ysikrapport: Maila Walmod, 1.3 HTX, Rosklide I gruppe med Morten Hedetoft, Kasper Merrild og Theis Hansen Afleveringsdato: 28/2/08

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "ysikrapport: Maila Walmod, 1.3 HTX, Rosklide I gruppe med Morten Hedetoft, Kasper Merrild og Theis Hansen Afleveringsdato: 28/2/08"

Transkript

1 ysikrapport: Gay-Lussacs lov Maila Walmod, 1.3 HTX, Rosklide I gruppe med Morten Hedetoft, Kasper Merrild og Theis Hansen Afleveringsdato: 28/2/08

2 J eg har længe gået med den idé, at der godt kunne være en sammenhæng mellem tempera- tur og tryk. I dette forsøg vil jeg prøve at bevise dette, ved at lade en flaske med en tæt- sluttende prop. Ved at sætt emåleudstyr på det og sænke flasken ned i kogende vand, kan denne teori afprøves. Jef forventer at se en sammenhæng mellem tryk og temperatur, hvor temperaturændringer vil have effekt på trykket. For at få disse to faktorer, bliver alle andre faktorer nødt til at være konstante. Rumfangen er det samme i flasken og det er den samme gas der bruges. Materialer: Til forsøget bruges fineste, nye (og for forskere i 1800-tallet fuldstændig ukendte) elektroniske måleudstyr, der består af en sensor, der måler tryk samt et elektronisk termometer; informationerne om temperatur og tryk bliver opsamlet i en LabPro, en dataopsamlingsenhed, der sender det videre direkte til et fremtidsvidunder - en PC. Her sendes de opsamlede målinger på tryk og temperatur direkte over og for hvert minut noteres målingerne på computeren. Opstillet overskueligt er følgende blevet brugt: en elkedel, Bægerglas og konisk kolbe med gummiprop med hul LabPro dataopsamlingsenhed med termoføler og tryksensor En bærbar PC med indstalleret LoggerPro 3. En elkedel Vand Proppen er lavet så termoføler og tryksensor kan på monteres så det slutter tæt. Fremgangsmåde 1 : Da de elektroniske måleinstrumenter går en stor del afarbejdet for os er det vigtigste i fremgangsmåden at få koblet dem til på den rigtige måde. Fremgangsmåden i forsøget har sin start i at få gjort dette: Start med at få følerne koblet til LabPro en og forbind den til PC en. Der tjekkes at det hele fungerer Monter slangen fra trykføleren på den lille studs på proppen til flasken. Sørg for at der er lukket for ventilen i det andet hul i proppen. Sørg for at proppen sidder godt fast og slutter tæt. I bægerglas hældes ca. 100 C varmt vand, så det dækker det meste af pyrex-flasken. Ændringerne i trykket følges. Når det ikke længere stiger er vandets og kolbens temperatur ens, og forsøgets målinger påbegyndes. 1: Fremgangsmåden er skrevet af fra oplægget 2: Tegning taget fra oplægget

3 Computeren sættes til at foretage målinger saf tryk og temperatur for hvert minut, mens systemet afkøles. Her ses opstillingen på en tegning 2 Resultater: Da vi får en lang række målinger ligger de som bilag til denne rapport. Her er til gengæld en grafisk præsenttion af dem, hvor de er sat ind i et koordinat. Først en graf, der viser hvordan temperaturen falder som tiden går, linjen buer en smule, da afkølingen a starten er størst:

4 På grafen på følgende side viser sammenhængen mellem temperaturen og trykket. Ud af x-aksen ses temperaturen og op ad y-aksen er trykket i kilopascal: Denne næsten rett elinje er bemærkelsesværdig, da den illustrerer førnævnte sammenhæng. Som der står i boksen er forskriften for en ret linje: y=mx+b Hvis man indsætter en tendenslinje, som er ret, hvorved ovenstående forskrift gælder, vil m, hældningskoefficienten, være: 0,7709 kpa/ C, og b er skæring med y-aksen, hvor temperaturen er lig 0 C: 54,17 kpa. y=0,7709x+54,17 Dette er altså tendenslinjen for grafen, der viser hvordan en forøgelse med 1 C af temperaturen stiger, stiger trykket tilsvarende med 0,7709 kpa. Så jo varmere en gas med et konstant rumfang er, jo større bliver trykket. Ud fra dette kan man også finde det absolutte nulpunkt, skæringen med x-aksen. Det absolutte nulpunkt betyder, den temperatur, hvor trykket er nul. Da trykket skal være nul må y også være nul, da trykket aflæses op ad y-aksen. På hele x-aksen gælder det at y=0. Så linjens skæringspunkt med x-aksen, er den temperatur, hvor trykket er nul. Ved at sætte y lig nul i vores funktion, kan vi finde x-koordinaten til punktet, og dermed temperaturen for nulpunktet: 0=0,7709x+54,17

5 -54,17=0,7709x -54,17/0,7709=x x=-70,2685 C Dette er nulpunktet for vores tendenslinje, denne virker rimelig usansynlig. Dette uddybes i den følgende diskussion. Som forsker i 1800-tallet kender jeg alligevel til det absolutte nulpunkt, da jeg i et fremtidssyn finder ud af, at det er -273,15 C eller 0 K. Dette er en fastsat værdi for nulpunktet for atmosfærisk luft. Her er det i kelvin, og vores resultat er i graders celsius. Dette skal omsættes til kelvin for t kunne regne den relative afvigelse. Omsætningsfaktoren er +273,15. Så dette lægges til vres resultat. -70, ,15= 202,8815K Dette er ret meget ved siden af nul... Den relative afvigelse i C er: (-273,15-(-70,2685))/-273,15*100=74,2748% Formel: Ud fra resultatet, kan vi konkludere, at der er en sammenhæng mellem tryk og temperatur, hvis vi har et konstant rumfang og bruger den helt samme gas. De to ting er altså konstante igennem forsøget. Herefter må vi konkludere at den rette linje viser, at temperatur og tryk er proportionale. Da tallene stiger sammen, og det er under konstante forhold, vil det give mening at dividere dem, og dette skulle helst ende ud i samme tal, da dette vil vise at tryk og temperatur er proportionale. Men da vores resultat ikke helt virker, vil dette ikke kunne give et godt resultat; forskeren i 1800-tallet vil nok have forsøgt igen mere omhyggeligt og brugt de nye resultater til at udlede en formel. Diskussion: Denne afvigelse som er udregnet i ovenstående afsnit, er meget stor, men der er også mange usikkerhedsfaktorer i forsøget. Det er blandt andet en lille flaske, der er meget tyk, og den er ikke helt dækket af vand. Dette gør at temperaturen ikke passer sammen i vandet, flasken og gassen inden i. Der kræves meget energi til at varme flasken op, og når den først er varmet op, skal

6 gassen inden i også varmes op. Når den er dette, kan vandets temperatur, som er den der måles med termometeret, sagtens være faldet, men grundet det tykke glas er gassens temperatur ikke faldet tilsvarende. Derfor er der en forskydning i forsøgets resultat, hvor kurverne følges ad i en nedadgående bue, men temperaturen af gassen er forsinket i afkølingen, hvorved trykket passer hertil, men ikke til vandets temperatur. Dette kan være grunden til dne store afvigelse. Men som forsker i 1800-tallet har man ikke optimale remedjer, da en tyndere glasflaske, der er helt dækket af vand, samt en temperaturmåling på gassen ville være bedre. Konklusion: tdette forsøg viser til trods for fejlkilder meget illustrativt hvordan tryk og temperatur hænger sammen og giver en næsten proportional linje indsat i en graf. Formålet var at undersøge dette og det gjorde vi, resultaterne er desværre lidt forkerte, men giver stadig et rigtig godt billede. Med de rigtige remedjer vil det ogå være nemmere.

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager Fysikrapport: Rapportøvelse med kalorimetri Maila Walmod, 1.3 HTX, Rosklide I gruppe med Ulrik Stig Hansen og Jonas Broager Afleveringsdato: 30. oktober 2007* *Ny afleveringsdato: 13. november 2007 1 Kalorimetri

Læs mere

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse. Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

Rumfang af væske i beholder

Rumfang af væske i beholder Matematikprojekt Rumfang af væske i beholder Maila Walmod, 1.3 HTX Roskilde Afleveringsdato: Fredag d. 7. december 2007 1 Fru Hansen skal have en væskebeholder, hvor rumfanget af væsken skal kunne aflæses

Læs mere

GENTOFTE KOMMUNE OG FJERN- VARMEN Lærervejledning til modul 3. Fra skraldespand til radiator

GENTOFTE KOMMUNE OG FJERN- VARMEN Lærervejledning til modul 3. Fra skraldespand til radiator GENTOFTE KOMMUNE OG FJERN- VARMEN Lærervejledning til modul 3 Fra skraldespand til radiator Indledning Ideen med dette undervisningsmodul er, at teorien bag fjernvarmesystemet forklares, så eleverne får

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold.

