Komplekse Tal. 20. november UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet"

Transkript

1 Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

2 Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N = {1,2,3,...}). Løsning af f.eks. x + 2 = 1 De hele tal Z (Z = {0, ±1, ±2, ±3,...}). Løsning af f.eks. 2x = 1 De rationale tal Q (Q = { m n m Z, n N}). Løsning af f.eks. x 2 = 2 De reelle tal R (R = {alle endelige og uendelige decimaltal}). Løsning af f.eks. x 2 = 1 De komplekse tal C (C = {a + ib a,b R}).

3 Algebraens Fundamentalsætning. Ethvert n te grads polynomium p(x) = a n x n + a n 1 x n a 1 x + a 0, med komplekse koefficienter a 0,a 1,...,a n har præcis n komplekse rødder talt med multiplicitet. Specielt: Enhver 2. grads ligning ax 2 + bx + c = 0 med komplekse koefficienter a,b,c har to komplekse løsninger (talt med multiplicitet).

4 Indføring af de komplekse tal. Vi starter med at betragte punkterne i den 2-dimensionale plan: R 2 = {(a,b) a R, b R}. Vi udstyrer R 2 med to regneoperationer + og, som defineres på følgende måde: (a,b) + (x,y) = (a + x,b + y), (a,b,x,y R) (a,b) (x,y) = (ax by,ay + bx), (a,b,x,y R).

5 Regneregler Det er ikke svært at efterse, at der for disse regneoperationer gælder følgende regneregler for z,v,w R 2 : z + v = v + z z + (v + w) = (z + v) + w zw = wz z(vw) = (zv)w z(v + w) = zv + zw.

6 Indlejring af de reelle tal Vi identificerer det reelle tal a R med (a,0) R 2. Bemærk at der for a,b i R gælder: a + b = (a,0) + (b,0) = (a + b,0) = a + b. a b = (a,0) (b,0) = (a b,0) = a b. De indførte regneoperationer på R 2 passer således med de sædvanlige regneoperationer på R.

7 Første definition af de komplekse tal De komplekse tal C er mængden R 2 = {(a,b) a R,b R} udstyret med regneoperationerne + og indført ovenfor.

8 Tallet i. Elementet i := (0,1) R 2 har speciel betydning: i 2 = i i = (0,1) (0,1) = ( 1,0) = 1. Tallet i kaldes for den imaginære enhed. Bemærk, at der for ethvert b R gælder at i b = (0,1) (b,0) = (0,b). Dermed kan ethvert par (a,b) R 2 skrives på formen: (a,b) = (a,0) + (0,b) = a + ib.

9 Anden definition af komplekse tal Et komplekst tal er et tal på formen: z = a + ib, hvor a,b R. Tallet a kaldes realdelen af z, tallet b kaldes imaginærdelen af z. Man benytter notationen: Re(z) = Re(a + ib) = a, og Im(z) = Im(a + ib) = b. Mængden af alle komplekse tal betegnes med C, altså: C = {a + ib a,b R}.

10 Regneoperationerne på C (revisited) Hvis vi som ovenfor skriver komplekse tal på formen a + ib, så kan regneoperationerne + og udtrykkes på følgende måde: (a + ib) + (x + iy) = a + x + i(b + y) (a + ib) (x + iy) = ax by + i(ay + bx). Bemærk specielt at produktet (a + ib) (x + iy) kan udregnes ved blot at gange parantesserne ud og huske på at i i = 1: (a + ib)(x + iy) = ax + aiy + ibx + ibiy = ax + i(ay + bx) + (i i)by = ax by + i(ay + bx).

11 Modulus og argument Grafisk repræsenterer vi et komplekst ( ) tal a + ib som punktet P = (a,b) eller vektoren OP a = b Modulus: Længden af OP kaldes for modulus eller den absolutte værdi af z, og den betegnes med z : z = a + ib = a 2 + b 2. Argument: Lad θ betegne vinklen i ] π,π], som vektoren OP danner med den reelle akse. Denne vinkel kaldes for argumentet for z og betegnes med Arg(z). Polar form af et komplekst tal: z = a + ib = z (cos θ + isin θ). (1)

12 Grafisk repræsentation af produktet af to komplekse tal. Betragt to komplekse tal z og w, og sæt θ = Arg(z), og φ = Arg(w). Vi finder så at zw = ( z (cos θ + isin θ)) ( w (cos φ + isin φ)) = z w (cos θ cos φ + icos θ sin φ + isin θ cos φ sinθ sinφ) = z w ( (cos θ cos φ sin θ sin φ) + i(cos θ sin φ + sin θ cos φ) ) = z w ( cos(θ + φ) + isin(θ + φ) ). Vi har til sidst har benyttet additionsformler for cos og sin!

13 Kvadratrødder af komplekse tal. Det følger fra ovenstående, at ethvert komplekst tal z 0 har to forskellige kvadratrødder! Vi kan nemlig skrive: z = z (cos θ + isinθ), hvor θ = Arg(z). Vi kan da betragte tallene ± z ( cos( θ 2 ) + isin(θ 2 )). Vi finder så vha. foregående udregning [ ± z ( cos( θ 2 ) + isin(θ 2 ))] 2 = z z ( cos( θ 2 + θ 2 ) + isin(θ 2 + θ 2 )) = z ( cos θ + isin θ ) = z.

14 Hovedværdien af kvadratroden Vi sætter z = z ( cos( θ 2 ) + isin(θ 2 )), og dette tal kaldes for hovedværdien af kvadratroden for z. Bemærk specielt at Re( z) = z cos( θ 2 ) 0, idet θ 2 ] π 2, π 2 ]. Hvis θ π, er hovedværdien af z altså den af de to kvadratrødder, som har positiv realdel. Hvis θ = π, gælder at z ],0[, og vi finder, at z = z (cos( π 2 ) + isin(π 2 )) = i z.

15 Om løsning af 2. grads ligninger. Betragt en reel 2. grads ligning: ax 2 + bx + c = 0, a,b,c R, a 0, Med de komplekse tal til rådighed har enhver sådan ligning to løsninger (som dog kan være sammenfaldende): r 1 = b + D 2a Her er D diskriminanten: og r 2 = b D, (2) 2a D = b 2 4ac.

16 Om løsning af 2. grads ligninger (fortsat) Hvis D > 0, er der 2 forskellige reelle rødder. Hvis D = 0, er der 2 sammenfaldende reelle rødder. Hvis D < 0, finder vi, at r 1 r 2 = b D 2a + i 2a = b D 2a i 2a. Løsningsformlen: r 1 = b + D 2a gælder faktisk også selvom a,b,c C. og r 2 = b D 2a

17 Den komplekse eksponentialfunktion Eksponentialfunktionen e x er som bekendt defineret for alle reelle værdier af x. Man kan udvide definitionen til også at gælde for komplekse tal, idet man benytter definitionen: e x+iy = e x (cos y + isin y), (x + iy C). Bemærk, at for et reelt tal x = x + i0 har vi e x+i0 = e x (cos(0) + isin(0)) = e x.

18 Fundamentalligningen for exponentialfunktionen: Den komplekse eksponentialfunktion opfylder den sædvanlige identitet: e z e w = e z+w, (z,w C). Bevis. Skriv z og w som z = x + iy, w = u + iv, hvor x,y,u og v er reelle tal. Vi har da e z e w = ( e x (cos(y) + isin(y) )( e u (cos(v) + isin(v) ) = e x e u (cos(y + v) + isin(y + v)) = e x+u (cos(y + v) + isin(y + v)) = e (x+u)+i(y+v) = e z+w.

19 Euler s formler: For ethvert reelt tal x gælder formlerne: cos(x) = eix + e ix, og sin(x) = eix e ix. 2 2i En anvendelse: Udregn integralet π 0 sin2 (x)dx. Vha. Eulers formel for sin(x) finder vi, at ( e sin 2 ix e ix ) 2 e 2ix + e 2ix 2 (x) = = 2i 4 Det følger derfor, at π 0 = ( e 2ix + e 2ix) = cos(2x). sin 2 (x)dx = [ 1 2 x 1 4 sin(2x) ] π 0 = π 2.

20 Anden ordens lineære differentialligninger med konstante koefficienter. En anden ordens lineær, homogen differentialligning med konstante koefficienter er en differentialligning på formen: hvor a, b, c er konstanter. ay + by + cy = 0, (3) Løsninger: En to gange differentiabel funktion y = y(t) defineret på et interval I er en løsning til (3), hvis den opfylder at ay (t) + by (t) + cy(t) = 0, for alle t i I.

21 Løsning af: ay + by + cy = 0. For at bestemme løsninger til (3) gætter vi i første omgang på en funktion på formen y(t) = e rt, hvor r er en konstant (reel eller kompleks!). Bemærk at y (t) = re rt og y (t) = r 2 e rt. Det følger derfor, at ay (t) + by (t) + cy(t) = ar 2 e rt + bre rt + ce rt = (ar 2 + br + c)e rt. Det fremgår altså, at y(t) = e rt er en løsning til (3) ar 2 + br + c = 0.

22 Løsning af: ay + by + cy = 0 (fortsat). Andengradsligningen ax 2 + bx + c kaldes for karakterligningen hørende til (3). Løsningen til (3) afhænger nu af løsningen til karakterligningen. Der er 3 tilfælde; svarende til om diskriminanten: D = b 2 4ac er positiv, nul eller negativ.

23 Tilfælde I: D > 0. I dette tilfælde har karakterligningen to forskellige reelle rødder: r 1 = b D 2a og r 2 = b + D. 2a Således har vi fundet de to løsninger e r1t og e r2t til (3). Dermed er alle funktioner på formen y(t) = Ae r1t + Be r2t, (4) hvor A og B er vilkårlige konstanter, også løsninger til (3). Man kan vise, at der ikke findes andre løsninger til (3). Vi siger, at (4) angiver den fuldstændige løsning til (3).

24 t 2 Grafen for funktionen 2e 2t + e t på intervallet [ 6,3].

25 Tilfælde II: D = 0. I dette tilfælde har karakterligningen dobbeltroden r = b 2a. Den fuldstændige løsning til (3) bliver så y(t) = Ae rt + Bte rt, hvor A og B er vilkårlige konstanter.

26 t 2 3 Grafen for funktionen e t + 2te t på intervallet [ 3,3].

27 Tilfælde III: D < 0. I dette tilfælde har karakterligningen de to komplekse løsninger: og Vi har her sat r 1 = b 2a i D 2a r 2 = b 2a + i D 2a k = b 2a og ω = = k iω, = k + iω. D 2a, Vi finder dermed løsningerne y(t) = C 1 e (k iω)t + C 2 e (k+iω)t, hvor C 1 og C 2 er konstanter.

28 Tilfælde III (fortsat) Her antager e (k iω)t og e (k+iω)t komplekse værdier. Husk imidlertid på, at e (k iω)t = e kt (cos(ωt) isin(ωt)), e (k+iω)t = e kt (cos(ωt) + isin(ωt)). Man kan dermed omskrive løsningerne til formen: y(t) = Ae kt cos(ωt) + Be kt sin(ωt), (5) som giver reelle løsninger når A og B vælges reelle. Man kan igen indse, at (5) angiver den fuldstændige løsning til (3)

29 50 t Grafen for funktionen e t (cos(t) + sin(t)) på intervallet [ 4,5].

30 Hooke s Lov. Betragt et lod af masse m, som er ophængt i en (vægtløs) fjeder. Vi forestiller os at loddet hænger stille (ligevægtsposition), men hvis man trækker vertikalt i loddet, vil fjederen påvirke det med en modsatrettet kraft, som er propertional med loddets afstand til ligevægtspositionen: hvor F fjeder = ky, y = loddets afstand til ligevægtspositionen. k er en positiv proportionalitetskonstant. Samtidig giver Newton s 2. lov, at F fjeder = m d2 y dt 2,

31 Hooke s Lov (fortsat). Vi opnår således differentialligningen: m d2 y dt 2 = ky, dvs. d 2 y dt 2 + k y = 0. (6) m Den tilhørende karakterligning er x 2 + k m = 0, Den har løsningerne: k r = ±i m. Dermed bliver den fuldstændige løsning til (6) hvor ω = k m. y(t) = A cos(ωt) + B sin(ωt),

32 x -1-2 Grafen for funktionen 2cos(t) + sin(t) på intervallet [ 8,8].

33 Kompleks differentiabilitet I det følgende betragtes en funktion f : C C (f.eks. f (z) = e z for alle komplekse z) Definition. Lad z 0 være et fast punkt fra C. Vi siger da at f er kompleks differentiabel i punktet z 0, hvis grænseværdien f (z) f (z 0 ) c := z z0 lim, z z z z 0 0 eksisterer. I bekræftende fald kaldes c for den afledede af f i z 0 og betegnes med df dz (z 0) eller f (z 0 ). Hvis f er kompleks differentiabel i alle punkter af C, siges f at være C-C-differentiabel i C.

34 Eksempler på C-C-differentiable funktioner: Polynomier: p(z) = a n z n + a n 1 z n a 1 z + a 0, hvor a 0,a 1,...,a n C. Den komplekse exponentialfunktion: f (z) = e z. Sammensætning og regning med C-C-differentiable funktioner, f.eks. f (z) = (z 4 + 1)e z2. De komplekse cosinus og sinus funktioner f (z) = cos z og g(z) = sin z.

35 Egenskaber for C-C-differentiable funktioner For en C-C-differentiabel funktion f : C C gælder der, at Hvis f (z) R for alle z, så er f konstant. f er automatisk uendeligt ofte C-C-differentiabel. Der findes en følge a 1,a 2,a 3,... af komplekse tal, såldes at f for alle z i C har fremstillingen f (z) = n=0 a n z n ( = lim a0 + a 1 z + a 2 z a N z N), N F.eks. gælder der, at e z = n=0 1 n! zn. Hvis f er begrænset, så er f konstant [Liouville s Sætning].

36 Algebraens Fundamentalsætning. Ethvert n te grads polynomium p(x) = a n x n + a n 1 x n a 1 x + a 0, med komplekse koefficienter a 0,a 1,...,a n har præcis n komplekse rødder talt med multiplicitet.

37 Skitse af beviset for algebraens fundamentalsætning Antag at p ikke har nogen rødder i C. Så kan man betragte funktionen f (z) = 1 p(z), (z C), og man kan let argumentere for, at f er C-C-differentiabel og begrænset. Ifølge Liouvilles Sætning gælder derfor at 1 p(z) = f (z) = C og dermed p(z) = 1 C, for en passende konstant C.

38 Skitse af beviset for algebraens fundamentalsætning (fortsat) Ovenstående viser, at ethvert polynomium p(z) af grad mindst 1 (dvs. som ikke er konstant) har mindst én rod ζ 1 i C. Så bliver kvotienten et nyt polynomium. q(z) = p(z)/(z ζ 1 ) Hvis q har grad mindst 1, så har q mindst en rod ζ 2, og dermed har p(z) = (z ζ 1 )q(z) mindst to rødder ζ 1 og ζ 2. Sådan kan man fortsætte, og man ender med fremstillingen p(z) = a n (z ζ 1 )(z ζ 2 ) (z ζ n ), hvor ζ 1,ζ 2,...,ζ n er rødderne for p.

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 37, 2010 Produceret af Hans J. Munkholm 2009 bearbejdet af Jessica Carter 2010 1 Hvad er et komplekst tal? Hvordan regner man med komplekse tal? Man kan betragte udvidelsen

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Komplekse tal og polynomier

Komplekse tal og polynomier Komplekse tal og polynomier John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal, polynomier og legemsudvidelser. Noterne er beregnet til at blive brugt sammen med

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komplekse eksponentialfunktion og polynomier Preben Alsholm Uge 8 Forår 010 1 Den komplekse eksponentialfunktion 1.1 Definitionen Definitionen Den velkendte eksponentialfunktion x e x vil

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Komplekse tal. enote 29. 29.1 Indledning

Komplekse tal. enote 29. 29.1 Indledning enote 29 1 enote 29 Komplekse tal I denne enote introduceres og undersøges talmængden C, de komplekse tal. Da C betragtes som en udvidelse af R forudsætter enoten almindeligt kendskab til de reelle tal,

Læs mere

Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner.

Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner. Komplekse tal Mike Auerbach Odense 2012 1 Vinkelmål og trigonometriske funktioner Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner.

Læs mere

Komplekse tal og algebraens fundamentalsætning.

Komplekse tal og algebraens fundamentalsætning. Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes

Læs mere

Komplekse tal og rækker

Komplekse tal og rækker Komplekse tal og rækker John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal og rækker. Noterne er beregnet til at blive brugt sammen med foredraget. I afsnit 2 bliver

Læs mere

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Oversigt [S] App. I, App. H.1 Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Test komplekse tal Komplekse rødder Kompleks eksponentialfunktion

Læs mere

Komplekse tal. Mike Auerbach. Tornbjerg Gymnasium, Odense 2015

Komplekse tal. Mike Auerbach. Tornbjerg Gymnasium, Odense 2015 Komplekse tal Mike Auerbach Tornbjerg Gymnasium, Odense 2015 Indhold 1 Vinkelmål og trigonometriske funktioner 2 1.1 Radianer................................................ 2 1.2 Cosinus og sinus som

Læs mere

Matematisk modellering og numeriske metoder. Lektion 4

Matematisk modellering og numeriske metoder. Lektion 4 Matematisk modellering og numeriske metoder Lektion 4 Morten Grud Rasmussen 17. september, 013 1 Homogene andenordens lineære ODE er [Bogens afsnit.1] 1.1 Linearitetsprincippet Vi så sidste gang, at førsteordens

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

De Komplekse Tal. Johan Martens og Jens-Jakob Kratmann Nissen 27/8-2011. God made the natural numbers; all else is the work of man.

De Komplekse Tal. Johan Martens og Jens-Jakob Kratmann Nissen 27/8-2011. God made the natural numbers; all else is the work of man. De Komplekse Tal Johan Martens og Jens-Jakob Kratmann Nissen 27/8-2011 1 Tal God made the natural numbers; all else is the work of man. Kronecker Det er ikke meningen, at vi skal dykke ned i teologien

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

1. Vis, at hvis realdelen af en holomorf (analytisk) funktion er konstant (på et åbent område) er funktionen konstant.

1. Vis, at hvis realdelen af en holomorf (analytisk) funktion er konstant (på et åbent område) er funktionen konstant. Matematik F2 - sæt 2 af 7 blok 4 f(z)dz = 0 1 I denne uge vil vi studere Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en

Læs mere

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan Matematik 1 Semesteruge 5 6 (1. oktober - 12. oktober 2001) side 1 Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Lektion 12. højere ordens lineære differentiallininger. homogene. inhomogene. eksempler

Lektion 12. højere ordens lineære differentiallininger. homogene. inhomogene. eksempler Lektion 12 2. ordens lineære differentialligninger homogene inhomogene eksempler højere ordens lineære differentiallininger 1 Anden ordens lineære differentialligninger med konstante koefficienter A. Homogene

Læs mere

DiploMat 1 Inhomogene lineære differentialligninger

DiploMat 1 Inhomogene lineære differentialligninger DiploMat 1 Inhomogene lineære differentialligninger Preben Alsholm Uge Efterår 2008 1 Lineære Differentialligninger af anden orden 1.1 Den inhomogene ligning I Den inhomogene ligning I Vi betragter nu

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Matematik F2 Opgavesæt 2

Matematik F2 Opgavesæt 2 Opgaver uge 2 I denne uge kigger vi nærmere på Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en ve i den komplekse plan.

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] 6.1.1 (i,ii,iv). Udregn første fundamentalform af følgende flader

GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] 6.1.1 (i,ii,iv). Udregn første fundamentalform af følgende flader GEOMETRI-TØ, UGE Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave, [P] 5... Find parametriseringer af de kvadratiske flader

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. I. De komplekse tals historie. Historien om 3. grads ligningerne

Institut for Matematik, DTU: Gymnasieopgave. I. De komplekse tals historie. Historien om 3. grads ligningerne De komplekse tals historie side 1 Institut for Matematik, DTU: Gymnasieopgave I. De komplekse tals historie Historien om 3. grads ligningerne x 3 + a x = b, x 3 + a x 2 = b, - Abraham bar Hiyya Ha-Nasi,

Læs mere

Lineære 2. ordens differentialligninger med konstante koefficienter

Lineære 2. ordens differentialligninger med konstante koefficienter enote 13 1 enote 13 Lineære 2. ordens differentialligninger med konstante koefficienter I forlængelse af enote 11 og enote 12 om differentialligninger, kommer nu denne enote omkring 2. ordens differentialligninger.

Læs mere

2. ordens differentialligninger. Svingninger.

2. ordens differentialligninger. Svingninger. arts 011, LC. ordens differentialligninger. Svingninger. Fjederkonstant k = 50 kg/s s X S 80 kg F1 F S er forlængelsen af fjederen, når loddets vægt belaster fjederen. X er den påtvungne forlængelse af

Læs mere

Noter om komplekse tal

Noter om komplekse tal Noter om komplekse tal Preben Alsholm Januar 008 1 Den komplekse eksponentialfunktion Vi erindrer først om den sædvanlige og velkendte reelle eksponentialfunktion. Vi skal undertiden nde det nyttigt, at

Læs mere

KOMPLEKS ANALYSE. noter til matematik beta H.A. NIELSEN

KOMPLEKS ANALYSE. noter til matematik beta H.A. NIELSEN KOMPLEKS ANALYSE noter til matematik beta H.A. NIELSEN institut for matematiske fag aarhus universitet 23 KOMPLEKS ANALYSE H.A. NIELSEN Indhold. Komplekse tal 2 2. Elementære funktioner 3. Holomorfe funktioner

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 14, 15 Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Calculus 2-2005

Læs mere

Eulers equidimensionale differentialligning

Eulers equidimensionale differentialligning Eulers equidimensionale differentialligning Projektbesvarelse for MM501, udformet af Hans J. Munkholm Differentialligningen September-oktober 2009 For at kunne referere let og elegant gentages differentialligningen

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Prøveeksamen MR1 januar 2008

Prøveeksamen MR1 januar 2008 Skriftlig eksamen Matematik 1A Prøveeksamen MR1 januar 2008 Tilladte hjælpemidler Alle sædvanlige hjælpemidler er tilladt (lærebøger, notater, osv.), og også elektroniske hjælpemidler som lommeregner og

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2017

Besvarelser til Calculus Ordinær Eksamen Juni 2017 Besvarelser til Calculus Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Lineær uafhængighed 1. Lineær afbildninger 2. Spektralteori 3. Komplekse tal 4. Indeks 8. u 3 = u 1 + u 2 (3) V u3 =

Lineær uafhængighed 1. Lineær afbildninger 2. Spektralteori 3. Komplekse tal 4. Indeks 8. u 3 = u 1 + u 2 (3) V u3 = Goutham Jørgen Surendran3. januar 22 LINEÆR UAFHÆNGIGHED Indhold Lineær uafhængighed Lineær afbildninger 2 Spektralteori 3 Funktionskalkyle for symmetriske kalkyler 4 Komplekse tal 4 (Hvad ethvert dannet

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen Potensrækker Morten Grud Rasmussen 1 10 november 2015 Definition og konvergens af potensrækker Definition 1 Potensrække) En potensrække er en uendelig række på formen a n pz aq n, 1) hvor afsnittene er

Læs mere

Opgaver til Maple kursus 2012

Opgaver til Maple kursus 2012 Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, jojep07@student.sdu.dk Martin Gyde Poulsen, gyde@nqrd.dk October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +

Læs mere

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til. Polynomier Polynomier Polynomium Et polynomium P(x) = a n x n + a n x n +... + a x + a 0 Disse noter giver en introduktion til polynomier, centrale sætninger om polynomiumsdivision, rødder og koefficienter

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig

Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig Analyse : Eulers formel Sebastian rsted 9. maj 015 Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig for øje, hvor de matematiske resultater kommer fra, og hvad de baseres på;

Læs mere

Kompleks Funktionsteori

Kompleks Funktionsteori Kompleks Funktionsteori Formelræs Holomorfe funktioner Sætning. (Caucy-Riemans ligninger). Funktionen f : G C, f = u+iv er holomorf i z 0 = x 0 + iy 0 hvis og kun hvis i punktet (x 0, y 0 ). du dx = dv

Læs mere

Polynomier af én variabel

Polynomier af én variabel enote 30 1 enote 30 Polynomier af én variabel I denne enote introduceres komplekse polynomier af én variabel. Der forudsættes elementært kendskab til komplekse tal, og kendskab til reelle polynomier af

Læs mere

Løsning til aflevering - uge 12

Løsning til aflevering - uge 12 Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium

Læs mere

1RWHWLOGLIIHUHQWLDOOLJQLQJHU

1RWHWLOGLIIHUHQWLDOOLJQLQJHU ote til differentialligninger rik Bennike marts 00 ROGIIUQOOJQQJU Først skal man naturligvis gøre sig klart hvilken orden differentialligningen er af. G G,? Indgår,, ( ) kun, eller er der også, ( ) 'IIUQOOJQQJUII

Læs mere

RKS Yanis E. Bouras 21. december 2010

RKS Yanis E. Bouras 21. december 2010 Indhold 0.1 Indledning.................................... 1 0.2 Løsning af 2. ordens linære differentialligninger................ 2 0.2.1 Sætning 0.2............................... 2 0.2.2 Bevis af sætning

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017 Besvarelser til Calculus Ordinær Eksamen - 3. Januar 17 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Komplekse tal. Preben Alsholm Juli 2006

Komplekse tal. Preben Alsholm Juli 2006 Komplekse tal Preben Alsholm Juli 006 Talmængder og regneregler for tal. Talmængder Indenfor matematikken optræder der forskellige klasser af tal: Naturlige tal. N er mængden af naturlige tal, ; ; 3; 4;

Læs mere

DiMS 2010 Uge 7,

DiMS 2010 Uge 7, DiMS 2010 Uge 7, 18.10.10 24.10.10 Læsevejledning Emnerne i denne uge er polynomier og komplekse tal. De kan ikke siges at henhøre under diskret matematik som sådan og er ikke dækket af KBR, så vi skal

Læs mere

Studentereksamen Matematik

Studentereksamen Matematik Studentereksamen Matematik Martin Sparre & Peter Holthe Hansen Frederiksborg Gymnasium og HF Juni 2006 1 Matematiknoter Formål: Studentereksamen 2006 Udarbejdet af: Martin Sparre & Peter Holthe Hansen

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Eksamen i Calculus Fredag den 8. januar 2016

Eksamen i Calculus Fredag den 8. januar 2016 Eksamen i Calculus Fredag den 8. januar 2016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med

Læs mere

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2004 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning

Læs mere

Differentialkvotient af cosinus og sinus

Differentialkvotient af cosinus og sinus Differentialkvotient af cosinus og sinus Overgangsformler cos( + p ) = cos sin( + p ) = sin cos( -) = cos sin( -) = -sin cos( p - ) = - cos sin( p - ) = sin cos( p + ) = -cos sin( p + ) = -sin (bevises

Læs mere

Komplekse Tal. Frank Villa. 22. februar 2013

Komplekse Tal. Frank Villa. 22. februar 2013 Komplekse Tal Frank Villa 22. februar 2013 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Komplekse tal. enote 29. 29.1 Indledning

Komplekse tal. enote 29. 29.1 Indledning enote 29 1 enote 29 Komplekse tal I denne enote introduceres og undersøges talmængden C, de komplekse tal. Da C betragtes som en udvidelse af R, forudsætter enoten almindeligt kendskab til de reelle tal,

Læs mere

Kursusnoter til BasisMat

Kursusnoter til BasisMat Kursusnoter til BasisMat Peter Beelen Søren Thomsen Peter Nørtoft Morten Brøns Im z=re iα z =r arg(z)=α Re e iπ + 1 = 0 INSTITUT FOR MATEMATIK OG COMPUTER SCIENCE DANMARKS TEKNISKE UNIVERSITET 2016 Indhold

Læs mere

Matematik A-niveau Delprøve 1

Matematik A-niveau Delprøve 1 Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

INSTITUT FOR MATEMATIK OG DATALOGI. TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010

INSTITUT FOR MATEMATIK OG DATALOGI. TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010 INSTITUT FOR MATEMATIK OG DATALOGI TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010 Forord Denne opgavesamling indeholder samtlige eksamensopgaver, der har været stillet

Læs mere

SCT. KNUDS GYMNASIUM KOMPLEKSE TAL. Henrik S. Hansen, version 1.5

SCT. KNUDS GYMNASIUM KOMPLEKSE TAL. Henrik S. Hansen, version 1.5 SCT. KNUDS GYMNASIUM KOMPLEKSE TAL Henrik S. Hansen, version 1.5 Indhold Tallenes udvikling... 2 De naturlige tal... 2 De hele tal... 2 De rationale tal... 3 De reelle tal... 3 De komplekse tal... 4 Indledning...

Læs mere

Polynomier af én variabel

Polynomier af én variabel enote 30 1 enote 30 Polynomier af én variabel I denne enote introduceres komplekse polynomier af én variabel. Der forudsættes elementært kendskab til komplekse tal og kendskab til reelle polynomier af

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Torsdag den 11. august 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 8 nummererede sider

Læs mere

Matematik F2 Opgavesæt 1

Matematik F2 Opgavesæt 1 Opgaer uge 1 I denne uge er temaet komplekse tal og komplekse funktioner af en kompleks ariabel. De første opgaer skulle gerne øge jeres fortrolighed med komplekse tal. I kan med fordel repetere de basale

Læs mere

Reeksamen i Calculus Torsdag den 16. august 2012

Reeksamen i Calculus Torsdag den 16. august 2012 Reeksamen i Calculus Torsdag den 16. august 2012 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider

Læs mere

Komplekse Tal. Frank Villa. 15. februar 2013

Komplekse Tal. Frank Villa. 15. februar 2013 Komplekse Tal Frank Villa 15. februar 2013 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Komplekse Tal. Frank Nasser. 15. april 2011

Komplekse Tal. Frank Nasser. 15. april 2011 Komplekse Tal Frank Nasser 15. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en

Læs mere

Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5

Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5 Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5 Nøgleord og begreber Vækstmodel Bevægelsesligninger Retningsfelt Eulers metode Separable ligninger Logistisk ligning Eksponentiel vækst Begyndelsesværdiproblem Calculus

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Reeksamen i Calculus Tirsdag den 20. august 2013

Reeksamen i Calculus Tirsdag den 20. august 2013 Reeksamen i Calculus Tirsdag den 20. august 2013 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider

Læs mere

Matematik F2 Opgavesæt 1

Matematik F2 Opgavesæt 1 Opgaer uge 1 I denne uge er temaet komplekse tal og komplekse funktioner af en kompleks ariabel. De første opgaer skulle gerne øge jeres fortrolighed med komplekse tal. I kan med fordel repetere de basale

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Lektion 13 Homogene lineære differentialligningssystemer

Lektion 13 Homogene lineære differentialligningssystemer Lektion 13 Lineære differentialligningssystemer Homogene lineære differentialligningssystemer med konstante koefficienter Inhomogene systemer To-kammer modeller Lotka Volterra (ikke lineært) 1 To-kammer

Læs mere

er en n n-matrix af funktioner

er en n n-matrix af funktioner Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Ligning og løsning Nøgleord og begreber Eksistens og entdighed Elementære funktioner Eksponential af matrix Retningsfelt Hastighedsfelt for sstem for sstem Stabilitet

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Algebra med Bea Bea Kaae Smit nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende regler 7 3.1 Tal..........................

Læs mere

t a l e n t c a m p d k Kalkulus 1 Mads Friis Anders Friis Anne Ryelund Signe Baggesen 10. januar 2015 Slide 1/54

t a l e n t c a m p d k Kalkulus 1 Mads Friis Anders Friis Anne Ryelund Signe Baggesen 10. januar 2015 Slide 1/54 Slide 1/54 Indhold 1 2 3 4 5 Slide 2/54 Indhold 1 2 3 4 5 Slide 3/54 1) Hvad er et aksiom? Slide 4/54 1) Hvad er et aksiom? 2) Hvorfor har vi brug for aksiomer? The Monty Hall Problem Slide 4/54 1) Hvad

Læs mere

Noter til Computerstøttet Beregning Taylors formel

Noter til Computerstøttet Beregning Taylors formel Noter til Computerstøttet Beregning Taylors formel Arne Jensen c 23 1 Introduktion I disse noter formulerer og beviser vi Taylors formel. Den spiller en vigtig rolle ved teoretiske overvejelser, og også

Læs mere

Fri vækstmodel t tid og P (t) kvantitet. dp dt = kp Løsninger P (t) = Ce kt C fastlægges ved en begyndelsesværdi. Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.

Fri vækstmodel t tid og P (t) kvantitet. dp dt = kp Løsninger P (t) = Ce kt C fastlægges ved en begyndelsesværdi. Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7. Oversigt [S] 7., 7.2, 7.3, 7.4, 7.5 Nøgleord og begreber Vækstmodel Bevægelsesligninger Retningsfelt Separable ligninger Logistisk ligning Eksponentiel vækst Begyndelsesværdiproblem Calculus - 2006 Uge

Læs mere

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation

Læs mere

Varmeligningen og cosinuspolynomier.

Varmeligningen og cosinuspolynomier. Varmeligningen og cosinuspolynomier. Projekt for MM50 Marts 009 Hans J. Munkholm 0. Praktiske oplysninger Dette projekt besvares af de studerende, som er tilmeldt eksamen i MM50 uden at være tilmeldt eksamen

Læs mere

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Nøgleord og begreber Eksistens og entydighed Elementære funktioner Eksponential af matrix Retningsfelt Eulers metode Hastighedsfelt for system Eulers metode for

Læs mere

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2 GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere