indledning/formål... 2 Forventninger... 2 Forsøget... 2 Svedekassen... 2 Fremgangsforløb... 2 Materialer...

Læs mere

Afsluttende - Projekt

Afsluttende - Projekt 2014 Afsluttende - Projekt Rapporten er udarbejdet af Ali, Andreas og Daniel Vejleder Karl G Bjarnason Indholdsfortegnelse Indledning... 2 Case... 3 Design... 4 Python kalender:... 4 Poster:... 4 Planlægning...

Læs mere

Vejledende Matematik A

Vejledende Matematik A Vejledende Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og 10D skal kun én opgave afleveres til bedømmelse. Hvis flere end én opgave afleveres, bedømmes

Læs mere

Udarbejdelse af synopsis: 21. april 8. maj Mundtlig årsprøve: Maj/juni 2015

Udarbejdelse af synopsis: 21. april 8. maj Mundtlig årsprøve: Maj/juni 2015 Kære elev i 2g. AT7 er en forsmag på næste års AT-eksamen. Du skal derfor udarbejde en synopsis og til mundtlig årsprøve i AT. På de næste sider får du den nødvendige generelle information. Med venlig

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe103-mat/b-10122010 Fredag den 10. december 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Hvor meget el bruger din familie?

Hvor meget el bruger din familie? Opgave E.1 Hvor meget el bruger din familie? Ud fra resultatet i opgave H.1 skal eleverne regne deres forventede årsforbrug ud. Forbruget på forskellige dage kan svinge en del, så tallet giver kun en idé

Læs mere

Opgaver om koordinater

Opgaver om koordinater Opgaver om koordinater Formålet med disse opgaver er dels at træne noget matematik, dels at give oplysninger om og træning i brug af Mathcad: Matematik: Øge grundlæggende indsigt vedrørende koordinater

Læs mere

Automatisering Af Hverdagen

Automatisering Af Hverdagen Automatisering Af Hverdagen Programmering - Eksamensopgave 10-05-2011 Roskilde Tekniske Gymnasium (Kl. 3,3m) Mads Christiansen & Tobias Hjelholt Svendsen 2 Automatisering Af Hverdagen Indhold Introduktion:...

Læs mere

Matematik A. Studentereksamen. Fredag den 5. december 2014 kl. 9.00-14.00. stx143-mat/a-05122014

Matematik A. Studentereksamen. Fredag den 5. december 2014 kl. 9.00-14.00. stx143-mat/a-05122014 Matematik A Studentereksamen stx143-mat/a-05122014 Fredag den 5. december 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

HTX. Afsluttende projekt. E-learning Komunikation/It C Helena, Katrine og Rikke 1.1 01-05-2013

HTX. Afsluttende projekt. E-learning Komunikation/It C Helena, Katrine og Rikke 1.1 01-05-2013 HTX Afsluttende projekt E-learning Komunikation/It C Helena, Katrine og Rikke 1.1 01-05-2013 Systemudvikling Indledende aktiviteter Kommunikationsplanlægning for projektet, Laswells fem spørgsmål. o Hvem

Læs mere

Om at udregne enkeltstående hexadecimaler i tallet pi

Om at udregne enkeltstående hexadecimaler i tallet pi Om at udregne enkeltstående hexadecimaler i tallet pi I 996 var det en sensation, da det kom frem, at det var lykkedes D. Bailey, P. Borwein og S. Plouffe at finde en formel for tallet π, med hvilken man

Læs mere

Matematik A Delprøven uden hjælpemidler

Matematik A Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 009 HHX091-MAA Matematik A Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

Optimeret Ruteforslag

Optimeret Ruteforslag Optimeret Ruteforslag TechHouse.dk a/s 12/08/2015 Version 1.0 Indhold INTRODUKTION... 6 OPSÆTNING AF OR... 7 Bruger opsætning... 7 1. Gruppe... 7 2. Vogn... 7 3. Opsamlings tid og type... 7 4. Afsætnings

Læs mere

Ugur Kitir HTX - Roskilde 01/05 2009

Ugur Kitir HTX - Roskilde 01/05 2009 Vi har fået opgaven i forbindelse med vores produkt til vores interne prøve. Jeg skal i opgaven konkretisere hvad min målgruppe er og ud fra det skal beskrive et design der passer til målgruppen. Jeg starter

Læs mere

STUDENTEREKSAMEN MAJ AUGUST 2007 2009 MATEMATIK B-NIVEAU. onsdag 12. august 2009. Kl. 09.00 13.00. STX092-MABx

STUDENTEREKSAMEN MAJ AUGUST 2007 2009 MATEMATIK B-NIVEAU. onsdag 12. august 2009. Kl. 09.00 13.00. STX092-MABx STUDENTEREKSAMEN MAJ AUGUST 007 009 MATEMATIK B-NIVEAU onsdag 1. august 009 Kl. 09.00 13.00 STX09-MABx Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål.

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner trin 1 preben bernitt brikkerne til regning & matematik grafer og funktioner, trin 1 ISBN: 978-87-92488-11-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Matematik og magi. eller Næste stop Las Vegas. 14 Anvendt matematik. Rasmus Sylvester Bryder

Matematik og magi. eller Næste stop Las Vegas. 14 Anvendt matematik. Rasmus Sylvester Bryder 14 Anvendt matematik Matematik og magi eller Næste stop Las Vegas Rasmus Sylvester Bryder Da jeg var mindre, morede jeg mig ofte når min halvfætter Casper viste mig korttricks. Det trick han viste mig

Læs mere