Hvad skal vi lave i dag?

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Hvad skal vi lave i dag?"

Transkript

1 p. 1/2 Hvad skal vi lave i dag? Eksempler på stokastiske variable. Ventetid på krone ved møntkast. Antal plat ved n kast. Antal radioaktive henfald. Ventetiden på en flyulykke. Udtrækning af tal i et interval. Hovedklasse 1: Diskrete stokastiske variable. En heltallig sv er diskret.

2 p. 2/2 Ventetid på krone ved møntkast Supplerende eksempel 5.1 En mønt kastes igen og igen. Kastene er uafhængige. Sandsynligheden for plat er π, og plat betegnes med B. Sandsynligheden for krone er dermed 1 π, og krone betegnes B C. En streng som BBB C BB C B C... angiver plat i de to første kast, krone i tredje kast o.s.v.

3 p. 3/2 Ventetid på krone ved møntkast BBB C BB C B C... Lad nu X betegne første kast hvor vi får krone. Ovenfor observeres X = 3. Hvad kan siges om sandsynligheden P(X = n) for n = 1, 2,...? Hændelsen {X = 1} indtræffer hvis vi ser krone allerede i første kast. Derfor er P(X = 1) = 1 π.

4 p. 4/2 Ventetid på krone ved møntkast For n = 1, 2,... er {X = n} = BB...BBB C hvor der på højre side står B n 1 gange. Derfor er P(X = n) = π n 1 (1 π) for n = 1, 2,... (Senere beregner vi sandsynligheden P(Xulige) for at X er ulige. )

5 p. 5/2 Antal plat ved møntkast Supplerende Eksempel 5.2 En mønt kastes n gange. Kastene er uafhængige. Sandsynligheden for plat er π, og plat betegnes med B. Sandsynligheden for krone er dermed 1 π, og krone betegnes B C. En streng som BBB C...B angiver plat i de to første kast, krone i tredje kast og... og plat i nte kast.

6 p. 6/2 Antal plat ved møntkast Lad X betegne antal plat der observeres. Beregn sandsynligheden P(X = x) for x = 0, 1,...,n. Eksempel: {X = 0} = B C B C...B C ({X = 0} svarer til lutter krone). Det vil sige P(X = 0) = (1 π) n

7 Antal plat ved møntkast Eksempel: {X = 1} = BB C B C...B C B C BB C...B C... B C B C...B C B (Plat i første kast, resten krone; eller plat i 2. kast resten krone eller... eller plat i nte kast, resten krone) Derfor er P(X = 1) = n π(1 π) n 1 p. 7/2

8 p. 8/2 Antal plat ved møntkast Generelt er P(X = x) = ( ) n x π x (1 π) n x. (x = 0, 1,...,n). Her er ( ) n x = n! x!(n x)! antal strenge af længde hvori der er x B er og (n x) B c er

9 p. 9/2 Antal plat ved møntkast Vi siger, at X er binomialfordelt med antalsparameter n og sandsynlighedsparameter π og skriver X b(n,π)

10 p. 10/2 Antal radioaktive henfald Supp. Eks. 5.3 Vi registrer antal radioaktive henfald X i løbet af T tidsenheder. Model for X? Første model: X b(n,π). (Fordi vi har plat-krone eksperiment for hver isotop: enten henfalder den eller også gør den ikke). Modellen duer ikke: n ukendt, π lille.

11 p. 11/2 Antal radioaktive henfald Men hvis π 0 og n på en sådan måde at nπ λ > 0, så gælder ( ) n π x (1 π) n x e λλx x x!. Derfor benytter vi ofte modellen P(X = x) = e λλx x!, x = 0, 1, 2,.... I dette tilfælde siges X at være Poissonfordelt med parameter λ, og vi skriver X po(λ).

12 p. 12/2 Glemsomme stokastiske variabel Antag: Vi vil modellere en glemsom stokastisk variabel. Eksempler: Ventetiden på at vand koger er ikke glemsom. Ventetiden på en flyulykke må formodes at være glemsom: Selvom det er lang tid siden vi sidst har set en flyulykke, så medfører dette ikke, at der større risiko for flyulykke i den nærmeste fremtid.

13 p. 13/2 Glemsomme stokastiske variabel Matematisk: X er glemsom, hvis X er positiv og P(X > s + t X > s) = P(X > t) s,t > 0 Ækvivalent: P(X > s + t) = P(X > s)p(x > t). Hvilke stokastiske variable er glemsomme?

14 p. 14/2 Glemsomme stokastiske variabel Antag X e(λ) (X er eksponentialfordelt med parameter λ). Hermed menes Da gælder at X er glemsom. P(X > t) = e λt, t > 0. Har også det omvendte resultat: X glemsom medfører X eksponentialfordelt! Det vil sige, at hvis X glemsom, så findes λ med X e(λ). Kapitel 6: λ er den inverse middelværdi.

15 p. 15/2 Hovedtyper af sv Vi har mødt to typer af stokastiske variable: Heltallige: Ventetid på krone Antal plat (binomialfordelingen) Antal radioaktive henfald (Poissonfordelingen) Kontinuerte (P(X = x) = 0 for ethvert x): Ventetid på flyulykke (eksponentialfordelingen) Heltallige stokastiske variable er de vigtigste eksempler på diskrete stokastiske variable, som defineres i det følgende.

16 p. 16/2 Hovedtype 1: Diskrete sv Definition 5.4 (IPT) En stokastisk variabel X siges at være diskret, hvis der findes en tællelig mængde S således, at P(X S) = 1. Uhørt vigtigt: Enhver mængde af hele tal er tællelig. Det vil sige, at hvis X er heltallig, så er X diskret.

17 p. 17/2 Hovedtype 1: Diskrete sv Supp. Eksempel 5.7 Antal øjne ved terningekast er diskret med S = {1,...,6}. Sum af øjne ved kast med to terninger er diskret med S = {2,...,12}. Første krone er diskret med S = {1, 2,...}. X b(n,π) (antal plat) er diskret med S = {0, 1,...,n}. X po(λ) er diskret med S = {0, 1,...}. Eksponentialfordelingen er ikke diskret.

18 p. 18/2 Hovedtype 1: Diskrete sv (Definition 5.4 i IPT). Notation Lad X være en diskret sv. Vi definerer da sandsynlighedsfunktionen for X ved p(x) = P(X = x), x R. Sandsynlighedsfunktionen betegnes også p X. Mængden {x R p(x) > 0} kaldes for støtten for p og betegnes supp p.

19 p. 19/2 Eksempel på anvendelse af notation X b(n,π) medfører, at p er p(x) = ( ) n π x (1 π) n x x 0 ellers. hvis x {0, 1, 2,...,n} og supp p = {0, 1,...,n}. (Tænk på supp p som smart notation for S fra tidligere.)

20 p. 20/2 Egenskaber ved p Sætn. 5.4 (IPT) Lad X være ssfunktionen for diskret X. Da gælder i) p(x) 0 for alle x; ii) Mængden {x p(x) > 0} er tællelig; iii) x:p(x)>0 p(x) = 1. Omvendt: Hvis p opfylder i) iii), så findes diskret sv X så X har ssfkt p.

21 p. 21/2 Egenskaber ved p Sætn. 5.4 (IPT) - fortsat. Antag at X har ssfkt p. Da gælder for A R P(X A) = x A supp p p(x). (5.4) Undertiden vil jeg kalde elementerne i A supp p for de gunstige værdier.

22 p. 22/2 Example 5.8 Lad X være diskret med ssfkt. P(X = x) = p X (x) = 0.1 hvis x = hvis x = hvis x = hvis x = hvis x = 3 0 ellers. Kan evt. repræsentere p ved pindediagram (Jan forklarer nærmere). Bemærk at supp p = { 2, 1, 1, 2, 3}.