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Formål Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Teori Et batteri opfører sig som en model bestående af en ideel spændingskilde og en indre

Læs mere

Teknologi Projekt. Trafik - Optimal Vej

Teknologi Projekt. Trafik - Optimal Vej Roskilde Tekniske Gymnasium Teknologi Projekt Trafik - Optimal Vej Af Nikolaj Seistrup, Henrik Breddam, Rasmus Vad og Dennis Glindhart Roskilde Tekniske Gynasium Klasse 1.3 7. december 2006 Indhold 1 Forord

Læs mere

Dette forudsætter, at alt stof i forvejen er opvarmet til smeltepunktet eller kogepunkt.

Dette forudsætter, at alt stof i forvejen er opvarmet til smeltepunktet eller kogepunkt. Projekt: Energi og nyttevirkning Temperaturskala Gennem næsten 400 år har man fastlagt temperaturskalaen ud fra isens smeltepunkt (=vands frysepunkt) og vands kogepunkt. De tre kendte, gamle temperaturskalaer

Læs mere

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium s.1/5 For at kunne bestemme cansatsondens højde må vi se på, hvorledes tryk og højde hænger sammen, når vi bevæger os opad i vores atmosfære. I flere fysikbøger kan man læse om den Barometriske højdeformel,

Læs mere

5 nemme trin. Den enkle løsning mod dårligt skorstenstræk. - sådan tænder du op

5 nemme trin. Den enkle løsning mod dårligt skorstenstræk. - sådan tænder du op Den enkle løsning mod dårligt skorstenstræk Ved at installere en exodraft-røgsuger skaber du optimalt træk i skorstenen uanset vind og vejr, og opnår tilmed: Bedre forbrænding og brændselsøkonomi Sundere

Læs mere

Variabelsammenhænge og grafer

Variabelsammenhænge og grafer Variabelsammenhænge og grafer Indhold Variable... 1 Funktion... 1 Grafen for en funktion... 2 Proportionalitet... 4 Ligefrem proportional eller blot proportional... 4 Omvendt proportionalitet... 4 Intervaller...

Læs mere

Mads Peter, Niels Erik, Kenni og Søren Bo 06-09-2013

Mads Peter, Niels Erik, Kenni og Søren Bo 06-09-2013 EUC SYD HTX 1.B Projekt kroppen Fysik Mads Peter, Niels Erik, Kenni og Søren Bo 06-09-2013 Indhold Indledning/formål... 2 Forventninger... 2 Forsøget... 2 Svedekassen... 2 Fremgangsforløb... 2 Materialer...

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

sammenhänge for C-niveau i stx 2013 Karsten Juul

sammenhänge for C-niveau i stx 2013 Karsten Juul LineÄre sammenhänge for C-niveau i stx y 0,5x 2,5 203 Karsten Juul : OplÄg om lineäre sammenhänge 2 Ligning for lineär sammenhäng 2 3 Graf for lineär sammenhäng 2 4 Bestem y når vi kender x 3 5 Bestem

Læs mere

Transienter og RC-kredsløb

Transienter og RC-kredsløb Transienter og RC-kredsløb Fysik 6 Elektrodynamiske bølger Joachim Mortensen, Edin Ikanovic, Daniel Lawther 4. december 2008 (genafleveret 4. januar 2009) 1. Formål med eksperimentet og den teoretiske

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

Opgaver med hjælp Funktioner 2 - med Geogebra

Opgaver med hjælp Funktioner 2 - med Geogebra Opgaver med hjælp Funktioner 2 - med Geogebra Nulpunkter, monotoniforhold og ekstrema Formålet med denne note er at tegne os frem til nulpunkter, monotoniforhold og ekstrema for en funktion ved hjælp af

Læs mere

Gaslovene. SH ver. 1.4. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3

Gaslovene. SH ver. 1.4. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3 Gaslovene SH ver. 1.4 Indhold 1 Hvad er en gas? 2 1.1 Fysiske størrelser................... 2 1.2 Gasligninger...................... 3 2 Forsøgene 3 2.1 Boyle Mariottes lov.................. 4 2.1.1 Konklusioner.................

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Stephanie S. Gregersen Frederik M. Klausen Christoffer Paulsen. Ballonprojekt 2010. Matematik Fysik Kemi Teknologi. HTX Roskilde 1.

Stephanie S. Gregersen Frederik M. Klausen Christoffer Paulsen. Ballonprojekt 2010. Matematik Fysik Kemi Teknologi. HTX Roskilde 1. Ballonprojekt 2010 Matematik Fysik Kemi Teknologi 2 0 1 0 HTX Roskilde 1.5 1 Indholdsfortegnelse: Ballonprojekt 2010...1 Indholdsfortegnelse:...2 Ballonens historie...3 Indledning/formål...4 Brainstorm

Læs mere

Kasteparabler i din idræt øvelse 1

Kasteparabler i din idræt øvelse 1 Kasteparabler i din idræt øvelse 1 Vi vil i denne første øvelse arbejde med skrå kast i din idræt. Du skal lave en optagelse af et hop, kast, spark eller slag af en person eller genstand. Herefter skal

Læs mere

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3 Gaslovene SH ver. 1.2 Indhold 1 Hvad er en gas? 2 1.1 Fysiske størrelser................... 2 1.2 Gasligninger...................... 3 2 Forsøgene 3 2.1 Boyle Mariottes lov.................. 4 2.1.1 Konklusioner.................

Læs mere

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål.

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. Labøvelse 2, fysik 2 Uge 47, Kalle, Max og Henriette Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. 1. Vi har to forskellige størrelser: a: en skive

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens.

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens. Rapport Bjælken Indledning Vi arbejdede med opgaverne i grupper. En gruppe lavede en tabel, som de undersøgte og fandt en regel. De andre grupper havde studeret tegninger af bjælker med forskellige længder,

Læs mere

Fysik øvelse 2. Radioaktivitet. Øvelsens pædagogiske rammer

Fysik øvelse 2. Radioaktivitet. Øvelsens pædagogiske rammer B.2.1 Radioaktivitet Øvelsens pædagogiske rammer Sammenhæng Denne øvelse knytter sig til fysikundervisningen på modul 6 ved Bioanalytikeruddannelsen. Fysikundervisningen i dette modul har fokus på nuklearmedicin

Læs mere

Rygtespredning: Et logistisk eksperiment

Rygtespredning: Et logistisk eksperiment Rygtespredning: Et logistisk eksperiment For at det nu ikke skal ende i en omgang teoretisk tørsvømning er det vist på tide vi kigger på et konkret logistisk eksperiment. Der er selvfølgelig flere muligheder,

Læs mere

Opgaver til Maple kursus 2012

Opgaver til Maple kursus 2012 Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, jojep07@student.sdu.dk Martin Gyde Poulsen, gyde@nqrd.dk October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

Gentofte og fjernvarmen

Gentofte og fjernvarmen Gentofte KOMMUNE og fjernvarmen Undervisningsmodul 3 Fra skraldespand til radiator Varmen kommer fra vores affald Nede under jorden i Gentofte Kommune ligger der en masse rør. I de rør løber der varmt

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Teorien. solkompasset

Teorien. solkompasset Teorien bag solkompasset Preben M. Henriksen 31. juli 2007 Indhold 1 Indledning 2 2 Koordinatsystemer 2 3 Solens deklination 4 4 Horisontalsystemet 5 5 Solkompasset 9 6 Appendiks 11 6.1 Diverse formler..............................

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Modellering med Lego education kran (9686)

Modellering med Lego education kran (9686) Modellering med Lego education kran (9686) - Et undervisningsforløb i Lego education med udgangspunkt i matematiske emner og kompetencer Af: Ralf Jøker Dohn Henrik Dagsberg Kranen - et modelleringsprojekt

Læs mere

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?:

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: Angiv de variable: Check din forventning ved at hælde lige store mængder vand i to glas med henholdsvis store og små kugler. Hvor

Læs mere

Lærervejledning Modellering (3): Funktioner (1):

Lærervejledning Modellering (3): Funktioner (1): Lærervejledning Formål Gennem undersøgelsesbaseret undervisning anvendes lineære sammenhænge, som middel til at eleverne arbejder med repræsentationsskift og aktiverer algebraiske teknikker. Hvilke overgangsproblemer

Læs mere

Nr. 4-2007 Drivhusgasser - og deres betydning for klimaet Fag: Fysik A/B/C Udarbejdet af: Ole Ahlgren, Rønde Gymnasium, september 2009

Nr. 4-2007 Drivhusgasser - og deres betydning for klimaet Fag: Fysik A/B/C Udarbejdet af: Ole Ahlgren, Rønde Gymnasium, september 2009 Nr. 4-2007 Drivhusgasser - og deres betydning for klimaet Fag: Fysik A/B/C Udarbejdet af: Ole Ahlgren, Rønde Gymnasium, september 2009 Spørgsmål til artiklen 1. Forklar, hvad der menes med begrebet albedo.

Læs mere

Fysikøvelse Erik Vestergaard www.matematikfysik.dk. Musik og bølger

Fysikøvelse Erik Vestergaard www.matematikfysik.dk. Musik og bølger Fysikøvelse Erik Vestergaard www.matematikfysik.dk Musik og bølger Formål Hovedformålet med denne øvelse er at studere det fysiske begreb stående bølger, som er vigtigt for at forstå forskellige musikinstrumenters

Læs mere

AGV Kursus August 1999

AGV Kursus August 1999 AGV Kursus August 1999 Dato: 26.08.99 Morten Nielsen Daniel Grolin Michael Krag Indledning: Princippet bag en AGV (Autonomous Guided Vehicle) er at få et køretøj til at bevæge sig rundt i nogle omgivelser,

Læs mere

Opgaver om koordinater

Opgaver om koordinater Opgaver om koordinater Formålet med disse opgaver er dels at træne noget matematik, dels at give oplysninger om og træning i brug af Mathcad: Matematik: Øge grundlæggende indsigt vedrørende koordinater

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Jakob Skovborg Sørensen Christian Dohrmann Mette Lunding Nielsen Lucas Paulsen

Jakob Skovborg Sørensen Christian Dohrmann Mette Lunding Nielsen Lucas Paulsen . Side 1 af 11 06/09 2013 Indhold Indledning/formål... 3 Hvordan måler vi?:... 3 Hvordan virker kassen?... 3 Forventninger... 4 Eksempel af måleserie... 4 Forsøget:... 4 Beregning af energiomsætning...

Læs mere

Talrækker. Aktivitet Emne Klassetrin Side

Talrækker. Aktivitet Emne Klassetrin Side VisiRegn ideer 3 Talrækker Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Talrækker 2-4 Elevaktiviteter til Talrækker 3.1 Talrækker (1) M-Æ 5-9 3.2 Hanoi-spillet

Læs mere

For at hjælpe dialogen på vej, har vi udarbejdet en række cases, der illustrerer de dilemmaer, der kan opstår i den pædagogiske dagligdag.

For at hjælpe dialogen på vej, har vi udarbejdet en række cases, der illustrerer de dilemmaer, der kan opstår i den pædagogiske dagligdag. Dilemma Formålet med nedenstående dilemma cases, er at skabe dialog om den fagprofessionelles relation og samvær med børn, i personalegrupperne i alle børnehuse. For at hjælpe dialogen på vej, har vi udarbejdet

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

Vinøl Hobby. Velkommen til landets bedste specialbutik. Danmarks bedste websted for bryggere.

Vinøl Hobby. Velkommen til landets bedste specialbutik. Danmarks bedste websted for bryggere. Min Egen Porter til 20 liter,, ca. 5% alkohol. Dette er et godt sæt, til den der vil brygge en rigtig god mørk porter. Sættet indeholder følgende: 2 kg. Ekstra Dark tørret maltekstrakt fra Muntons 1 kg.

Læs mere

Isætning af belysning i Heljans BN-vogn. Jeg har lavet en guide til hvordan du nemt kan sætte lys i din(e) vogn(e) fra Heljan.

Isætning af belysning i Heljans BN-vogn. Jeg har lavet en guide til hvordan du nemt kan sætte lys i din(e) vogn(e) fra Heljan. Isætning af belysning i Heljans BN-vogn Hej Jeg har lavet en guide til hvordan du nemt kan sætte lys i din(e) vogn(e) fra Heljan. Før du går i gang med installationen af belysningen skal du være opmærksom

Læs mere

Matematik Aflevering - Æggebæger

Matematik Aflevering - Æggebæger Matematik Aflevering - Æggebæger Lavet af Morten Kvist i samarbejde med Benjamin Afleveret d. 17/3-2006 Afleveret til Kristine Htx 3.2 Side 1 af 6 Opgave 1 Delopgave A Først har jeg de to logaritme funktioner,

Læs mere

Fremstilling af mikrofluidfilter til filtrering af guld-nanopartikler

Fremstilling af mikrofluidfilter til filtrering af guld-nanopartikler Fremstilling af mikrofluidfilter til filtrering af guld-nanopartikler Formål I dette eksperiment skal du fremstille et såkaldt mikrofluidfilter og vise, at filtret kan bruges til at frafiltrere partikler

Læs mere

Eksempler på problemløsning med differentialregning

Eksempler på problemløsning med differentialregning Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Delprøven uden hlælpemidler

Delprøven uden hlælpemidler Matematik B - Juni 2014 Af hensyn til CAS-programmet er der anvendt punktum som decimaltegn. Delprøven uden hlælpemidler Opgave 1 AB=8, A1B=12, AC=10 Opgave 2 Hvor y er salget af øko. fødevarer i mio.

Læs mere

Når strømstyrken ikke er for stor, kan batteriet holde spændingsforskellen konstant på 12 V.

Når strømstyrken ikke er for stor, kan batteriet holde spændingsforskellen konstant på 12 V. For at svare på nogle af spørgsmålene i dette opgavesæt kan det sagtens være, at du bliver nødt til at hente informationer på internettet. Til den ende kan oplyses, at der er anbragt relevante link på

Læs mere

Faglig læsning i 6. klasse: At læse og forstå fagtekster

Faglig læsning i 6. klasse: At læse og forstå fagtekster Faglig læsning i 6. klasse: At læse og forstå fagtekster Det er tirsdag sidst i november. Klokken er 10.45. Klassen skal have dansk. Klasselokalet er småt, og de 21 elever sidder tæt. Denne dag er én elev

Læs mere

Kvantitativ bestemmelse af glukose

Kvantitativ bestemmelse af glukose Kvantitativ bestemmelse af glukose Baggrund: Det viser sig at en del af de sukkerarter, vi indtager med vores mad, er, hvad man i fagsproget kalder reducerende sukkerarter. Disse vil i en stærk basisk

Læs mere

Forsøg 1. Kroppen i kemi. Mads K, Anja D, Thomas B, Tobias S, Finnur Á

Forsøg 1. Kroppen i kemi. Mads K, Anja D, Thomas B, Tobias S, Finnur Á Forsøg 1 Kroppen i kemi Mads K, Anja D, Thomas B, Tobias S, Finnur Á Indhold Forsøg 1... 0 Formål... 2 Materialer... 2 Metode... 2 Udførsel... 2 Data og Databehandling... 3 Fejkilder... 3 Konklusion...

Læs mere

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Projektopgave Matematik A Tema: Eksponentielle modeller Vejleder: Jørn Bendtsen Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Dato: 01-01-2008 Indholdsfortegnelse Indledning... 3 1.

Læs mere

Newtons afkølingslov

Newtons afkølingslov Newtons afkølingslov miniprojekt i emnet differentialligninger Teoretisk del Vi skal studere, hvordan temperaturen i en kop kaffe aftager med tiden. Lad T ( t ) betegne temperaturen i kaffen til tiden

Læs mere

SPEKTRUM HALSE WÜRTZ FYSIK C. Fysiks optakt til et AST-forløb om kroppen af Niels Henrik Würtz. Energiomsætninger i kroppen

SPEKTRUM HALSE WÜRTZ FYSIK C. Fysiks optakt til et AST-forløb om kroppen af Niels Henrik Würtz. Energiomsætninger i kroppen HALSE WÜRTZ SPEKTRUM FYSIK C Fysiks optakt til et AST-forløb om kroppen af Niels Henrik Würtz Energiomsætninger i kroppen Kondital Glukoseforbrænding Fedtforbrænding Artiklen her knytter sig til kapitel

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

Byg molekyler af forskellige alkoholer, og tegn deres stregformler.

Byg molekyler af forskellige alkoholer, og tegn deres stregformler. Molekyler af alkohol Byg molekyler af forskellige alkoholer, og tegn deres stregformler. 3.1 7.1 - Molekylbyggesæt Byg alkohol-molekyler med 1, 2 og 3 C-atomer og 1 OH-gruppe. Tegn deres stregformler her,

Læs mere

Brunata WebMon Visual Mobile BrunataNet. online registrering og præsentation af energiog vandforbrug, temperatur og luftfugtighed

Brunata WebMon Visual Mobile BrunataNet. online registrering og præsentation af energiog vandforbrug, temperatur og luftfugtighed Brunata WebMon Visual Mobile BrunataNet online registrering og præsentation af energiog vandforbrug, temperatur og luftfugtighed WebMon Visual Mobile Det mobile laboratorium I forbindelse med opgaver i

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Hvor meget el bruger din familie?

Hvor meget el bruger din familie? Opgave E.1 Hvor meget el bruger din familie? Ud fra resultatet i opgave H.1 skal eleverne regne deres forventede årsforbrug ud. Forbruget på forskellige dage kan svinge en del, så tallet giver kun en idé

Læs mere

tegning NATUREN PÅ KROGERUP

tegning NATUREN PÅ KROGERUP tegning NATUREN PÅ KROGERUP På Krogerup lægger vi stor vægt på, at det økologiske landbrug arbejder sammen med naturen. Blandt andet derfor bruger vi i det økologiske landbrug ikke sprøjtegifte og kunstgødning.

Læs mere

Brugsanvisning til REAL serien RE-CIC/RE-CIC-TR

Brugsanvisning til REAL serien RE-CIC/RE-CIC-TR Brugsanvisning til REAL serien RE-CIC/RE-CIC-TR I denne brugsanvisning kan høreapparat, renseudstyr og lignende se anderledes ud end det, du har. Ret til ændringer forbeholdes. Høreapparater, tilbehør

Læs mere

Rapporter og opgaver - geografi C LAB-kursus

Rapporter og opgaver - geografi C LAB-kursus Rapporter og opgaver - geografi C LAB-kursus Her på siden er en oversigt over de 2 rapporter og 4 opgaver, I skal aflevere efter kurset. Rapporterne og opgaverne er nærmere beskrevet i dette kompendium.

Læs mere

Kuglers bevægelse i væske

Kuglers bevægelse i væske Kuglers bevægelse i væske Øvelsens formål er - at eftervise v 2 -loven for bevægelse i væsker: For et legeme der bevæger sig i vand. - at se at legemet i vores forsøg er så stort, at vi ikke har laminar

Læs mere

AKTIVITET 4: OPBEVAR FØDEVARER KORREKT

AKTIVITET 4: OPBEVAR FØDEVARER KORREKT AKTIVITET 4: OPBEVAR FØDEVARER KORREKT Læringsmål Du kan fortælle, hvordan forskellige fødevarer skal opbevares. Du kan tjekke en fødevares friskhed ved at bruge dine sanser. Fødevarer skal opbevares korrekt

Læs mere

Funktioner. Funktioner Side 150

Funktioner. Funktioner Side 150 Funktioner Brug af grafer koordinatsystemer... 151 Lineære funktioner ligefrem proportionalitet... 157 Andre funktioner... 163 Kært barn har mange navne... 165 Funktioner Side 15 Brug af grafer koordinatsystemer

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 20. december 2010. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 20. december 2010. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx103-mat/a-01010 Mandag den 0. december 010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Dette opgavesæt består

Læs mere

Stx matematik B december 2007. Delprøven med hjælpemidler

Stx matematik B december 2007. Delprøven med hjælpemidler Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem

Læs mere

Automatisering Af Hverdagen

Automatisering Af Hverdagen Automatisering Af Hverdagen Programmering - Eksamensopgave 10-05-2011 Roskilde Tekniske Gymnasium (Kl. 3,3m) Mads Christiansen & Tobias Hjelholt Svendsen 2 Automatisering Af Hverdagen Indhold Introduktion:...

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

2. Funktioner af to variable

2. Funktioner af to variable . Funktioner af to variable Opgave 1 Grafisk udformning af de to funktioner,, Opgave f (, y) = z = 5 y N(0) = z = 0 0 = 5 y + y = 5 C = ( ; y) = (0;0) r = 5 Dette medfører som vist en cirkel, med centrum

Læs mere

FREMTIDENS ENERGI Lærervejledning til modul 4. Goddag til fremtiden

FREMTIDENS ENERGI Lærervejledning til modul 4. Goddag til fremtiden FREMTIDENS ENERGI Lærervejledning til modul 4 Goddag til fremtiden Indledning Undervisningsmodul 4 fremtidsperspektiverer og viser fremtidens energiproduktion. I fremtiden er drømmen hos både politikere

Læs mere

i tredje sum overslag rationale tal tiendedele primtal kvotient

i tredje sum overslag rationale tal tiendedele primtal kvotient ægte 1 i tredje 3 i anden rumfang år 12 måle kalender hældnings a hældningskoefficient lineær funktion lagt n resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn formel andengradsligning

Læs mere

VEUD ekstraopgave Opgave nr. 63-23

VEUD ekstraopgave Opgave nr. 63-23 Opgavens art: Opgaveformulering: Fagområde: Opgavens varighed: 35 spørgsmål omkring processerne. Lav en skriftlig besvarelse på en række teoretiske spørgsmål. Ekstrudering 3 timer / 4 lektioner Niveau,

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Elspare-stafetten undervisningsbog 2013 Energistyrelsen

Elspare-stafetten undervisningsbog 2013 Energistyrelsen 2 Elspare-stafetten undervisningsbog 2013 Energistyrelsen Udgiver: Redaktør: Fagkonsulenter: Illustrationer: Produktion: Tryk og reproduktion: Energistyrelsen, opdatering af 2010-udgave fra Center for

Læs mere

Du skal gå en tur i Ry med et kamera. Du skal nu finde 9 forskellige retvinklede trekanter og tage billeder af dem. Sæt billederne ind her.

Du skal gå en tur i Ry med et kamera. Du skal nu finde 9 forskellige retvinklede trekanter og tage billeder af dem. Sæt billederne ind her. Du skal gå en tur i Ry med et kamera. Du skal nu finde 9 forskellige retvinklede trekanter og tage billeder af dem. Sæt billederne ind her. Gå på opdagelse med et kamera. Du skal finde skilte Det kan være

Læs mere

Eksempel på logistisk vækst med TI-Nspire CAS

Eksempel på logistisk vækst med TI-Nspire CAS Eksempel på logistisk vækst med TI-Nspire CAS Tabellen herunder viser udviklingen af USA's befolkning fra 1850-1910 hvor befolkningstallet er angivet i millioner: Vi har tidligere redegjort for at antallet

Læs mere

Harmoniske Svingninger

Harmoniske Svingninger Harmoniske Svingninger Frank Villa 16. marts 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

PARTIELT MOLÆRT VOLUMEN

PARTIELT MOLÆRT VOLUMEN KemiF1 laboratorieøvelser 2008 ØvelseF1-2 PARTIELT MOLÆRT VOLUMEN Indledning I en binær blanding vil blandingens masse være summen af komponenternes masse; men blandingens volumen vil ikke være summen

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 1 Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x 1 i [ 1,] drejes 360 om x-aksen.

Læs mere

Tjekliste ved manglende varme.

Tjekliste ved manglende varme. Tjekliste ved manglende varme. 1. Tjek varmemåler kommer det varmt vand ind fra varmeforsyningen. 2. Tjek returvarme styringer er indstillet korrekt. 3. Tjek cirkulationspumpe er indstillet korrekt sommer

Læs mere

Indre modstand og energiindhold i et batteri

Indre modstand og energiindhold i et batteri Indre modstand og energiindhold i et batteri Side 1 af 10 Indre modstand og energiindhold i et batteri... 1 Formål... 3 Teori... 3 Ohms lov... 3 Forsøgsopstilling... 5 Batteriets indre modstand... 5 Afladning

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Kort om Eksponentielle Sammenhænge

Kort om Eksponentielle Sammenhænge Øvelser til hæftet Kort om Eksponentielle Sammenhænge 2011 Karsten Juul Dette hæfte indeholder bl.a. mange småspørgsmål der gør det nemmere for elever at arbejde effektivt på at få kendskab til emnet.

Læs mere

Fremstilling af bioethanol

Fremstilling af bioethanol Bioteknologi 3, Tema 6 Forsøg www.nucleus.dk Linkadresserne fungerer pr. 1.7.2011. Forlaget tager forbehold for evt. ændringer i adresserne. Fremstilling af bioethanol Nedenstående fermenteringsforsøg

Læs mere

Indholdsfortegnelse resultat- & kritikprogrammet.

Indholdsfortegnelse resultat- & kritikprogrammet. Indholdsfortegnelse resultat- & kritikprogrammet. Ringsekretærers indtastning af resultater og kritikker... 2 Kom i gang Opstart af programmet... 2 En anden bruger er i gang med ringen... 3 Dommer ændringer

Læs mere

Grafisk Design. Komunikation/it. Lavet af Thomas Daugaard. Klasse 1.4, HTX, Roskilde. Side 1

Grafisk Design. Komunikation/it. Lavet af Thomas Daugaard. Klasse 1.4, HTX, Roskilde. Side 1 Grafisk Design Komunikation/it Lavet af Thomas Daugaard Klasse 1.4, HTX, Roskilde Side 1 I denne opgave vil jeg gøre rede for den fremgangsmåde jeg har brugt til, at udvikle et grafisk produkt i forhold

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere