Geometrien af en scroll-kompressor Fra et konkret problem til abstrakt matematik

Størrelse: px
Starte visningen fra side:

Download "Geometrien af en scroll-kompressor Fra et konkret problem til abstrakt matematik"

Transkript

1 Geometrien af en scroll-kompressor Fra et konkret problem til abstrakt matematik Jens Gravesen and Christian Henriksen 10. februar 1999 Abstract Med udgangspunkt i scroll-kompressoren, en opfindelse fra 1905, gennemgås en stor del af teorien for plane kurver. Begreberne afvikler, evolut, indhyllingskurve og især den naturlige ligning viser sig at have afgørende betydning for analysen af scroll-kompressoren. Med den naturlige ligning som fundament kan alle geometrisk forhold vedrørende scroll-kompressoren udregnes eksakt og uden besvær. 1 Indledning I dagene 31. august 4. september afholdtes den succesrige 32nd European Study Group with Industry 1 på Institut for Matematik, Danmarks Tekniske Universitet. En study group er en workshop, hvor grupper af matematikere sammen med repræsentanter for virksomheder arbejder med en opgave fra virksomheden. Denne type møder stammer fra England, hvor nu afdøde Alan Tayler i 1968 startede Oxford Study Group with Industry. I 1988 afholdes de for første gang uden for Oxford, og er siden blevet holdt årligt ved forskellige universiteter i Storbritannien. Sideløbende hermed blev der i 80 erne startet study groups i USA, Australien, Mexico og Canada. De britiske møder skiftede i 1991 navn til European Study Group with Industry (ESGI); men det var først i 1998 en ESGI blev afholdt udenfor Storbritannien, nemlig den 32 te i Danmark og ugen efter den 33 te i Holland på Leiden Universitet. Ved ovennævnte første danske ESGI deltog 6 virksomheder og ca. 45 danske og udenlandske matematikere. Samtlige problemer og de tilhørende 1 Mødet blev støttet af COWI-fonden og Carlsberg Mindelegat. Nærmere oplysninger kan findes på net-adressen 1

2 løsningsforslag findes i rapporten fra mødet [4]. Nogle af de største danske virksomhederne deltog, deriblandt Danfoss, hvorfra Stig Helmer Jørgensen præsenterede et problem vedrørende optimering af en scroll-kompressor. Figur 1: Den klassiske scroll-kompressor. Spiralerne er identiske cirkelafviklere, blot drejet 180 i forhold til hinanden. For at spiralerne kan ses, har vi ikke vist bunden og låget, som er fastgjort til henholdsvis den lyse og den mørke spiral. Scroll-kompressoren blev opfundet af Léon Creux i 1905, se [1] og figur 2, og består af to spiraler der bevæger sig inden i hinanden, se figur 1. I det klassiske design er spiralerne identiske cirkelafviklere, der er drejet 180 i forhold til hinanden. Princippet i virkemåden kan ses i figur 3, hvor vi dog for overskuelighedens skyld kun har to vindinger i modsætning til de sædvanlige tre. Uheldigvis kunne man i 1905 ikke fremstille spiralerne med tilstrækkelig stor præsision til at forhindre lækager, så opfindelsen blev glemt. Sidst i 70 erne blev interessen genoplivet, se [7], og i starten af 80 erne startede produktion i form af pilot-projekter. Industriel fremstilling i fuld skala påbegyndtes i starten af 90 erne, og nu gøres der udstrakt brug af dem i aircondition anlæg. Scroll-kompressorer har mange fordele, f.eks. er der ingen ventiler og i det hele taget er der kun et minimum af bevægelige dele. Desuden er de mekaniske ubalancer langt mindre end i en stempel-kompressor, og støjnivauet er også mindre. Der er også ulemper. I modsætning til stempel-kompressorer kan man ikke bruge stempelringe til tætning, så for at undgå lækager er det nødvendigt med en langt større præcision ved fremstillingen. Den største ulempe er den forholdvis lave kompression, der for øjeblikket kan opnås med disse kompressorer. Nutidens scroll-kompressor giver en kompression på omkring 2,5, hvilket er tilstrækkelig til aircondition; men for lavt til køleeller fryse-brug. Opgaven fra Danfoss gik ud på at undersøge, om en ændring af spiralernes form kan forbedre kompressorens virkning. Det endelige mål er selvsagt at finde den bedste kompressor-spiral. 2

3 Figur 2: Sider fra Léon Creux s patent fra

4 Figur 3: Scroll-kompressorens virkemåde: Mens den hvide spiral er holdt fast, bevæger den grå spiral sig med uret rundt i en cirkel, uden selv at dreje. Derved tvinges luften, der er fanget i lommerne mellem de to spiraler, ind mod centrum, og da de inderste lommer er mindre end de yderste, opnås en kompression. Luften bliver suget ind fra kanten af kompressoren, og den komprimerede gas undslipper gennem et hul i midten af kompressoren. 4

5 Under arbejdet med at analysere kompressorens geometri fik vi brug for store dele af den klassiske teori for plane kurver, og det var især en overraskelse, at den naturlige ligning viste sig at være nøglen til forståelsen af scroll-kompressorens geometri. Med udgangspunkt i den naturlige ligning kan alle geometriske størrelser udregnes eksakt og uden besvær. Det er denne artikels formål at demonstrere dette; men vi tager dog det modsatte synspunkt vi tager udgangspunkt i scroll-kompressoren, og bruger analysen af denne til at gennemgå de plane kurvers teori. Inden vi starter bør vi nævne, at der også blev arbejdet med den hydrodynamiske modellering af kompressoren. Det aspekt vil vi ikke komme ind på her; men blot henvise til den endelige rapport [3]. Vi vil her gerne takke Stig Helmer Jørgensen for at vække vores interesse i problemet. Vi vil også gerne takke de andre deltagere ved ESGI32, specielt Peter Howell, for mange nyttige diskussioner. Endelig vil vi gerne takke vores kollegaer Vagn Lundgaard Hansen, Poul Hjorth og Steen Markvorsen for kritisk gennemlæsning af udkast til artiklen og mange nyttige kommentarer. 2 Den klassiske scroll-kompressor og cirkelafvikleren t x (θ) x(θ) s = θ Som allerede nævnt er spiralerne i den klassiske scroll-kompressor cirkelafviklere. Vi skal først gøre os klart at vi ikke blot har to, men fire kurver, nemlig de fire sider af de to spiraler. Hvordan en cirkelafvikler fremstilles er illustreret i figur 4. Tag en snor og vind den stramt rundt om en konx(0) y(θ) Figur 4: Cirkelafvikleren. Til venstre en skitse af hvordan en cirkelafvikler kan fremstilles ved hjælp af en snor og en konservesdåse, til højre en illustration af den matematiske definition. servesdåse, idet den ene ende af snoren holdes fast mod dåsen. Bind den 5

6 anden ende af snoren om en blyant og vikl snoren langsomt af, idet snoren hele tiden holdes stramt. Den resulterende kurve som derved tegnes af blyanten er cirkelafvikleren. Hvis man binder to blyanter fast fås to cirkelafviklere og afstanden mellem de to kurver er konstant lig afstanden mellem de to blyanter, d.v.s. vi har to parallelle kurver. Punktet hvor snoren slipper dåsen bevæger sig rundt om dåsen, og den stramme snor tangerer dåsen. Da det lige stykke snor tidligere lå langs med cirklen (dåsen) er længden af dette stykke lig med buelængden af den tilsvarende (stiplede) bue på cirklen. Den grå afvikler i figur 4 fås ved at gå lidt længere ud langs snoren, det svarer til at vi starter afvikleren et andet sted på cirklen, så ved en drejning omkring cirklens centrum kan vi føre den sorte afvikler over i den grå. Matematisk set har vi altså et punkt der bevæger sig rundt på en cirkel: x(θ) = (cosθ, sin θ). Da vi har valgt radius i cirklen til 1 er parameteren θ lig med buelængden s på cirklen. Vi gennemløber altså cirklen med konstant fart 1. (Hvis vi havde en cirkel med radius r kan vi bruge parameterfremstillingen s (r coss/r, r sin s/r) for at få konstant fart 1). Når den brugte parameter er buelængde siger vi, at vi har den naturlige parameterfremstilling for den pågældende kurve. Ved differentiation fås tangentvektoren x: t x (θ) = x (θ) = ( sin θ, cosθ). Hvis vi starter afvikleren i punktet x(0) ser vi af figur 4, at vi ved fra punktet x(θ) at gå stykket s = θ bagud ad tangenten kommer til punktet y(θ) på cirkelafvikleren. Vi har altså at cirkelafvikleren er givet ved y(θ) = x(θ) st x (θ) = (cosθ + θ sin θ, sin θ θ cosθ) Som vi ser i figur 4, fås de forskellige afviklere ved at gå kortere eller længere ud af cirklens tangent, en vilkårlig afvikler er altså givet ved y c (θ) = x(θ) (θ + c)t x (θ) = (cosθ + (θ + c) sin θ, sin θ (θ + c) cosθ) hvor c er en reel konstant. Som bemærket ovenfor er y c1 og y c2 parallelle kurver og afstanden mellem dem er c 1 c 2. Hvis vi differentierer y c får vi y c(θ) = ( (θ + c) cosθ, (θ + c) sin θ) ). Vi ser at x (θ) y c (θ) = 0, d.v.s., at cirklens tangent skærer cirkelafvikleren under en ret vinkel. Vi vælger nu y 0 og y π/10 som de to sider af den lyse spiral, se figur 5. Den mørke spiral fås ved at dreje 180 ; men som før bemærket svarer det til at vælge y π og y 11π/10 som de to sider af den mørke spiral. Som set før er alle disse fire kurver parallelle, og om deres indenbyrdes afstand gælder: 6

7 re y π 10 y 0 d > r re y π y11π 10 Figur 5: Til venstre definition af de fire sider af spiralerne i den klassiske scrollkompressor. Bredden af de to kanaler er r = 9π/10, så hvis vi skubber et punkt på kanten af den mørke spiral stykket r i retningen e, så rammer dette punkt den hvide spiral, netop hvis e er vinkelret på spiralen i det givne punkt. Til højre situationen efter at den mørke spiral er translateret stykket re. Den stiplede cirkel til venstre indikerer, hvor meget det er nødvendigt at skære væk. Afstanden mellem y 0 og y π 10 er π/10. Afstanden mellem y π 10 og y π er 9π/10. Afstanden mellem y π og y11π 10 er π/10. Afstanden mellem y11π 10 og y 0 er 9π/10. Vi betragter nu en tilfældig enhedsvektor e, og prøver at parallelforskyde den mørke spiral i denne retning. Den mindste afstand fra et punkt på kanten af den mørke spiral til et punkt på kanten af den lyse spiral er r = 9π/10, bortset fra punkter inde ved midten af spiralerne. Hvis vi er helt inde ved cirklen er afstanden fra den mørke til den lyse spiral selvfølgelig lig med diameteren i cirklen som i dette tilfælde er 2; men vi skal blot se bort fra punkter med afstand mindre end r/2 fra cirklens centrum. Hvis vi ser bort fra problemerne inde ved midten, kan vi derfor bevæge den mørke spiral stykket r. Da minimumsafstanden r opnås ved at gå langs den fælles normal, der samtidig er tangent til cirklen, vil de to spiraler efter at den mørke er skubbet stykket re mødes i skæringspunkter mellem normalen og den lyse spiral, se figur 5. Vi kan altså bevæge den mørke spiral præcis afstanden r i alle retninger, eller sagt på en anden måde: Hvis vi (uden at dreje) bevæger den mørke spiral rundt i en cirkel med radius r, da vil den konstant røre den lyse spiral i en række punkter på den lyse spiral, der er givet som skæringspunkter mellem tangenter til cirklen og den lyse spiral. Vi kan nu 7

8 se at cirkelafvikler spiraler giver en situation som i figur 3; men vi kan også se, at der er problemer inde ved midten. Vi kan blive nødt til at skære den inderste del af spiralerne væk. 3 Afviklere og evolutter Konservesdåsen som vi har brugt til at fremstille cirkelafvikleren har et cirkulært tværsnit; men vi kan selvfølgelig lave en tilsvarende konstruktion med en ikke-cirkulær konservesdåse. Det eneste krav er at vi skal kunne lægge en snor stramt langs med dåsen, den må altså ikke bue indad, eller sagt med andre ord, den skal være konveks. Hvis vi forlader den fysiske verden behøver dåsen ikke engang at være lukket, tværsnittet kunne f.eks. være en spiral, se figur 9; men vi vil stadigvæk kræve, at den kun buer til den ene side. Det sidste krav sikrer at der ikke kommer spidser på afvikleren; hvis dette er ligegyldigt kan enhver kurve bruges. Før vi går videre vil vi præciserer visse begreber, se figur 6. tangenten normalenn(u) t(u) x(u) s(u) (u) x(0) Figur 6: Nogle grundlæggende geometriske begreber. En parametrisering af en regulær plan kurve er en differentiabel afbildning x : I R 2, som opfylder at x (u) 0 for alle u I. Kurvens tangent i punktet x(u) er en linie gennem punktet i retningen x (u), og kurvens normal i punktet er en linie gennem punktet som står vinkelret på tangenten. Kurvens tangentvektor t er enhedsvektoren i retningen x (u), og kurvens normalvektor n er tangentvektoren drejet 90 mod uret, altså t(u) = x (u), n(u) = t(u) x (u) 8

9 Kurvens buelængde s fås ved at integrere farten x (u), altså s(u) = u 0 x (t) dt. Da vi har forudsat x (u) 0 for alle u, har vi specielt, at s (u) = x (u) > 0. Dermed er s en strengt voksende funktion af u. Så findes den inverse funktion u(s), og den opfylder også, at u (s) 0. Vi kan derfor bruge s som parameter på kurven og opnår hermed den naturlige parameterfremstilling. I den naturlige parameterfremstilling er farten konstant 1, og tangentvektoren fås så ved t = dx ds. Bemærk, at vi har brugt det samme symbol x for både den gamle parameterfremstilling og for den naturlige parameterfremstilling. Vi har desuden undladt at skrive parameteren eksplicit i ovenstående formel. Dette er selvfølgeligt lidt upræcist, men da det forenkler notationen, vil vi ofte gøre dette i det efterfølgende. Bemærk også, at udtrykket dx/ds tilsyneladende kræver, at vi kender et eksplicit udtryk for den naturlige parameterfremstilling; men dette er ikke nødvendigt, hvis vi har parameteren u, skal vi blot benytte kædereglen og at ds/du = dx/du : dx ds = dx du du ds = dx du / ds du = dx du / dx du. Kurvens tangentdrejning er den vinkel tangenten danner med x-aksen. Vi har altså t = (cos, sin ) og n = ( sin, cos), (1) hvor vi bemærker, at t, n og er funktioner af den givne parameter. Kurvens krumning κ er defineret som κ = d ds, og måler altså hvor hurtigt tangenten drejer. Ved differentiation af (1) får vi formlerne dt dn = κn og ds ds = κt, kaldet Frenets formler. Hvis vi vender gennemløbsretningen på kurven skifter krumningen fortegn, så hvis κ 0 overalt på kurven, kan vi altid opnå κ > 0. I så fald er tangentdrejningen en strengt voksende funktion af s, og som før ser vi, at vi kan bruge som parameter på kurven. Kurvens krumningsradius er defineret ved = 1 ( ) 1 d κ = = ds ds d. 9

10 For cirklen, x(θ) = (r cosθ, r sin θ), med radius r, har vi t = ( sin θ, cosθ ) ( ( = cos θ + π ) (, sin θ + π )), 2 2 så = θ + π. Ydermere er buelængden givet ved s = rθ = r( π 2 2), så = ds = r. Krumningsradius for en cirkel er altså lig med radius for d cirklen, heraf navnet. Hvis vi bruger den naturlige parameterfremstilling er Taylor-rækken til anden orden givet ved x(s) = x(s 0 ) + (s s 0 )t(s 0 ) κ(s 0) (s s 0 ) 2 n(s 0 ) + højere ordens led. Cirklen som tangerer den givne kurve i punktet x(s 0 ) og som har radius (s 0 ) kaldes for krumningscirklen og har præcis den samme Taylor-række til anden orden. Det er derfor den cirkel som approksimerer kurven bedst muligt i punktet x(s 0 ). Centrum c for krumningscirklen fås ved at gå stykket ud ad normalen, altså: c = x + xn x. Igen har vi undladt referencer til parameteren, til gengæld har vi angivet hvilken kurve krumningsradius og normalvektor hører til. Når vi gennemløber kurven x, vil krumningscentrene gennemløbe en anden kurve kaldet evolutten for x, se figur 7. Ved differentiation af c fås c x x x s x krumningscirkler y Figur 7: Til venstre evolutten for x og til højre afvikleren. dc ds x = dx ds x + d x ds x n x + dn x ds x = t x + d x ds x n x 1 κ x κ x t x = d x ds x n x. Heraf ser vi, at t c = ±n x, og at dc/ds x = d x/ds x. For at have en regulær evolut bliver vi derfor nødt til at kræve at d x/ds x 0, eller ækvivalent 10

11 hermed, at dκ x /ds x 0 overalt. I figur 8 ses hvad der sker, hvis dette krav ikke er opfyldt. En kurves afvikler er defineret på præcis samme måde som for cirkelafvikleren: y = x (s x + c)t x, specielt er cirkelafvikleren altså en afvikler for cirklen. Ved differentiation fås dy = dx t x (s x + c) dt x = t x t x (s x + c)κn x = (s x + c)κ x n x. ds x ds x ds x Heraf ser vi, at t y = n x og ds y ds x = dy ds x = (s x + c)κ x. Specielt ser vi, at hvis κ x > 0 overalt, og s x > c, så er afvikleren y en regulær kurve. I figur 8 ses hvad der sker, hvis dette krav ikke er opfyldt. Figur 8: Den første tegning viser evoluten for en kurve med et maximum for krumningen, den næste viser evolutten for en kurve med et minimum for krumningen, den tredie viser evolutten for en kurve med et nulpunkt for krumningen, samt to minima, og den sidste viser afvikleren for en kurve med et nulpunkt for krumningen. Ved yderligere differentiation fås dt y ds y = dn x ds x ds x ds y = κ x t x = 1 (s x + c)κ x s x + c t x, hvoraf y = s x +c. Hvis vi nu udregner y s evolut får vi klart x. Vi har altså I dette tilfælde gælder y er en afvikler af x x er evolutten for y. t y = n x, n y = t x, y = s x + c, y = x π 2. (2) I figur 9 er tegnet en afvikler af cirkelafvikleren. 11

12 sx = y x y 4 Indhyllingskurver Figur 9: En afvikler af cirkelafvikleren. Vi har i forrige afsnit set, hvordan der inden i en spiral i form af en cirkelafvikler er plads til, at en anden cirkelafvikler kan bevæge sig rundt i en cirkel. Spørgsmålet er nu, hvad der sker, hvis vi prøver andre spiraler end cirkelafvikleren. Hvis man tager en vilkårlig spiral, og uden at dreje den bevæger den cirkulært rundt i en kasse med sand, får man et billede som i figur 10, hvor Figur 10: Sporet fra en spiral bevæget rundt i en cirkel. man tydeligt kan se, hvordan den faste spiral skal se ud, for at der skal være plads til bevægelsen af den første spiral. Vi kan også se, at den bevægelige spiral til ethvert tidspunkt tangerer den faste spiral i en række punkter. En ting er, at kunne se hvordan spiralen skal se ud, en anden er, at finde en parameterfremstilling for den. Det er problemet vi vil behandle i dette afsnit. 12

13 Hvis vi koncentrerer opmærksomheden om n side af den bevægelige spiral, har vi altså en kurve, som vi parallelforskyder rundt langs en cirkel. Hvis kurven er givet ved en parameterfremstilling x, så kan bevægelsen af spiralen beskrives ved følgende funktion af to variable: X(u, t) = x(u) + a(t), (3) hvor a(t) er en parameterfremstilling for cirkelbevægelsen. Vi vil nu betragte funktionen X(u, t), og kan glemme, at vi har en spiral, der deltager i en cirkelbevægelse. Vi kunne f.eks. lade spiralen foretage en anden type bevægelse end den cirkulære, eller mere drastisk, vi kunne forestille os at kurven forandrede form når t varierede; men så forlader vi scroll-kompresseren. Synspunktet er altså at vi har givet en familie af kurver x t (u) = X(u, t) og vi søger en såkaldt indhyllingskurve for familien. Det er en kurve y, som til tidspunktet t tangerer kurven x t i et punkt vi benævner y(t), (vi bruger altså t som parameter på indhyllingskurven). Det tilsvarende punkt på x t, kan skrives som x t (u(t)). Vi har dermed, at y(t) = X ( u(t), t ), (4) problemet er at bestemme funktionen u(t). Hvis vi tager en vilkårlig funktion u(t), og definerer y(t) ved (4), så vil kurverne y og x skærer hinanden; men betingelsen er som sagt, at de skal tangerer hinanden. Tangentretningerne er givet ved: x t ( ) X( ) u(t) = (u(t), t, u y (t) = u (t) X u ( ) X( ) (u(t), t + (u(t), t, t og de er parallelle, netop hvis de partielle afledede X/ u ( (u(t), t ) og X/ t ( (u(t), t ) er det. Hvis X(u, t) = ( X(u, t), Y (u, t) ), så kan parallelitet udtrykkes ved ligningen: X ( ) Y (u(t), t u t ( ) X ( ) Y ( ) (u(t), t (u(t), t (u(t), t = 0. t u Denne ligning skal opfattes som en ligning til bestemmelse af funktionen u(t); men det er normalt ikke muligt at løse denne ligning. Vi vender nu tilbage til spiralen der parallelforskydes rundt langs en cirkel. Fra (3) er de partielle afledede givet ved X u (u, t) = x (u), X t (u, t) = a (t). 13

14 Hvis a(t) = (r sin t, r cos t), så er a (t) = re(t) = (r cost, r sin t) og t er tangentdrejningen for cirkelbevægelsen. Vi forestiller os nu at spiralen også er parametriseret med tangentdrejningen. Vi har altså u = x, og t = e. Parallelitetsbetingelsen kan formuleres, som x e = nπ, n Z, d.v.s. vi har den simple løsning u = t + nπ, n Z, og dermed har vi indhyllingskurverne givet ved y n (t) = x(t + nπ) + a(t). Tilsyneladende har vi uendelig mange indhyllingskurver; men da a er periodisk med perioden 2π, ser vi, at y n+2 (t) = x(t+(n+2)π)+a(t) = x((t+2π)+nπ)+a(t+2π) = y n (t+2π). Så y n+2 og y n er blot to forskellige parameterfremstillinger for den samme kurve. Vi har altså præcis to forskellige indhyllingskurver, som vi vælger at skrive som y + (t) = y 0 (t) = x(t) + a(t), (5) y (t) = y 1 (t π) = x(t) a(t), hvor vi har udnyttet, at a(t π) = a(t). Da både x og a er parametriseret ved tangentdrejningen, ser vi at y ± også er det. Da det normalt også er umuligt at bestemme tangentdrejnings-parametriseringen, har vi tilsyneladende blot erstattet t umuligt problem med et andet; men vi skal i næste afsnit se, hvordan vi kan definere kurver, så de automatisk er parametriseret med tangentdrejningen. Før vi gør det, vil vi dog betragte det tilfælde, hvor kurven ikke er givet ved en parametrisering, men i stedet ved en ligning. I dette tilfælde er muligheden for at finde indhyllingskurven langt mere gunstig, se f.eks. [2]. Her vil vi blot se på det tilfælde, hvor vi har en familie af rette linier givet ved en familie af ligninger i x og y: a(t)x + b(t)y = c(t). Hvis vi tilføjer den differentierede ligning: a (t)x + b (t)y = c (t), har vi for hvert t to lineære ligninger med to ubekendte og disse har i almindelighed en entydig løsning ( x(t), y(t) ), som præcis er en parameterfremstilling for indhyllingskurven. 14

15 t t t Figur 11: Når solens stråler reflekteres i indersiden af et krus med kaffe, dannes en lysende kurve (brændkurven) på kaffens overflade. Den anden tegning viser reflektionen af en enkelt stråle, den tredie tegning viser reflektionen af 21 stråler, og i den sidste tegning er den beregnede brændkurve plottet Hvis vi forestiller os, at linierne er lysstråler, så er indhyllingskurven den såkaldte brændkurve, altså den kurve hvor lyset er koncentreret. Hvis man en sommerdag sidder udenfor med et krus kaffe, vil solens stråler reflekteres i indersiden af kruset, og familien af reflekterede stråler vil danne en brændkurve på kaffens overflade, se figur 11. Vi forestiller os nu solens stråler kommer ind langs med x-aksen, og betragter en enkelt stråle der reflekteres i punktet (cos t, sin t). Da indfaldsvinkel er lig med udfaldsvinkel har den reflekterede stråle retningsvektor ( cos(2t+π), sin(2t+π) ) = ( cos 2t, sin 2t) og normalvektor (sin 2t, cos 2t), se figur 11. Dermed er ligningen for strålen (x cost) sin 2t (y sin t) cos 2t = 0. Da cos t sin 2t + sin t cos 2t = sin t, får vi efter differentiation de to ligninger: (sin 2t)x (cos 2t)y = sin t, (2 cos2t)x + (2 sin2t)y = cost. 15

16 Brændkurven er løsningen til disse to lineære ligninger, som let udregnes til: [ ] [ ] 1 [ ] x(t) sin 2t cos 2t sin t = = 1 [ ] [ ] 2 sin 2t cos 2t sin t y(t) 2 cos 2t 2 sin 2t cost 2 2 cos 2t sin 2t cost = 1 [ ] 2 sin 2t sin t + cos 2t cost = 1 [ ] 2 cost cos t cos 2t 2 2 cos 2t sin t + sin 2t cost 2 2 sint cos t sin 2t [ ] cost = cost [ ] cos 2t. sin t 2 sin 2t 5 Den naturlige ligning Som lovet i forrige afsnit vil vi nu specificere kurver på en måde, så de automatisk bliver parametriseret med tangentdrejningen. Hvis vi et øjeblik forestiller os, at kurven x er parametriseret med tangentdrejningen, så er tangentvektoren pr. definition givet ved t() = e() = (cos, sin ). På den anden side fås tangentvektoren ved normering af hastighedsvektoren, så vi må have, at dx d = dx d t = ds d t = t. Vi kan komme tilbage til x ved integration: ) x() = ()t() d = ()e() d = ( () cos, () sin d. (6) Vi ser nu, at vi i stedet for at angive en eksplicit parameterfremstilling for en kurve, kan specificere kurven ved at angive (), d.v.s. krumningsradius som funktion af tangentdrejningen. Thi vi kan få en parameterfremstilling ved en simpel integration, og denne parameterfremstilling er med tangentdrejningen som parameter. Bemærk, at integrationskonstanten ikke har nogen geometrisk betydning, de forskellige valg svarer blot til parallelforskydninger af kurven. Hvis vi kender (), har vi en differentialligning ds/d = (), som sammenknytter buelængden s, og tangentdrejningen. En ligning, eller som her en differentialligning, der gør det, kaldes en naturlig ligning for kurven. Et andet eksempel på en naturlig ligning er = (s), altså hvor tangentdrejningen er givet som funktion af buelængden. Så er t(s) = e((s)), og vi kan bestemme den naturlige parameterfremstilling for kurven ved integration: x(s) = t(s) ds = e ( (s) ) (cos ) ds = (s), sin(s) ds (7) 16

17 Fra et teoretisk synspunkt er der ikke den store forskel på ligningerne (6) og (7), begge bestemmer en parameterfremstilling ved integration, og i begge tilfælde har parameteren geometrisk betydning. Fra et praktisk synspunkt er (6) derimod langt mere behagelig. Hvis funktion () er et polynomium i, så kan integrationen i (6) udføres eksakt og uden besvær. Dette er i modsætning til integralet i (7), der almindeligvis ikke kan udregnes, hvis (s) er et polynomium i s. Vi definerer nu en kurve x, ikke ved en parameterfremstilling; men ved den naturlige ligning = (). Da = ds/d, kan vi bestemme buelængden direkte ved en simpel integration, s = () d. Bemærk, at hvis () er et polynomium, så kan s udregnes eksakt. Hvis x er givet ved den naturlige ligning x = x(), og y er en afvikler, så har vi fra (2), at y = x π/2 og y = s x + c. dermed er y givet ved den naturlige ligning y() = ( π ) d, 2 hvor de forskellig integrations konstanter svarer til de forskellige afviklere. Omvendt er x s evolut c givet ved den naturlige ligning Vi har med andre ord, at F.eks. har vi følgende tabel: c() = d x d ( π ). 2 afvikler integration, evolut differentiation. () s() kurve 1 cirkel cirkelafvikler afvikler af cirkelafvikler... I forbindelse med scroll-kompressoren er vi specielt interesserede i spiraler, og det er heldigvis let at fremstille spiraler ved hjælp af den naturlige ligning. Vi har nemlig følgende resultat, se [5, side 48, Knesers sætning] 17

18 x δ x c 2 s c c O θ Figur 12: Til venstre ser vi hvordan D 1 D 2, hvis c 2 c < 2. Til højre ser vi hvordan θ > 0, hvis O ligger til venstre for tangenten, specielt hvis O ligger i krumningscirklen. Spiral-lemma. Lad x være en kurve, givet ved den naturlige ligning = (). Lad c() være evolutten (d.v.s. krumningscentrum) for x og lad D være den åbne cirkelskive begrænset af krumningscirklen: D = { p R 2 p c() < () }, og lad D være den tilsvarende afsluttede cirkelskive: D = { p R 2 p c() () }. Hvis () er en strengt voksende positiv funktion, så former cirkelskiverne D en strengt voksende følge: 1 < 2 D 1 D 2, (8) og kurvens fortid og fremtid er henholdsvis indenfor og udenfor krumningscirklen: 1 < 2 x( 1 ) D 2, (9) 1 < 2 x( 2 ) / D 1. Hvis vi ydermere vælger koordinatsystemets begyndelsespunkt indenfor samtlige krumningscirkler: O D, og lader (r, θ) være polære koordinater for kurven x, så er vinklen θ en strengt voksende funktion: θ () > 0. (10) Proof. Da x() ligger på randen af D, følger (9) af (8). Sæt c 1 = c( 1 ), 1 = ( 1 ), osv. For at vise, at D 1 D 2 er det klart nok at vise, at 18

19 c 2 c < 2, eller ækvivalent hermed, at c 2 c 1 < 2 1. Da krumningscentrene c 1 og c 2 er punkter på evolutten for x, og da afstanden langs med en kurve ikke kan være mindre end afstand langs en ret linie, har vi nu, at c 2 c 1 s c = s c ( 2 ) s c ( 1 ) = 2 1, hvor s c er buelængde på evolutten. Vi har nu vist (8) og dermed også (9). Betragt nu figur 12. Hvis vinklen δ = θ, mellem stedvektoren til x og hastighedsvektoren x, ligger i intervallet ]0, π[, så er θ > 0. Hvis blot O ligger til venstre for tangentvektoren har vi δ ]0, π[. Da > 0 ligger krumningscirklen til venstre for tangentvektoren, og da begyndelsespunktet O er valgt, så det ligger indenfor enhver af krumningscirklerne, ligger O specielt til venstre for enhver af tangentvektorerne. Dermed har vi vist, at θ > 0 overalt på kurven. 6 Scroll-kompressoren II Vi betragter nu en spiral x givet ved den naturlige ligning x = x(), hvor x() er en strengt voksende positiv funktion. Som i afsnit 4 lader vi nu x udføre en cirkulær bevægelse parametriseret ved a(t) = (r sin t, r cost). Fra (5) har vi så de to indhyllingskurver y ± (t) = x(t) ± a(t). Ydermere er alle tre kurver parametriseret ved tangentdrejning, d.v.s. y± = x = a =, og de har alle den samme tangentvektor t = e() = (cos, sin ). Ved differentiation får vi og dermed y ±() = x () ± a () = ( x ± r)e(), y = x ± r. Bemærk, at ovenstående argument kun gælder for y hvis r < x(), thi hvis r > x() så er t y = t x. Hvis vi vælger y +, som ligger på ydersiden af x, har vi nu defineret ydersiden af den bevægelige spiral (x), og indersiden af den faste spiral (y + ). For at få de to manglende sider betragter vi igen den klassiske scroll-kompressor, og bemærker, at den faste og den bevægelige spiral føres over i hinanden ved spejling i et passende punkt, se figur 13. Ved denne spejling føres ydersiden af den bevægelige spiral over i ydersiden af den faste spiral og indersiden af den faste spiral føres over i indersiden af den bevægelige spiral. Vi kan altså få de to manglende sider ved spejling i et passende punkt. Der er en vis frihed i valget af spejlingspunkt C; men bemærk, at idet C ligger midt 19

20 y C x Figur 13: Til venstre ses hvordan den klassiske scroll-kompressor ligger symmetrisk omkring et punkt. Til højre ses hvordan vi ved at kræve den samme symmetri af andre scroll-kompressorer får defineret de to sidste sider. mellem et punkt og dets spejlbillede, er C bestemt hvis vi blot specificerer spejlbilledet af et enkelt punkt. Man kan tænke sig andre måder at definere de to manglende sider på; men spejlingsmetoden har den store fordel, at kompressoren så bliver symmetrisk, og det er dermed garanteret, at de to kanaler giver den samme kompression. Hvis man ser bort fra lækager og andre fysiske fænomener, så er kompressionen bestemt af kompressionskamrenes rumfang, og vi skal nu se, hvordan disse kan beregnes eksakt ud fra den naturlige ligning. Grundfladen af et kompressionskammer er begrænset af to kurvestykker, beliggende mellem to konsekutive røringspunkter, et fra siden af den bevægelige spiral x og et fra indhyllingskurven y +, som er den tilsvarende side af den faste spiral. Hvis det ene røringspunkt er y + () = x() + a(), så er det næste røringspunkt y + ( + 2π) = x( + 2π) +a(). Vi beregner ikke grundfladens areal direkte; men som differensen mellem de to arealer udspændt mellem begyndelsespunktet O og de to kurvestykker, se figur 14. Arealet af parallelogrammet udspændt af to vektorer a og b er givet ved planproduktet, [a b] = â b, se figur 15. Planproduktet er lineært i hver variabel, og er desuden antisymmetrisk. Arealerne i figur 14 er altså givet ved A y () = 1 2 A x () = π +2π [ y+ (u) y +(u) ] du, A() = A y () A x () = 1 2 [ x(u) + a() x (u) ] du, +2π ( [y+ (u) y + (u)] [ x(u) + a() x (u) ]) du, 20

21 A y + (u) u = u = + 2π O x(u) + a() = A y A x Figur 14: Arealet af grundfladen i et kompressions kammer beregnes som differensen mellem arealerne udspændt af O og de to kurvestykker. For at bestemme planprodukterne, indfører vi foruden vektoren e(t) = (cos t, sin t), dens tværvektor f(t) = ê(t) = ( sin t, cost). De opfylder, at e (t) = f(t), Vi har desuden, at f (t) = e(t), [ e(t) f(t) ] = [ f(t) e(t) ] = 1. a(t) = rf(t), a (t) = re(t), x (t) = x(t)e(t). Hvis vi ganger planprodukterne i integranden ud får vi [ y+ (u) y +(u) ] [ x(u)+a() x (u) ] = [ x(u)+a(u) x (u)+a (u) ] [ x(u)+a() x (u) ] = [ x(u) a (u) ] + [ a(u) x (u) ] + [ a(u) a (u) ] [ a() x (u) ]. Vi udregner nu integralet af hvert led: π +2π [ x(u) a (u) ] du = 2[ 1 [x(u) ] ] +2π a(u) 1 [ x (u) a(u) ] du 2 = 1 ( [x( ] [ ] ) + 2π) rf( + 2π) x() rf() π [ xe(u) rf(u) ] du = 1 2 r[ x() x( + 2π) f() ] r +2π x du = 1 ( [x() 2 r ] ) x( + 2π) f() + sx ( + 2π) s x (), 21

22 b r(u 2 ) r (u) r(u) r(u 1 ) â b a O Figur 15: Til venstre arealet af et parallelogram udspændt af a og b. Grundlinien er længden af a og højden er projektionen af b ind på â, så arealet er [a b] = â b. Til højre ses arealet udspændt af et punkt og et kurvestykke. Da det infinitesimale areal er givet ved 1 2 [r(u) r (u)]du, er det totale areal givet ved 1 u2 2 u 1 [r(u) r (u)]du. det næste led har vi allerede mødt ovenfor, så vi har umiddelbart π Det tredie led giver π [ a(u) x (u) ] du = 1 2 r( s x ( + 2π) s x () ). [ a(u) a (u) ] du = π [ ] 1 +2π rf(u) re(u) du = r 2 du = πr 2, 2 i overensstemmelse med at a beskriver en cirkel med radius r. Det sidste led giver 1 +2π [ a() x (u) ] du = 1 [ [rf() ] ] +2π x(u) 2 2 = 1 ( 2 r [ x( + 2π) f() ] + [ x() f() ]) = 1 2 r[ x() x( + 2π) f() ]. Det ønskede areal fås nu til [x() ] ) A() = πr 2 + r( x( + 2π) f() + sx ( + 2π) s x (). Bemærk, at vi atter har, at hvis x() er et polynomium, så kan x(), s x () og dermed arealet A() udregnes eksakt. 22

23 Arbejdet med at finde den optimale spiral er ikke færdigt. Dette arbejde pågår i samarbejde med Danfoss; men det er klart, at mulighed for at opskrive eksakte udtryk for alle de vigtige geometrisk egenskaber ved scrollkompressoren letter arbejdet betydeligt. Vi bør her bemærke, at ikke alene polynomielle udtryk for () giver eksakte udtryk; men også stykkevis polynomielle udtryk fører til eksakte udtryk. Da enhver funktion meget let kan tilnærmes med en stykkevis polynomiel funktion betyder det, at der i praksis ikke er nogen begrænsning på de spiraler, der kan analyseres eksakt. References [1] L. Creux. Rotary Engine. US Patent , [2] F. Fabricius-Bjerre. Lærebog i Geometri II. Differentialgeometri og kinematisk geometri. Polyteknisk Forlag, Lyngby, 6. udg., [3] J. Gravesen, C. Henriksen og P. Howell. Danfoss: Scroll optimization. I Gravesen og Hjorth [4], side URL [4] J. Gravesen og P. Hjorth, redaktører. 32nd European Study Group with Industry, Final Report. Institut for Matematik, Danmarks Tekniske Universitet, URL [5] H. W. Guggenheimer. Differential Geometry. McGraw-Hill Book Company, Inc., New York, [6] B. Jessen. Lærebog i Geometri II. Differentialgeometri og nomografi. Jul. Gjellerups Forlag, København, Anden udg., [7] J. E. McCullough og F. Hirschfeld. The scroll machine an old principle with a new twist. Mech. Eng., 101(12):46 51,

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Epistel E2 Partiel differentiation

Epistel E2 Partiel differentiation Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x +

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Bevægelsens Geometri

Bevægelsens Geometri Bevægelsens Geometri Vi vil betragte bevægelsen af et punkt. Dette punkt kan f.eks. være tyngdepunktet af en flue, et menneske, et molekyle, en galakse eller hvad man nu ellers har lyst til at beskrive.

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

2.9. Dette er en god simpel projektion for områder nær Ækvator. Hvad er den inverse afbildning, f -1?

2.9. Dette er en god simpel projektion for områder nær Ækvator. Hvad er den inverse afbildning, f -1? 2.9 2.4 Kortprojektioner og kort. Den matematiske baggrund for kortprojektioner er differentialgeometri. Det basale begreb her er mangfoldighed, dvs. om ethvert punkt ligger en omegn, der ligner en del

Læs mere

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N

Læs mere

Matematikken bag Parallel- og centralprojektion

Matematikken bag Parallel- og centralprojektion Matematikken bag parallel- og centralojektion 1 Matematikken bag Parallel- og centralojektion Dette er et redigeret uddrag af lærebogen: Programmering med Delphi fra 2003 (570 sider). Delphi ophørte med

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1)

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1) Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant. a) Beregn konstanten b således,

Læs mere

GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] 6.1.1 (i,ii,iv). Udregn første fundamentalform af følgende flader

GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] 6.1.1 (i,ii,iv). Udregn første fundamentalform af følgende flader GEOMETRI-TØ, UGE Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave, [P] 5... Find parametriseringer af de kvadratiske flader

Læs mere

Lidt om plane kurver og geometrisk kontinuitet

Lidt om plane kurver og geometrisk kontinuitet Lidt om plane kurver og geometrisk kontinuitet Jesper Møller og Rasmus P. Waagepetersen, Institut for Matematiske Fag, Aalborg Universitet September 3, 2003 1 Indledning Dette notesæt giver en oversigt

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan

Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan så vælge tegnet. - For at definere noget, eks en x værdi,

Læs mere

STUDENTEREKSAMEN AUGUST 2009 MATEMATIK A-NIVEAU. Onsdag den 12. august 2009. Kl. 09.00 14.00 STX092-MAA. Undervisningsministeriet

STUDENTEREKSAMEN AUGUST 2009 MATEMATIK A-NIVEAU. Onsdag den 12. august 2009. Kl. 09.00 14.00 STX092-MAA. Undervisningsministeriet STUDENTEREKSAMEN AUGUST 009 MATEMATIK A-NIVEAU Onsdag den 1. august 009 Kl. 09.00 14.00 STX09-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

Teorien. solkompasset

Teorien. solkompasset Teorien bag solkompasset Preben M. Henriksen 31. juli 2007 Indhold 1 Indledning 2 2 Koordinatsystemer 2 3 Solens deklination 4 4 Horisontalsystemet 5 5 Solkompasset 9 6 Appendiks 11 6.1 Diverse formler..............................

Læs mere

Substitutions- og indkomsteffekt ved prisændringer

Substitutions- og indkomsteffekt ved prisændringer Substitutions- og indkomsteffekt ved prisændringer Erik Bennike 14. november 2009 Denne note giver en beskrivelse af de relevante begreber omkring substitutions- og indkomsteffekter i mikroøkonomi. 1 Introduktion

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Geometriske grundbegreber 8. lektion

Geometriske grundbegreber 8. lektion 1 / 14 Geometriske grundbegreber 8. lektion Martin Raussen Institut for matematiske fag Aalborg Universitet 1.4.2008 2 / 14 (Regulære) parameterfremstillinger for en flade Eksempler Kurver på flader og

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2016til juni 2019 Institution VID gymnasier Uddannelse Fag og niveau Lærer(e) Hold Uddannelsestid i

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2019

Besvarelser til Calculus Ordinær Eksamen Juni 2019 Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016 Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

STUDENTEREKSAMEN DECEMBER 2008 MATEMATIK A-NIVEAU. Fredag den 12. december 2008. Kl. 09.00 14.00 STX083-MAA

STUDENTEREKSAMEN DECEMBER 2008 MATEMATIK A-NIVEAU. Fredag den 12. december 2008. Kl. 09.00 14.00 STX083-MAA STUDENTEREKSAMEN DECEMBER 2008 MATEMATIK A-NIVEAU Fredag den 12. december 2008 Kl. 09.00 14.00 STX083-MAA Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål.

Læs mere

Vejledende Matematik A

Vejledende Matematik A Vejledende Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og 10D skal kun én opgave afleveres til bedømmelse. Hvis flere end én opgave afleveres, bedømmes

Læs mere

Matematisk modellering og numeriske metoder. Lektion 13

Matematisk modellering og numeriske metoder. Lektion 13 Matematisk modellering og numeriske metoder Lektion 3 Morten Grud Rasmussen 9. november 25 Divergens af et vektorfelt [Sektion 9.8 og.7 i bogen, s. 43]. Definition af og og egenskaber for divergens Lad

Læs mere

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse. Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA STUDENTEREKSAMEN GUX MAJ 007 014 MATEMATIK A-NIVEAU Prøveform b 014 Kl. 9.00 14.00 GUX-MAA Matematik A Prøvens varighed er 5 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. Hele rummet uden z aksen

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. Hele rummet uden z aksen Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En

Læs mere

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 19 Opgave 1 (6 point) En funktion

Læs mere

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den

Læs mere

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at GEOMETRI-TØ, UGE 3 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad γ : (α, β) R 2 være en regulær kurve i planen.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2013 HTX Vibenhus

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Vejgeometri. Erik Vestergaard

Vejgeometri. Erik Vestergaard Vejgeometri Erik Vestergaard Erik Vestergaard www.matematiksider.dk Erik Vestergaard, Haderslev 007 Erik Vestergaard www.matematiksider.dk 3 Indholdsfortegnelse. Indledning... 5. Plane kurver... 5. Parametriserede

Læs mere

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

Ting man gør med Vektorfunktioner

Ting man gør med Vektorfunktioner Ting man gør med Vektorfunktioner Frank Nasser. april 11 c 8-11. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj 2013 HTX Vibenhus

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2015 til juni 2018 Institution VID gymnasier Uddannelse Fag og niveau Lærer(e) Hold Uddannelsestid

Læs mere

Matematikkens mysterier - på et højt niveau. Kenneth Hansen. 5. Kurver og keglesnit

Matematikkens mysterier - på et højt niveau. Kenneth Hansen. 5. Kurver og keglesnit Matematikkens mysterier - på et højt niveau af Kenneth Hansen 5. Kurver og keglesnit 5. Kurver og keglesnit 5.1 Kurver: Parameterfremstilling og ligning 5. Hastighed, acceleration og tangenter 7 5.3 Kurveundersøgelser

Læs mere

Opgaver til Maple kursus 2012

Opgaver til Maple kursus 2012 Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, jojep07@student.sdu.dk Martin Gyde Poulsen, gyde@nqrd.dk October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +

Læs mere

Matematik F2 Opgavesæt 2

Matematik F2 Opgavesæt 2 Opgaver uge 2 I denne uge kigger vi nærmere på Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en ve i den komplekse plan.

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx123-mat/a-07122012 Fredag den 7. december 2012 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Lektion 6 Logaritmefunktioner

Lektion 6 Logaritmefunktioner Lektion 6 Logaritmefunktioner Den naturlige logaritmefunktion Andre logaritmefunktioner log() Regneregler Integration ln() =, ln(e) = ln(a b) = ln(a) + ln(b) ln(a r ) = r ln(a) d = ln + C En berømt grænseværdi

Læs mere

Ting man gør med Vektorfunktioner

Ting man gør med Vektorfunktioner Ting man gør med Vektorfunktioner Frank Villa 3. august 13 Dette dokument er en del af MatBog.dk 8-1. IT Teaching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Vektorfelter langs kurver

Vektorfelter langs kurver enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven med hjælpemidler består af opgave 7-14 med i alt 19 spørgsmål.

Læs mere

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da:

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da: 7. marts 0 FVU AVU HF X FAG : Matematik B ark nr. antal ark 8 Opgave 0 a b 5 a b 5 = b 3 er en løsning til ligningen, da: = 9 = 3 Opgave Andengradsligningen løses, idet a = b = 3 c = 4 d (diskriminanten)

Læs mere

GU HHX MAJ 2009 MATEMATIK A. Onsdag den 13. maj 2009. Kl. 9.00 14.00 GL091-MAA. Undervisningsministeriet

GU HHX MAJ 2009 MATEMATIK A. Onsdag den 13. maj 2009. Kl. 9.00 14.00 GL091-MAA. Undervisningsministeriet GU HHX MAJ 2009 MATEMATIK A Onsdag den 13. maj 2009 Kl. 9.00 14.00 Undervisningsministeriet GL091-MAA Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og

Læs mere

Om første og anden fundamentalform

Om første og anden fundamentalform Geometri, foråret 2005 Jørgen Larsen 9. marts 2005 Om første og anden fundamentalform 1 Tangentrummet; første fundamentalform Vi betragter en flade S parametriseret med σ. Lad P = σu 0, v 0 være et punkt

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

A U E R B A C H M I K E # e z. a z. # a. # e x. # e y. a x

A U E R B A C H M I K E   # e z. a z. # a. # e x. # e y. a x M A T E M A T I K B A M I K E A U E R B A C H WWW.MATHEMATICUS.DK z a z # e z # a a x # e x ay # e y y x Matematik B A 2. udgave, 207 Disse noter er skrevet til matematikundervisning på stx og kan frit

Læs mere

Matematik A. Studentereksamen. Fredag den 5. december 2014 kl. 9.00-14.00. stx143-mat/a-05122014

Matematik A. Studentereksamen. Fredag den 5. december 2014 kl. 9.00-14.00. stx143-mat/a-05122014 Matematik A Studentereksamen stx143-mat/a-05122014 Fredag den 5. december 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Evaluering Matematik A på htx

Evaluering Matematik A på htx Evaluering af Matematik A på htx Sommeren 2013 1 Indholdsfortegnelse Forord... 3 Generelle bemærkninger... 4 Omsætningstabel... 6 Årets prøve i tal... 6 Vurdering af opgavesættet... 9 Forberedelsesmaterialet...

Læs mere

Brydningsindeks af vand

Brydningsindeks af vand Brydningsindeks af vand Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk 15. marts 2012 Indhold 1 Indledning 2 2 Formål

Læs mere

Some like it HOT: Højere Ordens Tænkning med CAS

Some like it HOT: Højere Ordens Tænkning med CAS Some like it HOT: Højere Ordens Tænkning med CAS Bjørn Felsager, Haslev Gymnasium & HF, 2001 I år er det første år, hvor CAS-forsøget er et standardforsøg og alle studentereksamensopgaverne derfor foreligger

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

MATEMATIK A. Indhold. 92 videoer.

MATEMATIK A. Indhold. 92 videoer. MATEMATIK A Indhold Differentialligninger... 2 Differentialregning... 3 Eksamen... 3 Hvorfor Matematik?... 3 Integralregning... 3 Regression... 4 Statistik... 5 Trigonometriske funktioner... 5 Vektorer

Læs mere

Matematik interne delprøve 09 Tesselering

Matematik interne delprøve 09 Tesselering Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen 30281023 Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der

Læs mere

Parameterkurver. Et eksempel på en rapport

Parameterkurver. Et eksempel på en rapport x Parameterkurver Et eksempel på en rapport Parameterkurver 0x MA side af 7 Hypocykloiden A B Idet vi anvender startværdierne for A og B som angivet, er en generel parameterfremstilling for hypocykloiden

Læs mere

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas UVB Skoleår: 2013-2014 Institution: Fag og niveau: Lærer(e): Hold: Teknisk Gymnasium Skive Matematik A Claus Vestergaard og Franka Gallas 3. A Titel 1: Rep af 1. og 2. år + Gocart Titel 2: Vektorer i rummet

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

Tilhørende: Robert Nielsen, 8b. Geometribog. Indeholdende de vigtigste og mest basale begreber i den geometriske verden.

Tilhørende: Robert Nielsen, 8b. Geometribog. Indeholdende de vigtigste og mest basale begreber i den geometriske verden. Tilhørende: Robert Nielsen, 8b Geometribog Indeholdende de vigtigste og mest basale begreber i den geometriske verden. 1 Polygoner. 1.1 Generelt om polygoner. Et polygon er en figur bestående af mere end

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

MM502+4 forelæsningsslides. uge 6, 2009

MM502+4 forelæsningsslides. uge 6, 2009 MM502+4 forelæsningsslides uge 6, 2009 1 Definition partielle afledede: De (første) partielle afledede af en funktion f(x, y) af to variable er f(x + h, y) f(x, y) f 1 (x, y) := lim h 0 h f(x, y + k) f(x,

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2018

Besvarelser til Calculus Ordinær Eksamen Juni 2018 Besvarelser til Calculus Ordinær Eksamen - 5. Juni 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2010-juni 2013 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Vektorfunktioner (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse VEKTORFUNKTIONER... Centrale begreber... Cirkler... 5 Epicykler... 7 Snurretoppen... 9 Ellipser... 1 Parabler...

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Kurver i planen og rummet

Kurver i planen og rummet Kurver i planen og rummet John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Kurver i planen og rummet. Noterne er beregnet til at blive brugt sammen med foredraget. Afsnit 2 er

Læs mere

Vektorfelter. enote Vektorfelter

Vektorfelter. enote Vektorfelter enote 24 1 enote 24 Vektorfelter I enote 6 indføres og studeres vektorer i plan og rum. I enote 16 ser vi på gradienterne for funktioner f (x, y) af to variable. Et gradientvektorfelt for en funktion af

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 0. februar 019 Dette eksamenssæt

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 2007. Matematik Niveau A

Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 2007. Matematik Niveau A Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 2007 07-0-1 Matematik Niveau A Dette opgavesæt består af 8 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

INTRODUKTION TIL VEKTORER

INTRODUKTION TIL VEKTORER INTRODUKTION TIL VEKTORER x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse HVORFOR INDFØRES VEKTORER?... 3 VEKTORER... 5 Vektoraddition... 7 Kræfternes parallelogram... 9 Multiplikation af vektor

Læs mere

Peter Orthmann Nielsen og Jørgen Franck. Dansk Amatør Raket Klub

Peter Orthmann Nielsen og Jørgen Franck. Dansk Amatør Raket Klub Beregning af areal, volumen, massemidtpunkt og inertimomenter for en klasse af omdrejningslegemer med cirkelbuegeometri af Peter Orthmann Nielsen og Jørgen Franck Dansk Amatør Raket Klub Introduktion Denne

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2019 Institution

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2019 Institution Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2019 Institution Kruses Gymnasium Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik A Angela N.

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Arealmomenter

Institut for Matematik, DTU: Gymnasieopgave. Arealmomenter Arealmomenter af. og. orden side Institut for Matematik, DTU: Gymnasieopgave Arealmomenter Teori: Se lærebøgerne i faget Statiske konstruktionsmodeller og EDB. Se også H&OL bind,., samt bind appendix.3,

Læs mere

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder.

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2. Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2.1 I Figur 1.1 i kapitel 1 er der vist et ideelt Kartesiske eller Euklidiske koordinatsystem, med koordinater ( X, Y, Z) = ( X 1, X 2, X

Læs mere

Uendelige rækker og Taylor-rækker

Uendelige rækker og Taylor-rækker Uendelige rækker og Taylor-rækker Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige Folkeuniversitetet i København, efteråret 200 Thomas Bolander, FUKBH 0 s. /24 Forhold mellem endelighed

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) August 2015- juni 2017 ( 1 og 2. År) Rybners HTX Matematik B

Læs mere

Besvarelser til Calculus Ordinær Eksamen - 5. Januar 2018

Besvarelser til Calculus Ordinær Eksamen - 5. Januar 2018 Besvarelser til Calculus Ordinær Eksamen - 5. Januar 18 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

M A T E M A T I K. # e z. # a. # e x. # e y A U E R B A C H M I K E. a z. a x

M A T E M A T I K. # e z. # a. # e x. # e y A U E R B A C H M I K E. a z. a x M A T E M A T I K B A M I K E A U E R B A C H WWW.MATHEMATICUS.DK z a z # e z # a a x # e x ay # e y y x Matematik B A. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2018 Rybners

Læs mere