23 p. 23/2 Example 5.8 Vi har da P(X > 0) = p X (1) + p X (2) + p X (3) = 0.7 hvor vi har benyttet Sætn. 5.4 med A =]0, [ A supp p = {1, 2, 3} (de gunstige værdier )

24 p. 24/2 Første krone ved møntkast Supp. Eks. 5.9 Lad X modellere første krone ved møntkast. Supp. Eks. 5.1 viser P(X = x) = p X (x) = hvor π er ss for plat. D.v.s. { π x 1 (1 π) hvis x {1, 2,...} 0 ellers, supp p X = {1, 2,...}

25 p. 25/2 Første krone ved møntkast Ønske: Beregn P(X ulige ). D.v.s. de gunstige værdier er 1, 3, 5,... Heraf følger P(X ulige ) = p X (1) + p X (3) + p X (5) +... mellemregninger på næste slide = π

26 Første krone ved møntkast Mellemregninger: P(X ulige ) = p X (1) + p X (3) + p X (5) + = p X (2n + 1) = n=0 π 2n+1 1 (1 π) n=0 = (1 π) = (1 π) (π 2 ) n n=0 1 1 π 2 = π, p. 26/2

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/1 Hvad skal vi lave i dag? Repeterer lidt om diskrete sv. Standardfordelinger (binomial, Poisson, geometrisk) Stokastiske vektorer Diskrete stokastiske vektorer p. 2/1 Repetition Heltallige sv er

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte fordelinger, Afsnit 5.1-5.2: - Fordelingsfunktion - Tæthedsfunktion - Eksempel:

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte

Læs mere

Sandsynlighedsregning Stokastisk variabel

Sandsynlighedsregning Stokastisk variabel Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på

Læs mere

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Institut for Økonomi Aarhus Universitet Statistik 1, Forår 2001 Allan Würtz 4. April, 2001 En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Uniform fordeling Benyttes som model for situationer,

Læs mere

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro Uge 48 II Teoretisk Statistik 7. november 003 Numerisk modelkontrol af diskrete fordelinger: intro Eksempel: kvalitetskontrol Goodness-of-fit test: generel teori Endeligt udfaldsrum Udfaldsrum uden øvre

Læs mere

TØ-opgaver til uge 46

TØ-opgaver til uge 46 TØ-opgaver til uge 46 Først laver vi en liste over de ligninger med mere i [ITP], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Sætning 3.1, ligning (3.3) på side 7. [3]: Sætning 3.1, ligning (3.4)

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Hypergeometrisk fordeling, Afsnit 4.3 Multinomial fordeling, Afsnit 4.8 Geometrisk fordeling og Negativ binomialfordeling (Inverse Sampling), Afsnit 4.4 Approksimation

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Nanostatistik: Stokastisk variabel

Nanostatistik: Stokastisk variabel Nanostatistik: Stokastisk variabel JLJ Nanostatistik: Stokastisk variabel p. 1/29 Repetition Ω: udfaldsrummet: alle de mulige udfald af et experiment P(A): ss for hændelsen A = frekvens i uafhængige gentagelser

Læs mere

Teoretisk Statistik, 13 april, 2005

Teoretisk Statistik, 13 april, 2005 Poissonprocessen Teoretisk Statistik, 13 april, 2005 Setup og antagelser Fordelingen af X(t) og et eksempel Ventetider i poissonprocessen Fordeling af ventetiden T 1 til første ankomst Fortolkning af λ

Læs mere

Oversigt over nyttige fordelinger

Oversigt over nyttige fordelinger Oversigt over nyttige fordelinger Helene Regitze Lund Wandsøe November 14, 2011 1 Bernoulli-fordelingen 1 Når et eksperiment har to mulige udfald: succes eller fiasko. X er en stokastisk variabel med følgende

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Afsnit 4.1-4.2, 4.7: Bernoulli fordeling Binomial fordeling Store Tals Lov (Laws of Averages, Laws of Large Numbers) 1 Bernoulli fordeling Kvantitative Metoder

Læs mere

Sandsynlighedsregning & Statistik

Sandsynlighedsregning & Statistik Jørgen Larsen Sandsynlighedsregning & Statistik for matematikstuderende 2006 Indhold Forord 5 Del I Sandsynlighedsregning 7 Indledning 9 Endelige udfaldsrum. Grundlæggende definitioner.....................

Læs mere

Nanostatistik: Stokastisk variabel

Nanostatistik: Stokastisk variabel Nanostatistik: Stokastisk variabel JLJ Nanostatistik: Stokastisk variabel p. 1/34 Repetition Ω: udfaldsrummet: alle de mulige udfald af et experiment P(A): ss for hændelsen A = frekvens i uafhængige gentagelser

Læs mere

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1

Læs mere

Opgaver i sandsynlighedsregning

Opgaver i sandsynlighedsregning Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)

Læs mere

Vejledende løsninger til opgaver i kapitel 6

Vejledende løsninger til opgaver i kapitel 6 Vejledende løsninger til opgaver i kapitel Opgave 1: a) Den stokastiske variabel, X, der angiver, om en elev består, X = 1, eller dumper, X =, sin eksamen i statistik. b) En binomialfordelt variabel fremkommer

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 0 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg.

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg. Noter til Biomat, 005. Kombinatorik. - eller kunsten at tælle. Alle tal i kombinatorik-afsnittet er hele og ikke-negative. Additionsprincippet enten - eller : Antag vi enten skal lave et valg med m muligheder

Læs mere

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfn@dtu.dk Dagens emner: Afsnit 4.2, 4.3 og 4.4 Poissonprocessen/eksponentialfordelingen

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,

Læs mere

Binomialfordelingen. X ~ bin(n,p): X = antal "succeser" i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes.

Binomialfordelingen. X ~ bin(n,p): X = antal succeser i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes. Uge 9 Teoretisk Statistik 23. februar 24 1. Binomialfordelingen 2. Den hypergeometriske fordeling 3. Poissonfordelingen 4. Den negative binomialfordeling 5. Gammafordelingen Binomialfordelingen X ~ bin(n,p):

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

4 Stokastiske variabler

4 Stokastiske variabler 4 Stokastiske variabler I kapitel 3 viste vi, hvordan man kan tilskrive sandsynligheder til forskellige hændelser, der knytter sig til et eksperiment. I praksis vil et eksperiment ofte involvere mange

Læs mere

Nanostatistik: Middelværdi og varians

Nanostatistik: Middelværdi og varians Nanostatistik: Middelværdi og varians JLJ Nanostatistik: Middelværdi og varians p. 1/28 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

StatDataN: Middelværdi og varians

StatDataN: Middelværdi og varians StatDataN: Middelværdi og varians JLJ StatDataN: Middelværdi og varians p. 1/33 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle egetræer,

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Løsninger til kapitel 5

Løsninger til kapitel 5 1 Løsninger til kapitel 5 Opgave 51 Det nemmeste er her at omskrive alle sandsynlighederne til differenser mellem kumulerede sandsynligheder, dvs af sandsynligheder af formen, og derefter beregne disse

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

TØ-opgaver til uge 45

TØ-opgaver til uge 45 TØ-opgaver til uge 45 Først laver vi en liste over de ligninger med mere i [IPT], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Ligning (2.6) på side 5. [3]: Sætning 3.1, ligning (3.3) på side 7.

Læs mere

Lad os som eksempel se på samtidigt kast med en terning og en mønt:

Lad os som eksempel se på samtidigt kast med en terning og en mønt: SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3 Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 0. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6. og 6. Betingede diskrete

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 3.1-3.2 Middelværdi -Definition - Regneregler Betinget middelværdi Middelværdier af funktioner af stokastiske variable Loven om den itererede middelværdi Eksempler 1 Beskrivelse af

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 3.1-3.2 Middelværdi -Definition - Regneregler Betinget middelværdi Middelværdier af funktioner af stokastiske variabler Loven om den itererede middelværdi Eksempler 1 Beskrivelse

Læs mere

Dagens program. Afsnit Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder

Dagens program. Afsnit Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder Dagens program Afsnit 2.1-2.3 Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder 1 Stokastiske variable (diskrete) Et eksperiment med usikkerhed beskrives

Læs mere

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset

Læs mere

Sandsynlighedsregning Oversigt over begreber og fordelinger

Sandsynlighedsregning Oversigt over begreber og fordelinger Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistisk Model Indhold Binomialfordeling Sandsynlighedsfunktion Middelværdi og spredning 1 Aalen: Innføring i statistik med medisinske eksempler

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 9. Sandsynlighedsregning

Matematikkens mysterier - på et obligatorisk niveau. 9. Sandsynlighedsregning Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 9. Sandsynlighedsregning Hvad er den typiske størrelse af et nittehoved? 9. Statistik og sandsynlighedsregning Indhold 9.0 Indledning

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Teoretisk Statistik, 16. februar Generel teori,repetition

Teoretisk Statistik, 16. februar Generel teori,repetition 1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. maj 05 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ JLJ Nanostatistik: sandsynlighederkursushjemmeside:http://www.imf.au.dk/kurser/nanostatistik/ p. 1/16 Højder

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

Diskrete fordelinger. Fire vigtige diskrete fordelinger: 1. Uniform fordeling (diskret) 2. Binomial fordeling. 3. Hyper-geometrisk fordeling

Diskrete fordelinger. Fire vigtige diskrete fordelinger: 1. Uniform fordeling (diskret) 2. Binomial fordeling. 3. Hyper-geometrisk fordeling Disrete fordelinger Fire vigtige disrete fordelinger: 1. Uniform fordeling (disret) 2. Binomial fordeling 3. Hyper-geometris fordeling 4. Poisson fordeling 1 Uniform fordeling Definition Esperiment med

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R Helle Sørensen Uge 6, mandag SaSt2 (Uge 6, mandag) Tætheder og kont. fordelinger 1 / 19 Program Velkommen I dag:

Læs mere

Løsning til eksamen 16/

Løsning til eksamen 16/ 1 IMM - DTU 245 Probability 24-5-11 BFN/bfn Løsning til eksamen 16/12 23 Spørgsmål 1) 2 44% Man benytter formlen for skalering og positionsskift i forbindelse med varians og standardafvigelse, samt formlen

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark

Læs mere

Stokastiske processer og køteori

Stokastiske processer og køteori Stokastiske processer og køteori 2. kursusgang Anders Gorst-Rasmussen Institut for Matematiske Fag Aalborg Universitet 1 STOKASTISK MODEL FOR KØSYSTEM Population Ankomst Kø Ekspedition Output Ankomstproces

Læs mere

Repetition Stokastisk variabel

Repetition Stokastisk variabel Repetition Stokastisk variabel Diskret stokastisk variabel Udfaldsrum endelige eller tællelige mange antal elementer Sandsynlighedsfunktion f(x) er ofte tabellagt Udregning af sandsynligheder P( a < X

Læs mere

Matematik 3 SS. Københavns Universitet Naturvidenskabelig kandidateksamen, sommeren Opgaver til besvarelse i 3 timer fredag den 18. juni 1993.

Matematik 3 SS. Københavns Universitet Naturvidenskabelig kandidateksamen, sommeren Opgaver til besvarelse i 3 timer fredag den 18. juni 1993. Københavns Universitet Opgaver til besvarelse i 3 timer fredag den 18. juni 1993. Opgave 1 (50%) Det bemærkes, at en række af nedenstående spørgsmål kan besvares uafuængigt af de Øvrige spørgsmål (resultaterne,

Læs mere

STATISTIKNOTER Simple binomialfordelingsmodeller

STATISTIKNOTER Simple binomialfordelingsmodeller STATISTIKNOTER Simple binomialfordelingsmodeller Jørgen Larsen IMFUFA Roskilde Universitetscenter Februar 1999 IMFUFA, Roskilde Universitetscenter, Postboks 260, DK-4000 Roskilde. Jørgen Larsen: STATISTIKNOTER:

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 1.7-1.8 Fødselsdagseksemplet, fra sidst Eksperimenterikkealleerligesandsynlige Diskrete sandsynlighedsfordelinger -Definition af sandsynligheder - Regneregler Hvad er sandsynligheder?

Læs mere

2011.09.20 lth@campus.dk

2011.09.20 lth@campus.dk 2011.09.20 lth@campus.dk Intro Læseplan Beskrivende Statistik Sandsynligheder Ordet kommer fra Latin.: statisticum (statsrådgiver) Italiensk.: statistica (statsmand / politiker) Hvorfor statistik? Træk

Læs mere

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter Ekstraopgaver uge 2-02402 Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: XY. december 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Kiosk-modellen (News vendor s model) og EOQ modellen

Kiosk-modellen (News vendor s model) og EOQ modellen Kiosk-modellen (News vendor s model) og EOQ modellen Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet September 17, 2014 1/15 Stokastiske modeller i økonomi Fundamentale modeller i

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer (DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer (DM504) For et givent positivt heltal n og en given mængde af familier, antages at sandsynligheden for at familien har i børn, for 1 i n, er p i, således at n i=1 p i = 1. Endvidere er de 2 i mulige måder at få

Læs mere

IMFUFA TEKST NR 435 2004. TEKSTER fra ROSKILDE UNIVERSITETSCENTER BASISSTATISTIK. Jørgen Larsen 2004, 2005

IMFUFA TEKST NR 435 2004. TEKSTER fra ROSKILDE UNIVERSITETSCENTER BASISSTATISTIK. Jørgen Larsen 2004, 2005 TEKST NR 435 2004 BASISSTATISTIK Jørgen Larsen 2004, 2005 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING OG ANVENDELSER

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: PQ. juli 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Grundlæggende statistik Lektion 2 Indhold Diskrete fordelinger Binomial fordelingen Poisson fordelingen Hypergeometrisk fordeling Data typer el. typer af tilfældige variable Diskrete variable > Kategoriseres

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 24. maj 2012 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 24. maj 2012 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 6 sider Skriftlig prøve, den: 24. maj 2 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Sandsynlighedsregning & Statistik

Sandsynlighedsregning & Statistik Sandsynlighedsregning & Statistik for matematikstuderende Jørgen Larsen 2006 Roskilde Universitet Teksten er sat med skriften Kp-Fonts ved hjælp af KOMA- Script og LATEX. Tegningerne er fremstillet med

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Statistik viden eller tilfældighed

Statistik viden eller tilfældighed MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 28. September, 2007 Stokastiske variable Betragt 3 kast med en mønt. Så er udfaldsrummet Ω = {(p, p, p), (p, p, k), (p, k, p), (p, k, k), (k, p, p), (k, p, k),

Læs mere

INSTITUT FOR MATEMATISKE FAG c

INSTITUT FOR MATEMATISKE FAG c INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske

Læs mere

Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var.

Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Statistik Lektion Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Repetition Stikprøve Stikprøvestørrelse n Stikprøvemiddelværdi Stikprøvevarians s Population

Læs mere

Sandsynlighedsteori. Sandsynlighedsteori. Sandsynlighedsteori Et eksperiment beskrives af et udfaldsrum udstyret med et. Et Bayesiansk argument

Sandsynlighedsteori. Sandsynlighedsteori. Sandsynlighedsteori Et eksperiment beskrives af et udfaldsrum udstyret med et. Et Bayesiansk argument Sandsynlighedsteori Sandsynlighedsteori Et eksperiment beskrives af et udfaldsrum udstyret med et sandsynlighedsmål, (, E, ν). Et eksperiment beskrives af et udfaldsrum udstyret med et sandsynlighedsmål,

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 28. maj 2010 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 28. maj 2010 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side af 6 sider Skriftlig prøve, den: 8. maj 00 Kursus nr : 005 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord nr Der

Læs mere