{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}
|
|
- Silje Brøgger
- 2 år siden
- Visninger:
Transkript
1 Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om, hvor sandsynlige forskellige mulige resultater er. Lad os som eksempel se på samtidigt kast med en og en mønt: mønten kan vise tal- eller symbolsiden, en, 2, 3, 4, 5 eller 6 øjne, vi noterer efter et kast, hvad mønten viser og hvad en viser. Udfald Et udfald er resultatet af et stokastisk eksperiment. Et muligt udfald ved eksperimentet er f.eks. u = ( talside, 3øjne) eller kort u = ( t,3) arbejder i notationen med ordnede par, så første del af parret fortæller os, hvad mønten viste, og anden del af parret fortæller os, hvad en viste..vi Udfaldsrum Udfaldsrummet er mængden af alle mulige udfald. Her i vores eksempel altså med den korte skrivemåde: U = t, s,2,3,4,5,6 = t,, t,2, t,3, t,4, t,5, t,6, s,, s,2, s,3, s,4, s,5, s,6 { } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}. Introduktion: sandsynlighedsregning mat7 (JL) s.
2 I tabelform kunne vi beskrive udfaldsrummet: mønt u ( t,) ( s,) 2 ( t,2) ( s,2) 3 ( t,3) ( s,3) 4 ( t,4) ( s,4) 5 ( t,5) ( s,5) 6 ( t,6) ( s,6) t s Hændelse En hændelse er en delmængde af udfaldsrummet, altså en mængde H, hvor H U. I vores eksempel kan vi f.eks. se på den hændelse, at en viser 2 øjne. Da H = t, 2, s,2. gælder {( ) ( )} Sandsynlighedsfunktion Sandsynlighedsfunktionen P er en funktion der opfylder følgende krav: Dm ( P) = U Vm P 0;, altså u U : 0 P( u) ( ) [ ] P( u) = u U Sandsynlighedsfunktionen fortæller os altså, hvor sandsynligt hvert enkelt udfald i udfaldsrummet er. I vores eksempel er det vel rimeligt at gå ud fra, at der er samme sandsynlighed for hver af de to møntsider og samme sandsynlighed for hver af de seks esider. Samtidigt er det vel rimeligt at antage, at de to objekter ikke udøver indflydelse på hinanden, at talsiden altså f.eks. ikke fører til, at 3 øjne er mere sandsynligt end hvis mønten viste symbolsiden. Introduktion: sandsynlighedsregning mat7 (JL) s. 2
3 Så kunne vi opstille følgende sandsynlighedstabel til beskrivelse af P : mønt t s P ( u) P t, =. 2 Der gælder her altså f.eks., at ( 3) Sandsynlighedsfelt år vi har beskrevet udfaldsrummet og sandsynlighedsfunktionen er vores beskrivelse af det stokastiske eksperiment egentlig færdig. De to ting betragtet under et kalder vi et sandsynlighedsfelt. Et sandsynlighedsfelt er altså ( U, P ), hvor udfaldsrummet U og sandsynlighedsfunktionen P er nærmere beskrevet. Endeligt sandsynlighedsfelt Et sandsynlighedsfelt kaldes endeligt, hvis antallet af elementer i udfaldsrummet er endeligt (altså ikke uendeligt). I vores eksempel er antallet af elementer i U 2, så i vores tilfælde er der tale om et endeligt sandsynlighedsfelt. Hvis vi i stedet så på det stokastiske eksperiment, tilfældigt at vælge et reelt tal i intervallet ; 3 2, så ville der ikke være tale om et endeligt sandsynlighedsfelt, da der er uendelig mange reelle tal i intervallet. Introduktion: sandsynlighedsregning mat7 (JL) s. 3
4 Symmetrisk sandsynlighedsfelt Et sandsynlighedsfelt kaldes symmetrisk, hvis alle udfald er lige sandsynlige, altså u, u U P u = P u. hvis der gælder ( ) ( ) 2 : 2 Det er tilfældet i vores eksempel, her havde alle udfald jo sandsynligheden 2, men det er altså langt fra altid tilfældet. Hvis vi ser på et endeligt og symmetrisk sandsynlighedsfelt og med antal elementer i U, så må der gælde: u U P( u) tilfældet i vores eksempel. : = U U betegner. Det var også netop Sandsynligheden for en hændelse Der gælder: ( H ) = P( u) P. u H Specielt er P ( Ø) = 0 og P ( U ) = F.eks. kan vi igen se på den hændelse, at en viser 2 øjne. Da gælder 2 H = {( t, 2),( s,2) } og P ( H ) = + = = Hvis vi ser på et endeligt og symmetrisk sandsynlighedsfelt og med antal elementer i U og med siger ofte ( H ) antal elementer i H, så gælder der ( ) H U betegner H P H =. Vi antal gunstige P =. Men det gælder altså kun i endelige symmetriske antal mulige sandsynlighedsfelter. I vores eksempel altså ( H ) 2 P = =. 2 6 U Stokastisk variabel En stokastisk variabel er en funktion X (altså på trods af ordet ikke en variabel), der opfylder følgende betingelser: Dm ( X ) = U Vm( X ) R Den stokastiske variabel lægges altså så at sige ovenpå det stokastiske forsøg og oversætter udfaldene til reelle tal efter en nærmere fastlagt forskrift. Introduktion: sandsynlighedsregning mat7 (JL) s. 4
5 Vi kan i vores eksempel f.eks. lave et spil mellem en spiller og en bank ud af det stokastiske forsøg og opstille følgende regler for, hvad spilleren skal gøre i afhængighed af udfaldet: t mønt s regel betal betal 2 betal betal 3 betal 2 betal 2 4 betal 2 betal 2 5 modtag 5 modtag 5 6 modtag 5 modtag 5 Eller mere kortfattet formuleret: mønt t s X ( u) Her gælder altså Vm ( X ) = {, 2,5} og f.eks. (( t, 3) ) = 2 X. Før man som spiller eller bank kaster sig ud i sådan et spil, kunne det jo være rart at vide, hvad man sådan i gennemsnittet kan forvente at få ud af spillet. Faktisk er det spørgsmål af denne type, der har været en væsentlig kilde til, at sandsynlighedsregning overhovedet er blevet udviklet.vi taler her om den stokastiske variables gennemsnit (på tysk hedder det faktisk Erwartungswert). Symbolet for det E X. Hvordan vi beregner det, skal vi se på senere. er ( ) Men allerede nu kan vi se en væsentlig fordel ved vores definition af en stokastisk variabel. Udfald ser ikke nødvendigvis ud på en måde, så man kan beregne et gennemsnit (eller noget som helst), men det gør stokastiske variable, de leverer jo reelle tal. Introduktion: sandsynlighedsregning mat7 (JL) s. 5
6 Sandsynlighed for at en stokastisk variabel antager en bestemt værdi For x R definerer udsagnet X = x faktisk en særlig hændelse, nemlig: H x = u U X u = x. { ( ) } Følgelig gælder der P( X = x) = P( H ) = P u U X ( u) x ({ = x }) = P( u) = P( u) u H x u { u U X ( u ) = x } hvor der her altså bare er tale om forskellige måder at skrive det samme. I vores eksempel med spillet med mønten og en gælder f.eks. 4 4 P ( X = ) = = = eller mere direkte P ( X = ) = =, hvor vi i antal gunstige den sidste regnemåde har brugt regnereglen P ( H ) =, da vi befinder os antal mulige i et endeligt og symmetrisk sandsynlighedsfelt. Og der gælder her f.eks. ( X = 3 ) = P( Ø) = 0 P. På samme måde kan vi se på udsagn (og dermed hændelser) af typen X < x, X x, X > x, X x, x < X < x2 (hvor x, x, x 2 R) osv. osv. I et spil som det ovenfor beskrevne kan det f.eks. være interessant at se på X < 0 (svarende til at spilleren kommer af med penge) og X > 0 (svarende til at banken kommer af med penge)., Reference: GDS, s , s Introduktion: sandsynlighedsregning mat7 (JL) s. 6
Lad os som eksempel se på samtidigt kast med en terning og en mønt:
SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve
Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Definition. Definitioner
Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en
Sandsynlighedsregning Stokastisk variabel
Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på
Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen
Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,
Dagens program. Afsnit Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder
Dagens program Afsnit 2.1-2.3 Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder 1 Stokastiske variable (diskrete) Et eksperiment med usikkerhed beskrives
Binomialfordelingen. Binomialfordelingen. Binomialfordelingen
Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige
Start med at beskriv det bagvedliggende stokastiske eksperiment med det tilhørende sandsynlighedsfelt.
Hjælp til opgave 2 besvarelseseksempel Tip til de følgende opgaver tart med at beskriv det bagvedliggende stokastiske eksperiment med det tilhørende sandsynlighedsfelt. Definér derefter relevante hændelser
Nanostatistik: Stokastisk variabel
Nanostatistik: Stokastisk variabel JLJ Nanostatistik: Stokastisk variabel p. 1/29 Repetition Ω: udfaldsrummet: alle de mulige udfald af et experiment P(A): ss for hændelsen A = frekvens i uafhængige gentagelser
Statistik. Hjemmeside: kkb. Statistik - lektion 1 p.1/22
Statistik Kursets omfang: 2 ECTS Inklusiv mini-projekt! Bog: Complete Business Statistics, AD Aczel & J. Sounderpandian Software: SPSS eller Excel?? Forelæser: Kasper K. Berthelsen E-mail: kkb@math.aau.dk
MM501 forelæsningsslides
MM501 forelæsningsslides uge 40, 2010 Produceret af Hans J. Munkholm bearbejdet af JC 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen s.445-8 dx Eksempler
Kvantitative Metoder 1 - Efterår Dagens program
Dagens program Afsnit 3.1-3.2 Middelværdi -Definition - Regneregler Betinget middelværdi Middelværdier af funktioner af stokastiske variable Loven om den itererede middelværdi Eksempler 1 Beskrivelse af
Kvantitative Metoder 1 - Forår Dagens program
Dagens program Afsnit 3.1-3.2 Middelværdi -Definition - Regneregler Betinget middelværdi Middelværdier af funktioner af stokastiske variabler Loven om den itererede middelværdi Eksempler 1 Beskrivelse
Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg.
Noter til Biomat, 005. Kombinatorik. - eller kunsten at tælle. Alle tal i kombinatorik-afsnittet er hele og ikke-negative. Additionsprincippet enten - eller : Antag vi enten skal lave et valg med m muligheder
Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger
Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:
Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger
Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:
Sandsynlighedsregning
Sandsynlighedsregning Udfaldsrum og hændelser Udfald e:resultatetafetforsøg. Udfaldsrum S: Mængden af de mulige udfald af forsøget. Hændelse A: En delmængde af udfaldsrummet. Tilfældigt fænomen S e (eks.)
Aarhus Universitet 5. februar Meddelelse 2
fdeling for Teoretisk Statistik IOSTTISTIK Institut for Matematiske Fag Preben læsild arhus Universitet 5. februar 2003 Meddelelse 2 Forelæsningerne i uge 6 (3-7.2) Ved forelæsningen den 4.2 gav Frank
2011.09.20 lth@campus.dk
2011.09.20 lth@campus.dk Intro Læseplan Beskrivende Statistik Sandsynligheder Ordet kommer fra Latin.: statisticum (statsrådgiver) Italiensk.: statistica (statsmand / politiker) Hvorfor statistik? Træk
TØ-opgaver til uge 46
TØ-opgaver til uge 46 Først laver vi en liste over de ligninger med mere i [ITP], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Sætning 3.1, ligning (3.3) på side 7. [3]: Sætning 3.1, ligning (3.4)
Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner Stokastiske variable: udfald
Sandsynlighedsregning og statistik
og statistik Jakob G. Rasmussen, Institut for Matematiske Fag jgr@math.aau.dk Litteratur: Walpole, Myers, Myers & Ye: Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th ed. Slides
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen
Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen
1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable
Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder
Hvad skal vi lave i dag?
p. 1/2 Hvad skal vi lave i dag? Eksempler på stokastiske variable. Ventetid på krone ved møntkast. Antal plat ved n kast. Antal radioaktive henfald. Ventetiden på en flyulykke. Udtrækning af tal i et interval.
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring
Meddelelse 2. Forelæsningerne i uge 6 ( ) Gennemgangen af BPT fortsættes. Vi afslutter Kapitel 4 og når sikkert et godt stykke ind i Kapitel 5.
Institut for Matematiske Fag arhus Universitet STTISTIK(2003-ordning) Jens Ledet Jensen Jørgen Granfeldt 2. februar 2006 Meddelelse 2 Forelæsningerne i uge 5 (30.1 5.2) Ved forelæsningen mandag den 30.
Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold:
Side 21 Oversigt over undervisningen i matematik - 2x 05/06 Der undervises efter: Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 Claus Jessen, Peter Møller og
Personlig stemmeafgivning
Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt
Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1
MM501/MM503 forelæsningsslides
MM501/MM503 forelæsningsslides uge 50, 2009 Produceret af Hans J. Munkholm 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen dx Eksempler = et udtryk, der indeholder
Sandsynlighedsregning
Mogens Bladt www2.imm.dtu.dk/courses/02405 28. September, 2007 Stokastiske variable Betragt 3 kast med en mønt. Så er udfaldsrummet Ω = {(p, p, p), (p, p, k), (p, k, p), (p, k, k), (k, p, p), (k, p, k),
Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen
Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistisk Model Indhold Binomialfordeling Sandsynlighedsfunktion Middelværdi og spredning 1 Aalen: Innføring i statistik med medisinske eksempler
Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler
Dagens program Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler 1 Sandsynlighedsmodel Kvantitative Metoder 1 - Efterår 2006 Eksperiment
Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset
4 Stokastiske variabler
4 Stokastiske variabler I kapitel 3 viste vi, hvordan man kan tilskrive sandsynligheder til forskellige hændelser, der knytter sig til et eksperiment. I praksis vil et eksperiment ofte involvere mange
t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42
Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder
Sandsynlighedsregning
Mogens Bladt www2.imm.dtu.dk/courses/02405 7. September, 2007 Hvad er sandsynlighedsregning? Formel matematisk måde til at håndtere tilfældigheder. Dybest set en formalisering af udregninger med proportioner.
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +
INSTITUT FOR MATEMATISKE FAG c
INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske
Sandsynlighedsregning
Sandsynlighedsregning En note om sandsynlighedsregning. Den er tænkt som supplement til Vejen til Matematik B2. Henrik S. Hansen, Sct. Knud Version 2.0 Indhold Indledning... 1 Sandsynlighedsregning...
Løsningsforslag: Oversættelsesøvelse (ingen beregninger!) Ny øvelse: Gennemfør beregningerne! Oversættelse til matematisk notation
12b mat JL 25.11.2014 Løsningsforslag: Oversættelsesøvelse (ingen beregninger!) Ny øvelse: Gennemfør beregningerne! Kildetekst 1 Erfaringsmæssigt foretrækker 25 % af alle hankatte og 35 % af alle hunkatte
Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)
; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians
Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1
Landmålingens fejlteori Sandsynlighedsregning Lektion 1 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 23. april 2009 1/28 Landmålingens
Repetition Stokastisk variabel
Repetition Stokastisk variabel Diskret stokastisk variabel Udfaldsrum endelige eller tællelige mange antal elementer Sandsynlighedsfunktion f(x) er ofte tabellagt Udregning af sandsynligheder P( a < X
Hvad skal vi lave i dag?
p. 1/1 Hvad skal vi lave i dag? Repeterer lidt om diskrete sv. Standardfordelinger (binomial, Poisson, geometrisk) Stokastiske vektorer Diskrete stokastiske vektorer p. 2/1 Repetition Heltallige sv er
Forslag til løsning af Opgaver til sandsynlighedsregning (side 434)
Forslag til løsning af Opgaver til sandsynlighedsregning (side 434) Opgave Vi kan selv vælge, om vi vil arbejde med ordnet eller uordnet udtagelse, hvis vi blot sikrer, at vi er konsekvente i vores valg,
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte
Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning
Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden
Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var.
Statistik Lektion Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Repetition Stikprøve Stikprøvestørrelse n Stikprøvemiddelværdi Stikprøvevarians s Population
SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former.
SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former. Statistisk sandsynlighed Her finder man sandsynligheden for en hændelse ved at kigge på en
Side 9 sætningen: Kolmogorov s konsistensætning Tue Tjur, Institut for Matematisk Statistik
Side 9 sætningen: Kolmogorov s konsistensætning Tue Tjur, Institut for Matematisk Statistik Advarsel: I denne artikel gives udtryk for holdninger til sandsynlighedsregningens grundlag. Disse er forfatterens
Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete
Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Line Dorthe
Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 0. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6. og 6. Betingede diskrete
TØ-opgaver til uge 45
TØ-opgaver til uge 45 Først laver vi en liste over de ligninger med mere i [IPT], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Ligning (2.6) på side 5. [3]: Sætning 3.1, ligning (3.3) på side 7.
Introduktion til sandsynlighedsregning
Jens E. Overø Introduktion til sandsynlighedsregning Samfundslitteratur Jens E.Overø Introduktion til sandsynlighedsregning 1. udgave 1992 1. udgave, 2. oplag 2001 Samfundslitteratur 2001 Grafisk tilrettelæggelse:
Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber
Produktsystemer, substitutions-permutations-net samt lineær og differentiel kryptoanalyse Kryptologi, fredag den 10. februar 2006 Nils Andersen (Stinson 3., afsnit 2.7 3.4 samt side 95) Produkt af kryptosystemer
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte
En Introduktion til Sandsynlighedsregning
En Introduktion til Sandsynlighedsregning 4. Udgave Michael Sørensen 26. juni 2003 0 Forord Til 2. udgave Disse forelæsningsnoter trækker i betydelig grad på noter udarbejdet af en række kolleger. Det
Matematikkens mysterier - på et obligatorisk niveau. 9. Sandsynlighedsregning
Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 9. Sandsynlighedsregning Hvad er den typiske størrelse af et nittehoved? 9. Statistik og sandsynlighedsregning Indhold 9.0 Indledning
Kvantitative Metoder 1 - Forår 2007. Dagens program
Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte fordelinger, Afsnit 5.1-5.2: - Fordelingsfunktion - Tæthedsfunktion - Eksempel:
En Introduktion til Sandsynlighedsregning
En Introduktion til Sandsynlighedsregning 9. Udgave Michael Sørensen 11. juli 2008 0 Forord Til 2. udgave Disse forelæsningsnoter trækker i betydelig grad på noter udarbejdet af en række kolleger. Det
Teoretisk Statistik, 16. februar Generel teori,repetition
1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske
Kvantitative Metoder 1 - Efterår Dagens program
Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde
Kvantitative Metoder 1 - Efterår 2006. Dagens program
Dagens program Afsnit 1.7-1.8 Fødselsdagseksemplet, fra sidst Eksperimenterikkealleerligesandsynlige Diskrete sandsynlighedsfordelinger -Definition af sandsynligheder - Regneregler Hvad er sandsynligheder?
Sandsynlighedsregning & Statistik
Jørgen Larsen Sandsynlighedsregning & Statistik for matematikstuderende 2006 Indhold Forord 5 Del I Sandsynlighedsregning 7 Indledning 9 Endelige udfaldsrum. Grundlæggende definitioner.....................
Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/
Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial
Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable
Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder
Sandsynligheder Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder En sandsynlighed er et kvantitativt mål for usikkerhed et mål der udtrykker styrken af vores tro på forekomsten
Vejledende løsninger til opgaver i kapitel 6
Vejledende løsninger til opgaver i kapitel Opgave 1: a) Den stokastiske variabel, X, der angiver, om en elev består, X = 1, eller dumper, X =, sin eksamen i statistik. b) En binomialfordelt variabel fremkommer
Statistiske modeller
Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015/16 Institution Vid Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik B Hasse Rasmussen
Oversigt over nyttige fordelinger
Oversigt over nyttige fordelinger Helene Regitze Lund Wandsøe November 14, 2011 1 Bernoulli-fordelingen 1 Når et eksperiment har to mulige udfald: succes eller fiasko. X er en stokastisk variabel med følgende
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 2014 Institution Vid Gymnasier, Rønde Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik B Ann Risvang
Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9.
Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. klassetrin: statistisk sandsynlighed, kombinatorisk sandsynlighed og personlig
Eksempel 1.1: kvalitetskontrol
Idag 1. Introduktion til statistik: Eksempel 1.1 og 1.2 fra WMMY samt andre eksempler. 2. Sandsynlighedsregning: udfaldsrum, hændelser, regning med sandsynligheder. 1/17 Eksempel 1.1: kvalitetskontrol
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2013 Institution Frederikshavn Handelsgymnasium Uddannelse Fag og niveau Lærer(e) HHX Matematik B
Kvantitative Metoder 1 - Efterår 2006. Dagens program
Dagens program Afsnit 2.4-2.5 Bayes sætning Uafhængige stokastiske variable - Simultane fordelinger - Marginale fordelinger - Betingede fordelinger Uafhængige hændelser - Indikatorvariable Afledte stokastiske
Modul 3: Sandsynlighedsregning
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 3: Sandsynlighedsregning 3.1 Sandsynligheder................................... 1 3.2 Tilfældig udtrækning fra en mængde........................
Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3
Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april
Skriftlig Eksamen Diskret Matematik (DM528)
Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug
Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak
Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
Sandsynlighedsregning Oversigt over begreber og fordelinger
Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)
Indblik i statistik - for samfundsvidenskab
Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik
Opgaver i sandsynlighedsregning
Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)
Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/
Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ JLJ Nanostatistik: sandsynlighederkursushjemmeside:http://www.imf.au.dk/kurser/nanostatistik/ p. 1/16 Højder
Sandsynlighedsregning & Statistik
Sandsynlighedsregning & Statistik for matematikstuderende Jørgen Larsen 2006 Roskilde Universitet Teksten er sat med skriften Kp-Fonts ved hjælp af KOMA- Script og LATEX. Tegningerne er fremstillet med
Matematik 3 SS. Københavns Universitet Naturvidenskabelig kandidateksamen, sommeren Opgaver til besvarelse i 3 timer fredag den 18. juni 1993.
Københavns Universitet Opgaver til besvarelse i 3 timer fredag den 18. juni 1993. Opgave 1 (50%) Det bemærkes, at en række af nedenstående spørgsmål kan besvares uafuængigt af de Øvrige spørgsmål (resultaterne,
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 4: Diskrete fordelinger Afsnit 4.1-4.2, 4.7: Bernoulli fordeling Binomial fordeling Store Tals Lov (Laws of Averages, Laws of Large Numbers) 1 Bernoulli fordeling Kvantitative Metoder
De rigtige reelle tal
De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion